
SIMATIC

WinCC
WinCC Engineering V16 - Runtime
Unified

System Manual

Online help printout

11/2019
Online help printout

Configuring screens (RT Uni) 1
Configuring dynamization
(RT Uni) 2
Configuring tags (RT Uni) 3
Configuring alarms (RT Uni) 4
Archiving data (RT Uni) 5
Using system functions (RT
Uni) 6
Programming scripts (RT Uni) 7
Configuring text lists and
graphic lists (RT Uni) 8
Planning tasks (RT Uni) 9
Configuring in multiple
languages (RT Uni) 10
Configuring parameter sets
(RT Uni) 11
Configuring user
administration (RT Uni) 12
Compiling and loading (RT
Uni) 13
Configuring cycles (RT Uni) 14
Creating production reports
(RT Uni) 15
Communicating with
controllers 16
Communicating with OPC
(RT Uni) 17
Performance features (RT
Uni) 18
Runtime API (RT Uni) 19
Working with plant objects
and plant views 20
Unified Collaboration 21

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

Document order number: Online help printout
Ⓟ 12/2019 Subject to change

Copyright © Siemens AG 2019.
All rights reserved

Table of contents

1 Configuring screens (RT Uni) ...21

1.1 Basics (RT Uni) ..21
1.1.1 Basics of screens (RT Uni) ..21
1.1.2 Task cards (RT Uni) ...23
1.1.3 Change size and position of an object (RT Uni)...24
1.1.4 Using layers (RT Uni)...25
1.1.4.1 Basic information on using layers (RT Uni)..25
1.1.4.2 Moving objects between layers (RT Uni) ...26
1.1.4.3 Specifying the active layer (RT Uni)...26
1.1.4.4 Hiding and showing layers (RT Uni)...27
1.1.5 Select multiple objects (RT Uni)...28
1.1.6 Aligning objects (RT Uni) ...30
1.1.7 Rotating an object around a pivot point (RT Uni) ...31
1.1.8 Rotating object (RT Uni)...32
1.1.9 Designing the fill pattern (RT Uni) ..33
1.1.10 Defining color gradients (RT Uni)...34

1.2 Advanced design (RT Uni) ...34
1.2.1 Configuring toolbar and status bar (RT Uni) ..34
1.2.2 Configuring flashing (RT Uni)...35
1.2.3 Connecting tags and text lists in the text (RT Uni) ...36
1.2.4 External graphics (RT Uni)...37
1.2.5 Managing external graphics (RT Uni) ..40
1.2.6 Defining the output format (RT Uni) ...41
1.2.7 Example: Configuring a rectangle (RT Uni) ...46
1.2.8 Example: Configuring an I/O field (RT Uni)..47
1.2.9 Example: Set values (RT Uni)..48

1.3 Configuring objects (RT Uni)..50
1.3.1 Basic objects (RT Uni) ...50
1.3.1.1 Line (RT Uni)..50
1.3.1.2 Polyline (RT Uni) ..51
1.3.1.3 Polygon (RT Uni)..52
1.3.1.4 Ellipse (RT Uni) ..53
1.3.1.5 Ellipse segment (RT Uni) ...54
1.3.1.6 Circle segment (RT Uni)...55
1.3.1.7 Elliptical arc (RT Uni) ...56
1.3.1.8 Circular arc (RT Uni) ..57
1.3.1.9 Circle (RT Uni) ...57
1.3.1.10 Rectangle (RT Uni) ..58
1.3.1.11 Text box (RT Uni)...59
1.3.1.12 Graphic view (RT Uni)..60
1.3.2 Elements (RT Uni)..61
1.3.2.1 I/O field (RT Uni) ..61
1.3.2.2 Button (RT Uni) ..62
1.3.2.3 Switch (RT Uni) ..63
1.3.2.4 Check box (RT Uni)..64

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 3

1.3.2.5 Bar (RT Uni) ...66
1.3.2.6 Gauge (RT Uni)..68
1.3.2.7 Slider (RT Uni) ...70
1.3.2.8 Radio button (RT Uni) ..71
1.3.2.9 List box (RT Uni) ..73
1.3.2.10 Clock (RT Uni)..74
1.3.2.11 Symbolic I/O field ...74
1.3.2.12 Touch area (RT Uni) ..75
1.3.3 Controls (RT Uni) ...76
1.3.3.1 Alarm control (RT Uni) ...76
1.3.3.2 Screen window (RT Uni) ..80
1.3.3.3 Trend control (RT Uni) ...82
1.3.3.4 Browser (RT Uni) ...86
1.3.3.5 Parameter set control (RT Uni) ..87
1.3.3.6 Faceplate container (RT Uni) ...90
1.3.3.7 Plant overview (RT Uni) ...91
1.3.3.8 Reports (RT Uni) ..92
1.3.3.9 Trend companion (RT Uni)...93
1.3.3.10 Media Player (RT Uni)..95
1.3.3.11 Function trend control (RT Uni)..97
1.3.3.12 Process control (RT Uni)..100
1.3.4 My Controls (RT Uni) ...102

1.4 Configuring faceplates (RT Uni)...103
1.4.1 Basics (RT Uni) ..103
1.4.1.1 Basics of faceplates (RT Uni)...103
1.4.1.2 Device dependency of faceplates (RT Uni)..105
1.4.1.3 "Unified Faceplate Types" editor (RT Uni) ...105
1.4.2 Creating and managing faceplates (RT Uni)..107
1.4.2.1 Creating a faceplate type (RT Uni)...107
1.4.2.2 Link faceplate type to a plant object type (RT Uni) ..108
1.4.2.3 Creating a faceplate instance (RT Uni) ..109
1.4.2.4 Copying faceplate types and faceplates to other projects (RT Uni)111
1.4.3 Editing faceplate types (RT Uni) ..112
1.4.3.1 Configuring a faceplate type (RT Uni)..112
1.4.3.2 Editing properties of a faceplate type (RT Uni) ..114
1.4.3.3 Configuring tags in the faceplate type (RT Uni) ...114
1.4.3.4 Configuring an event in the faceplate type (RT Uni) ..115
1.4.4 Dynamizing faceplates (RT Uni) ..116
1.4.4.1 Basics for the dynamization of faceplates (RT Uni) ...116
1.4.4.2 Dynamizing a faceplate instance (RT Uni)...118
1.4.4.3 Configuring faceplate scripts (RT Uni) ...119
1.4.5 Example: Creating and using faceplates (RT Uni) ...119
1.4.5.1 Example: Configuring a faceplate (RT Uni)..119
1.4.5.2 Example: Creating a faceplate type (RT Uni)...120
1.4.5.3 Example: Configuring tags in the faceplate type (RT Uni) ...122
1.4.5.4 Instead of tags: Using the user data type (UDT) in the faceplate type (RT Uni)123
1.4.5.5 Example: Configuring interface properties in the faceplate type (RT Uni)124
1.4.5.6 Example: Link faceplate type to plant object type (RT Uni) ...125
1.4.5.7 Example: Creating a local script in the faceplate type (RT Uni)...127
1.4.5.8 Example: Creating a faceplate instance and integrating it in the project (RT Uni)...............128

Table of contents

WinCC Engineering V16 - Runtime Unified
4 System Manual, 11/2019, Online help printout

2 Configuring dynamization (RT Uni) ..131

2.1 Basics of dynamizing screens (RT Uni) ...131

2.2 Dynamizing an object property with a "Script" (RT Uni) ...132

2.3 Dynamizing an object property with a "Tag" (RT Uni) ..133

2.4 Dynamizing an object property with "Flashing" (RT Uni) ..134

2.5 Dynamizing an object property with a "Resource list" (RT Uni) ...134

3 Configuring tags (RT Uni)...137

3.1 Basics (RT Uni) ..137
3.1.1 Basics of tags (RT Uni) ..137
3.1.2 Overview of HMI tag tables (RT Uni) ...139
3.1.3 External tags (RT Uni)..140
3.1.4 Addressing external tags (RT Uni) ...142
3.1.5 Internal tags (RT Uni)...144
3.1.6 Updating the tag value in runtime (RT Uni)..145
3.1.7 Limits and start values of a tag (RT Uni)..146
3.1.8 Data logging (RT Uni) ..147
3.1.9 Basics of tag management (RT Uni) ..148
3.1.10 Basics of user data types (RT Uni) ..149
3.1.11 Export and import of tags (RT Uni) ..150

3.2 Configuring tags (RT Uni) ..152
3.2.1 Creating external tags (RT Uni) ...152
3.2.2 Creating internal tags (RT Uni) ..154
3.2.3 Configuring multiple tags (RT Uni) ...156
3.2.4 Adapting the data type of a tag (RT Uni)..157
3.2.5 Defining the acquisition cycle for a tag (RT Uni) ..159
3.2.6 Defining limits for a tag (RT Uni) ..160
3.2.7 Synchronizing tags (RT Uni) ..161
3.2.8 Importing and exporting tags (RT Uni) ...162
3.2.9 Defining a substitute value (RT Uni) ..163
3.2.10 Connecting a tag to another PLC (RT Uni) ..165

3.3 Configuring user data types (RT Uni)...166
3.3.1 Creating a user data type (RT Uni) ..166
3.3.2 Creating user data type elements (RT Uni)..168
3.3.3 Managing versions of user data types (RT Uni)...169
3.3.4 Creating tags with a user data type data type (RT Uni) ...170

3.4 Logging tags (RT Uni) ..172
3.4.1 Basics of data logging (RT Uni) ...172
3.4.2 Defining log size, segmentation and backup (RT Uni) ...173
3.4.3 Data logging on change (RT Uni)...175
3.4.4 Creating a data log (RT Uni) ..176
3.4.5 Configuring logging tags (RT Uni)..177
3.4.6 Configuring smoothing (RT Uni)...179
3.4.7 Configuring compression (RT Uni)...181
3.4.8 Configuring limits (RT Uni) ...184

3.5 Displaying tags (RT Uni) ..185
3.5.1 Basics (RT Uni) ..185

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 5

3.5.1.1 Outputting the tag values (RT Uni)...185
3.5.1.2 Outputting tag values as trends (RT Uni)...186
3.5.1.3 Representing multiple trends (RT Uni)...188
3.5.1.4 Basics of time range (RT Uni) ..189
3.5.1.5 Representing trend directions (RT Uni)..190
3.5.1.6 Outputting tag values in tabular format (RT Uni)..191
3.5.1.7 Configuring tag evaluation (RT Uni)...192
3.5.2 Configuring a trend control (RT Uni) ..193
3.5.3 Configuring the function trend control (RT Uni)..195
3.5.4 Configuring the process control (RT Uni)...196
3.5.5 Configuring the trend companion (RT Uni) ..198
3.5.6 Configuring toolbar and status bar (RT Uni) ..199
3.5.7 Defining the data source (RT Uni)..200

3.6 Reference (RT Uni) ..202
3.6.1 Quality codes of HMI tags (RT Uni) ...202
3.6.2 Data types (RT Uni) ...209
3.6.2.1 Data types for SIMATIC S7-300/400 (RT Uni) ...209
3.6.2.2 Data types for SIMATIC S7-1500 (RT Uni) ..210
3.6.2.3 User-defined PLC data types (UDT) (RT Uni)..211

4 Configuring alarms (RT Uni)...213

4.1 Basics (RT Uni) ..213
4.1.1 Alarm system (RT Uni)...213
4.1.2 Alarms (RT Uni) ...215
4.1.2.1 User-defined alarms (RT Uni) ..215
4.1.2.2 System-defined alarms (RT Uni)..218
4.1.3 Alarm states (RT Uni)...220
4.1.4 Alarm classes (RT Uni) ..221
4.1.5 Acknowledging alarms (RT Uni)...225
4.1.6 Acknowledgment model (RT Uni) ..226
4.1.7 Alarm components and properties (RT Uni)...227

4.2 Configuring alarms (RT Uni) ..230
4.2.1 Workflow for configuring alarms (RT Uni) ..230
4.2.2 Creating alarm classes (RT Uni) ..231
4.2.3 Using common alarm classes (RT Uni)..233
4.2.4 Configuring state texts of alarms (RT Uni) ...237
4.2.5 Configuring discrete alarms (RT Uni)...238
4.2.6 Configuring analog alarms (RT Uni)...241
4.2.7 Configuring optional parameters for discrete alarms and analog alarms (RT Uni)244
4.2.8 Parameter output in a discrete or analog alarm (RT Uni) ..246
4.2.9 Configuring alarm texts (RT Uni)..246
4.2.10 Configuring multilingual alarm texts (RT Uni)...247
4.2.11 Editing system events (RT Uni)..248
4.2.12 Filtering controller alarms via display classes (RT Uni) ...249
4.2.13 Configuring alarm acknowledgment (RT Uni) ..250

4.3 Exporting and importing alarms (RT Uni)...251
4.3.1 Exporting alarms (RT Uni)..251
4.3.2 Importing alarms (RT Uni)..252

4.4 Configuring an alarm control (RT Uni) ...253
4.4.1 Configuring an alarm control (RT Uni) ...253

Table of contents

WinCC Engineering V16 - Runtime Unified
6 System Manual, 11/2019, Online help printout

4.4.2 Configuring toolbar and status bar (RT Uni) ..255
4.4.3 Configuring columns and sorting (RT Uni) ...257
4.4.4 Configuring filters in the alarm view (RT Uni)...258
4.4.5 Configuring alarm export (RT Uni) ...260
4.4.6 Configuring the printing of alarms (RT Uni)..261
4.4.7 Show logged alarms (RT Uni) ..261
4.4.8 Configuring the display of system diagnostic alarms (RT Uni)...262

4.5 Logging alarms (RT Uni) ..264
4.5.1 Basics of alarm logging (RT Uni) ...264
4.5.2 Defining log size, segmentation and backup (RT Uni) ...265
4.5.3 Creating an alarm log (RT Uni) ..267
4.5.4 Assign alarm class (RT Uni)...270

4.6 Displaying and using alarms (RT Uni)..270
4.6.1 Displaying alarms in runtime (RT Uni) ...270
4.6.2 Operating an alarm view (RT Uni)..272
4.6.3 Lists of the alarm view (RT Uni) ...273
4.6.4 Sorting alarms in runtime (RT Uni)...274
4.6.5 Filtering alarms in runtime (RT Uni) ...275
4.6.6 Displaying logged alarms in runtime (RT Uni)..276
4.6.7 Acknowledging alarms (RT Uni)...277
4.6.8 Group acknowledgement of alarms (RT Uni)...278
4.6.9 Exporting alarms (RT Uni)..279
4.6.10 Shelving alarms (RT Uni) ...280
4.6.11 Lock alarms (RT Uni) ...282
4.6.12 Printing alarms in runtime (RT Uni)..284

4.7 Display security events (RT Uni)..285
4.7.1 Display security events on the HMI device (RT Uni)..285
4.7.2 Configuring the display of security events (RT Uni) ...286

4.8 Sending complete alarm from the controller to the HMI device (RT Uni).............................287
4.8.1 Sending and automatically updating complete alarm from the controller to the HMI

device (RT Uni) ..287
4.8.2 Configuring automatic update of controller alarms on the HMI device (RT Uni)288

5 Archiving data (RT Uni) ..291

5.1 Log basics (RT Uni) ...291

5.2 Properties of logs (RT Uni)...292

5.3 Working with logs (RT Uni) ..294

5.4 Storage locations of logs (RT Uni) ...296

6 Using system functions (RT Uni) ..301

6.1 Working with function lists (RT Uni) ...301
6.1.1 Basics of the function list (RT Uni) ...301
6.1.2 Input support (RT Uni)..302
6.1.3 Configuring a function list (RT Uni) ..304
6.1.4 Editing a function list (RT Uni)..305
6.1.5 Using a screen item to specify the value of a parameter (RT Uni).......................................306
6.1.6 Adapt the function list to changed scripts (RT Uni) ..307

6.2 System functions (RT Uni) ...308

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 7

6.2.1 ChangeConnection (RT Uni)..308
6.2.2 ChangeScreen (RT Uni)...309
6.2.3 ClearAlarmLog (RT Uni)...310
6.2.4 ClearTagLog (RT Uni)..311
6.2.5 ClosePopup (RT Uni) ...311
6.2.6 CreateScreenshot (RT Uni)..312
6.2.7 CreateSystemInformation (RT Uni)..313
6.2.8 DecreaseTag (RT Uni) ...314
6.2.9 EjectStorageMedium (RT Uni) ...315
6.2.10 ExecuteReport (RT Uni)...316
6.2.11 ExportParameterSets (RT Uni) ..316
6.2.12 GetBrightness (RT Uni)..319
6.2.13 GetDHCPState (RT Uni) ..319
6.2.14 GetIPV4Address (RT Uni)..321
6.2.15 GetNetworkInterfaceState (RT Uni) ...322
6.2.16 GetSmartServerState (RT Uni) ..323
6.2.17 ImportParameterSets (RT Uni) ..324
6.2.18 IncreaseTag (RT Uni)...326
6.2.19 InvertBitInTag (RT Uni) ..327
6.2.20 LoadAndWriteParameterSet (RT Uni)..328
6.2.21 Logoff (RT Uni)...330
6.2.22 LookupText (RT Uni)..330
6.2.23 OpenFileBrowser (RT Uni)...331
6.2.24 OpenScreenInPopup (RT Uni) ...332
6.2.25 ReadAndSaveParameterSet (RT Uni) ...333
6.2.26 ResetBitInTag (RT Uni)..335
6.2.27 SetBitInTag (RT Uni)..336
6.2.28 SetBrightness (RT Uni) ..337
6.2.29 SetConnectionMode (RT Uni) ..338
6.2.30 SetDHCPState (RT Uni)...339
6.2.31 SetIPV4Address (RT Uni) ..340
6.2.32 SetLanguage (RT Uni) ...342
6.2.33 SetNetworkInterfaceState (RT Uni)..342
6.2.34 SetPropertyValue (RT Uni) ..343
6.2.35 SetSmartServerState (RT Uni)...344
6.2.36 SetTagValue (RT Uni)..345
6.2.37 ShiftAndMask (RT Uni) ..346
6.2.38 ShowControlPanel (RT Uni)...348
6.2.39 ShowSoftwareVersion (RT Uni) ...349
6.2.40 StartProgram (RT Uni) ...350
6.2.41 StopRuntime (RT Uni)..352
6.2.42 ToggleLanguage (RT Uni)..352
6.2.43 WriteManualValue (RT Uni) ...353

7 Programming scripts (RT Uni) ..355

7.1 Runtime scripting (RT Uni)...355

7.2 Basics (RT Uni) ..356

7.3 Notes on creating scripts (RT Uni) ...357
7.3.1 Data types (RT Uni) ...357
7.3.2 Object instances (RT Uni) ..358
7.3.3 Asynchronous operations (RT Uni) ..358

Table of contents

WinCC Engineering V16 - Runtime Unified
8 System Manual, 11/2019, Online help printout

7.3.4 Support for errors (RT Uni) ..359
7.3.5 Global modules (RT Uni)..360
7.3.6 Local scripts (RT Uni)...361

7.4 "Scripts" editor (RT Uni) ...361
7.4.1 Structure of the "Scripts" editor (RT Uni) ...361
7.4.2 Input support (RT Uni)..363
7.4.3 Creating a customized script (RT Uni) ...366
7.4.4 Configuring a script to an event (RT Uni)...368
7.4.5 Dynamizing object properties by script (RT Uni)..369
7.4.6 Creating a global definition in a local script (RT Uni) ...369

7.5 Examples (RT Uni)...370
7.5.1 Notes on the code examples (RT Uni) ...370
7.5.2 Dynamizing the position of an object (RT Uni)...370
7.5.3 Reading and writing tag values (RT Uni) ...373
7.5.4 Change language (RT Uni) ..373
7.5.5 Dynamically changing the output format of an object (RT Uni)..375
7.5.6 Setting the alarm filter (RT Uni)..377
7.5.7 Creating an alarm subscription (RT Uni)..378
7.5.8 Reading and writing binary files (RT Uni)...380
7.5.9 Reading and writing text files (RT Uni)...381
7.5.10 Converting values (RT Uni)..383
7.5.11 Setting bits (RT Uni)...385
7.5.12 Changing the date format (RT Uni) ..389
7.5.13 Simulating value changes in tags (RT Uni) ..390
7.5.14 Monitoring alarms (RT Uni) ..393
7.5.15 Using tag values globally (RT Uni)...395

7.6 Troubleshooting (RT Uni)...397
7.6.1 RTIL Trace Viewer (RT Uni)...397
7.6.2 Integrate RTIL Trace Viewer as an external application (RT Uni)..398
7.6.3 Tracing with the RTIL Trace Viewer (RT Uni) ..398

7.7 Debugging scripts (RT Uni)..400
7.7.1 Basics of debugging (RT Uni) ..400
7.7.2 Design and function of the debugger (RT Uni)...401
7.7.3 Enabling the debugger (RT Uni) ..403
7.7.4 Starting the debugger (RT Uni) ..404
7.7.5 Working with breakpoints (RT Uni) ..405
7.7.6 Step-by-step execution of scripts (RT Uni) ..407
7.7.7 Show values (RT Uni) ..409

7.8 WinCC Unified object model (RT Uni)..411
7.8.1 Objects (RT Uni) ..413
7.8.1.1 "Alarming" area (RT Uni)..413
7.8.1.2 "AlarmLogging" area (RT Uni)..458
7.8.1.3 "Connections" area (RT Uni) ..469
7.8.1.4 "Database" area (RT Uni) ..473
7.8.1.5 "FileSystem" object (RT Uni)..481
7.8.1.6 "HMIRuntime" object (RT Uni) ...491
7.8.1.7 "Math" area (RT Uni) ..494
7.8.1.8 "ParameterSetTypes" area (RT Uni) ..543
7.8.1.9 "PlantModel" area (RT Uni) ..550
7.8.1.10 "ScreenInterface" object (RT Uni) ..572

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 9

7.8.1.11 "ScreenItems" area (RT Uni)..575
7.8.1.12 "SysFct" object (RT Uni) ..663
7.8.1.13 "Tags" area (RT Uni) ..664
7.8.1.14 "TagLogging" area (RT Uni) ...695
7.8.1.15 "Timers" object (RT Uni) ..710
7.8.1.16 "UI" area (RT Uni) ..714

8 Configuring text lists and graphic lists (RT Uni)..735

8.1 Configuring text lists (RT Uni) ..735
8.1.1 Basics of text lists (RT Uni) ..735
8.1.2 Creating a text list (RT Uni)..736
8.1.3 Assigning texts and values to an area text list (RT Uni)...737
8.1.4 Assigning texts and values to a bit text list (RT Uni) ..739
8.1.5 Assigning texts and values to a bit number text list (RT Uni)...740
8.1.6 Notes for bit number text list (RT Uni)..741
8.1.7 Configuring object with a text list (RT Uni) ...742

8.2 Configuring graphic lists (RT Uni) ..743
8.2.1 Basics of graphic lists (RT Uni) ..743
8.2.2 Creating a graphic list (RT Uni)..744
8.2.3 Assigning graphics and values to an area graphic list (RT Uni)...745
8.2.4 Assigning graphics and values to a bit graphic list (RT Uni) ..746
8.2.5 Assigning graphics and values to a bit number graphic list (RT Uni)...................................747
8.2.6 Notes for bit number graphic list (RT Uni)..749
8.2.7 Configuring objects with a graphic list (RT Uni) ...750

9 Planning tasks (RT Uni)..751

9.1 Basic of the scheduler (RT Uni) ...751

9.2 Creating tasks with the "Time" trigger (RT Uni) ...752

9.3 Creating tasks with the "Tags" trigger (RT Uni) ...752

9.4 Creating tasks with the "Alarms" trigger (RT Uni) ..753

10 Configuring in multiple languages (RT Uni)..755

10.1 Languages in WinCC (RT Uni)...755

10.2 Settings for languages in the operating system (RT Uni)...756

10.3 Settings for Asian languages in the operating system (RT Uni)...757

10.4 Setting project languages (RT Uni) ..758
10.4.1 Selecting the user interface language (RT Uni) ...758
10.4.2 Enabling project languages (RT Uni) ...758
10.4.3 Selecting the reference language and editing language (RT Uni)759

10.5 Creating one project in multiple languages (RT Uni) ...761
10.5.1 Working with multiple languages (RT Uni) ...761
10.5.2 Basics of project texts (RT Uni)..762
10.5.3 Translating texts directly (RT Uni)..763
10.5.4 Translating texts using reference texts (RT Uni)..765
10.5.5 Exporting project texts (RT Uni) ...765
10.5.6 Importing project texts (RT Uni) ...767

10.6 Using language-specific graphics (RT Uni)..768
10.6.1 "Project graphics" editor (RT Uni) ..768

Table of contents

WinCC Engineering V16 - Runtime Unified
10 System Manual, 11/2019, Online help printout

10.6.2 Storing an image in the project graphics (RT Uni) ...769
10.6.3 Storing an external image in the project graphics (RT Uni) ...770

10.7 Languages in runtime (RT Uni) ..772
10.7.1 Languages and fonts in runtime (RT Uni) ..772
10.7.2 Methods for language switching (RT Uni) ..773
10.7.3 Enabling the runtime language (RT Uni)..773
10.7.4 Setting the runtime language order for language switching (RT Uni)774
10.7.5 Setting the default font for a runtime language (RT Uni)..775
10.7.6 Standardizing font for all languages (RT Uni) ..776
10.7.7 Specific features of Asian and Eastern languages in runtime (RT Uni)777

11 Configuring parameter sets (RT Uni)..779

11.1 Basics (RT Uni) ..779
11.1.1 Basics of parameter control (RT Uni)...779
11.1.2 "Parameter set types" editor (RT Uni) ..781
11.1.3 Parameter set control (RT Uni) ..785

11.2 Configuring parameter sets (RT Uni) ...788
11.2.1 Creating a parameter set type with elements via an HMI user data type (RT Uni)788
11.2.2 Creating a parameter set type with elements via a PLC user data type (RT Uni)................791
11.2.3 Changing a parameter set type with elements (RT Uni) ..795
11.2.4 Assigning a tag of the data type HMI user data type to a parameter set type (RT Uni).......798
11.2.5 Assigning a tag of the data type "PLC user data type" to a parameter set type (RT Uni)....800
11.2.6 Transferring and deleting parameter sets automatically (RT Uni)..801
11.2.7 Transferring parameter sets via scripts (RT Uni) ...804
11.2.8 Configuring the parameter set view (RT Uni)...805

11.3 Using parameter sets in runtime (RT Uni)..807
11.3.1 Managing parameter sets (RT Uni)..807
11.3.2 Exporting and importing parameter sets (RT Uni)..813
11.3.3 Transferring parameter sets (RT Uni) ..816

12 Configuring user administration (RT Uni) ...819

12.1 Basics of user administration (RT Uni)...819

12.2 Configuring user administration (RT Uni)...822
12.2.1 Setting password policies (RT Uni) ..822
12.2.2 Managing project users (RT Uni) ...823
12.2.3 Managing global users and user groups (RT Uni) ...826
12.2.4 Managing roles (RT Uni) ..830
12.2.5 Assigning roles (RT Uni) ..833
12.2.6 Activate project protection (RT Uni) ...834
12.2.7 Log on to a protected project (RT Uni)...835
12.2.8 Change password for protected project (RT Uni)...836
12.2.9 Log off from a protected project (RT Uni)...838
12.2.10 Specify user administration used on Unified Comfort Panel (RT Uni)838
12.2.11 Limit access to Unified Comfort Panel (RT Uni)...839

12.3 Use user administration in Runtime (RT Uni)...840
12.3.1 Log on to user administration in Runtime (RT Uni) ..840

13 Compiling and loading (RT Uni) ...841

13.1 Unified Comfort (RT Uni)..841
13.1.1 Runtime settings (RT Uni)..841

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 11

13.1.1.1 Settings in the runtime software (RT Uni) ..841
13.1.1.2 Start screen (RT Uni) ...842
13.1.1.3 Encrypted transfer (RT Uni) ...843
13.1.1.4 Setting time base ...843
13.1.1.5 Printing in Runtime...844
13.1.2 Overview (RT Uni)..844
13.1.3 Compiling a project (RT Uni)..846
13.1.4 Simulating projects (RT Uni) ..847
13.1.4.1 Basics of simulation (RT Uni)...847
13.1.4.2 Skip "Load preview" dialog (RT Uni) ..847
13.1.4.3 Simulating a project (RT Uni) ...848
13.1.4.4 Simulating a screen (RT Uni) ...850
13.1.5 Downloading projects (RT Uni) ..851
13.1.5.1 Overview for loading of projects (RT Uni) ..851
13.1.5.2 Loading a project (RT Uni) ...853
13.1.5.3 Using external storage medium (RT Uni)...857
13.1.6 Compiling and loading with Multiuser Engineering (RT Uni)..862
13.1.6.1 Compiling and loading with multiuser engineering (overview) (RT Uni)...............................862
13.1.6.2 Compiling in the server project view (RT Uni)..863
13.1.6.3 Compiling in the local session (RT Uni) ...864
13.1.7 Error messages during loading of projects (RT Uni) ..865
13.1.8 Reducing the project size (RT Uni) ..866
13.1.9 Starting runtime (RT Uni) ...868
13.1.10 Adapting the project for another HMI device (RT Uni) ...869
13.1.11 Users in runtime (RT Uni) ..870
13.1.12 Viewing memory card data (RT Uni) ..870
13.1.12.1 Basics (RT Uni) ..870
13.1.12.2 Working with backups (RT Uni)..871
13.1.13 Working with HMI device images (RT Uni) ..873
13.1.13.1 Viewing HMI device images (RT Uni) ..873
13.1.13.2 Deleting HMI device images (RT Uni)..874
13.1.13.3 Creating HMI device images on memory card (RT Uni) ..875
13.1.14 Basics of operating in Unified Runtime (RT Uni)..876
13.1.14.1 Overview (RT Uni)..876
13.1.14.2 Operation with the touch screen (RT Uni)..877
13.1.14.3 Direct Keys (RT Uni) ..881
13.1.14.4 Triggering an action (RT Uni)...882
13.1.14.5 Entering a value (RT Uni)...883
13.1.14.6 Moving operator controls (RT Uni) ...883
13.1.14.7 Displaying infotext (RT Uni) ...884
13.1.14.8 Changing Runtime language (RT Uni) ...885
13.1.14.9 Web browser of WebKit engine (RT Uni) ...885
13.1.15 Entering barcodes via handheld readers (RT Uni)...890
13.1.16 Servicing the HMI device (RT Uni)...892
13.1.16.1 Overview of the service for Unified Comfort Panels (RT Uni) ..892
13.1.16.2 ProSave (RT Uni)...893
13.1.16.3 Backup of HMI data (RT Uni) ...893
13.1.16.4 Backing up and restoring data of the HMI device (RT Uni)..894
13.1.16.5 Updating the operating system (RT Uni)..895
13.1.16.6 Updating the operating system on the HMI device (RT Uni)..896
13.1.16.7 Updating the operating system of the HMI device from a data carrier898
13.1.16.8 Transferring license keys (RT Uni)...899

Table of contents

WinCC Engineering V16 - Runtime Unified
12 System Manual, 11/2019, Online help printout

13.1.16.9 Managing licenses (RT Uni)...899
13.1.16.10 Installing and uninstalling an option (RT Uni)...901

13.2 Unified PC (RT Uni) ...902
13.2.1 Runtime settings (RT Uni)..902
13.2.1.1 Settings in the runtime software (RT Uni) ..902
13.2.1.2 Start screen (RT Uni) ...903
13.2.1.3 Encrypted transfer (RT Uni) ...904
13.2.1.4 Printing in runtime (RT Uni)..905
13.2.2 Overview (RT Uni)..905
13.2.3 Compiling a project (RT Uni)..907
13.2.4 Simulating projects (RT Uni) ..907
13.2.4.1 Basics of simulation (RT Uni)...907
13.2.4.2 Skip "Load preview" dialog (RT Uni) ..908
13.2.4.3 Simulating a project (RT Uni) ...909
13.2.4.4 Simulating a screen (RT Uni) ...911
13.2.5 Downloading projects (RT Uni) ..912
13.2.5.1 Sequence of the download process (RT Uni) ..912
13.2.5.2 Loading a project (RT Uni) ...913
13.2.5.3 Using external storage medium (RT Uni)...916
13.2.6 Compiling and loading with multiuser engineering (RT Uni) ..918
13.2.6.1 Compiling and loading with multiuser engineering (overview) (RT Uni)...............................918
13.2.6.2 Compiling in the server project view (RT Uni)..920
13.2.6.3 Compiling in the local session (RT Uni) ...920
13.2.7 Error messages during loading of projects (RT Uni) ..921
13.2.8 Starting runtime (RT Uni) ...922
13.2.9 Adapting the project for another HMI device (RT Uni) ...923
13.2.10 Users in runtime (RT Uni) ..925
13.2.10.1 Changing users in runtime (RT Uni)...925
13.2.10.2 User administration in runtime (RT Uni)...926

14 Configuring cycles (RT Uni)..927

14.1 Basics of cycles (RT Uni) ...927

14.2 Defining cycles (RT Uni) ..928

15 Creating production reports (RT Uni) ...929

15.1 Basics (RT Uni) ..929
15.1.1 Introduction (RT Uni)..929
15.1.2 Basics of Reporting (RT Uni) ...931

15.2 Procedure (RT Uni) ..932

15.3 Configuring production reports in the engineering system (RT Uni)933
15.3.1 Inserting a "Reporting" control in a screen (RT Uni) ..933

15.4 Creating templates for production reports (RT Uni) ...934
15.4.1 Requirements (RT Uni) ..934
15.4.1.1 Installation of the Reporting add-in (RT Uni)..934
15.4.1.2 Configuring Internet Explorer and Edge (RT Uni) ..936
15.4.2 Setting up a data source (RT Uni)..937
15.4.2.1 Using an online connection (RT Uni) ...937
15.4.2.2 Using an offline connection (RT Uni) ...939
15.4.3 Configuring report templates (RT Uni) ...940
15.4.3.1 Sequence of events (RT Uni)...940

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 13

15.4.3.2 Create segments (RT Uni) ...941
15.4.3.3 Edit segments (RT Uni)..946
15.4.3.4 Delete segments (RT Uni)..946
15.4.3.5 Adding data source elements (RT Uni) ..947
15.4.3.6 Delete data source elements (RT Uni)...952
15.4.3.7 Working with configurations (RT Uni)...953
15.4.3.8 Reading Runtime data in Excel (RT Uni) ...959
15.4.3.9 Calculation modes for data source elements (RT Uni) ..960
15.4.4 Making general settings (RT Uni)...960
15.4.4.1 Changing the language (RT Uni) ...960
15.4.4.2 Adapting the work area (RT Uni)..961
15.4.4.3 Zooming in the add-in (RT Uni)..961
15.4.5 Undo and redo (RT Uni)...961

15.5 Working with production logs in runtime (RT Uni)..962
15.5.1 The user interface of the "Reports" control (RT Uni)..962
15.5.2 Configuring task parameters (RT Uni) ...963
15.5.2.1 Import and export templates (RT Uni)..964
15.5.2.2 Deleting templates (RT Uni)...965
15.5.2.3 Configure trigger (RT Uni)..965
15.5.3 Configuring report tasks (RT Uni) ..967
15.5.3.1 Creating a report job (RT Uni)..967
15.5.3.2 Managing report jobs (RT Uni)...969
15.5.4 Running a report job manually (RT Uni)...970
15.5.5 Downloading reports (RT Uni)..970
15.5.6 Inconsistencies and error diagnostics (RT Uni) ...971

16 Communicating with controllers..973

16.1 Basics of communication (RT Uni)...973
16.1.1 Communication between devices (RT Uni)..973
16.1.2 Supported PLCs (RT Uni) ..975
16.1.3 Configuring communication (RT Uni) ...975

16.2 Networks and connections (RT Uni) ..976
16.2.1 SIMATIC communication networks (RT Uni) ...976
16.2.1.1 Communication networks (RT Uni) ..976
16.2.1.2 PROFINET (RT Uni) ..977
16.2.2 Connections (RT Uni)...978
16.2.2.1 HMI connection (RT Uni)..978
16.2.2.2 Additional connection types (RT Uni)...979

16.3 Device configuration (RT Uni) ..980
16.3.1 Layout of a PC-based HMI device (RT Uni)...980
16.3.2 Configuring HMI device (RT Uni) ...981

16.4 Configuring an HMI connection (RT Uni) ...982
16.4.1 Integrated HMI connection (RT Uni) ..982
16.4.1.1 Networking HMI device and PLCs (RT Uni)...982
16.4.1.2 Creating an integrated HMI connection (RT Uni) ...983
16.4.2 Non-integrated HMI connection (RT Uni)...984
16.4.2.1 Configuring non-integrated connections (RT Uni)..984
16.4.2.2 Creating a non-integrated HMI connection (RT Uni)..985
16.4.3 Setting up switch on/switch off of a connection in runtime (RT Uni)986

16.5 Configuring interfaces (RT Uni)..987

Table of contents

WinCC Engineering V16 - Runtime Unified
14 System Manual, 11/2019, Online help printout

16.5.1 PLCs and Interfaces (RT Uni) ..987
16.5.2 Requirements for interface configuration (RT Uni)...988
16.5.3 PROFINET (RT Uni) ..988
16.5.3.1 PROFINET interfaces (RT Uni)..988
16.5.3.2 Configuring PROFINET interfaces of a non-integrated HMI connection (RT Uni)989

16.6 Configuring communication (RT Uni) ...991
16.6.1 Communicating with SIMATIC S7-1500 (RT Uni) ..991
16.6.1.1 Communication with SIMATIC S7-1500 (RT Uni) ..991
16.6.1.2 Valid data types for SIMATIC S7-1500 (RT Uni)..991
16.6.1.3 Symbolic addressing (RT Uni) ...992
16.6.2 Communicating with SIMATIC S7-300 / S7-400 (RT Uni) ...993
16.6.2.1 Communication with SIMATIC S7-300 / S7-400 (RT Uni) ...993
16.6.2.2 Valid data types for SIMATIC S7-300 / S7-400 (RT Uni) ...994
16.6.2.3 Cyclic operation (RT Uni) ...995

16.7 Interface and communication parameters (RT Uni) ...996
16.7.1 S7-1500 (RT Uni) ...996
16.7.1.1 S7-1500 | Integrated HMI connection (RT Uni) ..996
16.7.1.2 S7-1500 | Non-integrated HMI connection (RT Uni) ..997
16.7.2 S7-300/400 (RT Uni) ..998
16.7.2.1 S7-300/400 | Integrated HMI connection (RT Uni) ...998
16.7.2.2 S7-300/400 | Non-integrated HMI connection (RT Uni) ...999

16.8 Troubleshooting of connection errors (commissioning) (RT Uni).......................................1000
16.8.1 Troubleshooting for SIMATIC S7-300/400 (RT Uni) ..1000
16.8.1.1 Procedure for the localization of errors (RT Uni)..1000
16.8.1.2 Error codes (RT Uni) ..1012
16.8.1.3 Internal error codes and constants (RT Uni) ..1026
16.8.1.4 API error texts (RT Uni)..1045

17 Communicating with OPC (RT Uni)..1055

17.1 OPC UA (RT Uni)...1055

17.2 Using OPC in WinCC (RT Uni) ..1055

17.3 Basics of the WinCC OPC UA server (RT Uni)..1056

17.4 Compatibility (RT Uni) ..1057

17.5 Security concept of OPC UA (RT Uni) ...1058

17.6 Configuring an HMI device as an OPC UA server (RT Uni)...1060

17.7 OPC server configuration (RT Uni) ..1061
17.7.1 Structure of the configuration file (RT Uni)...1061
17.7.2 Configuring an OPC UA server (RT Uni) ...1063

17.8 OPC UA services support (RT Uni)..1063

17.9 Permitted data types (OPC) (RT Uni) ..1064

18 Performance features (RT Uni) ..1067

18.1 General technical data (RT Uni)...1067
18.1.1 Permitted special characters (RT Uni) ...1067

18.2 SIMATIC Unified Comfort Panel (RT Uni)..1068

18.3 SIMATIC Unified PC ..1071

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 15

19 Runtime API (RT Uni)...1075

19.1 Basics (RT Uni) ..1075

19.2 Changes to the API (RT Uni) ...1076

19.3 Creating a minimal ODK client (RT Uni) ..1079

19.4 Authorizing users (RT Uni)...1082

19.5 Startup and shutdown behavior of an ODK application (RT Uni).......................................1082
19.5.1 Autostart of an ODK application (RT Uni) ..1082
19.5.2 Shutdown behavior (RT Uni)..1083
19.5.3 Restart behavior (RT Uni) ..1083

19.6 Syntax of the alarm filter (RT Uni)..1084

19.7 Locale IDs of the supported languages (RT Uni) ...1085

19.8 Code samples (RT Uni)..1087

19.9 Description of the C# interfaces (RT Uni) ..1088
19.9.1 Releasing objects (RT Uni) ..1088
19.9.2 Interfaces of the Runtime environment (RT Uni)..1090
19.9.2.1 IRuntime (RT Uni) ..1090
19.9.2.2 IProduct (RT Uni) ...1094
19.9.2.3 IOption (RT Uni) ...1095
19.9.2.4 IVersionInfo (RT Uni) ...1097
19.9.3 Error-handling interfaces (RT Uni) ...1098
19.9.3.1 IErrorResult (RT Uni) ...1098
19.9.3.2 IErrorInfo (RT Uni)..1100
19.9.3.3 OdkException (RT Uni) ..1100
19.9.4 Interfaces of the tags (RT Uni) ...1102
19.9.4.1 IProcessValue (RT Uni) ...1102
19.9.4.2 ITag (RT Uni) ...1104
19.9.4.3 ITagSet (RT Uni) ..1106
19.9.4.4 ITagSetQCD (RT Uni) ..1114
19.9.4.5 ITagSetQCDItem (RT Uni) ...1117
19.9.4.6 ILoggedTagValue (RT Uni) ..1118
19.9.4.7 ILoggedTag (RT Uni) ...1119
19.9.4.8 ILoggedTagSet (RT Uni) ..1120
19.9.4.9 ITags (RT Uni)..1124
19.9.4.10 ITagAttributes (RT Uni) ..1126
19.9.4.11 ILoggingTags (RT Uni)...1128
19.9.4.12 ILoggingTagAttributes (RT Uni) ...1129
19.9.5 Interfaces of the alarms (RT Uni) ...1130
19.9.5.1 IAlarmResult (RT Uni) ..1130
19.9.5.2 IAlarm (RT Uni) ..1138
19.9.5.3 IAlarmSet (RT Uni)...1140
19.9.5.4 IAlarmSetResult (RT Uni)...1148
19.9.5.5 IAlarmTrigger (RT Uni)...1149
19.9.5.6 ITextList (RT Uni) ...1156
19.9.5.7 IAlarmSubscription (RT Uni) ..1156
19.9.5.8 ILoggedAlarmResult (RT Uni) ..1161
19.9.5.9 IAlarmLogging (RT Uni) ...1166
19.9.5.10 IAlarmLoggingSubscription (RT Uni)..1168

Table of contents

WinCC Engineering V16 - Runtime Unified
16 System Manual, 11/2019, Online help printout

19.9.6 Interfaces for connections (RT Uni) ...1171
19.9.6.1 IConnectionResult (RT Uni) ...1171
19.9.6.2 IConnectionStatusResult (RT Uni) ...1173
19.9.6.3 IConnection (RT Uni) ...1175
19.9.6.4 IConnectionSet (RT Uni) ..1176
19.9.7 Interfaces of the Plant Model (RT Uni)...1182
19.9.7.1 IPlantModel (RT Uni)..1182
19.9.7.2 IPlantObject (RT Uni) ...1184
19.9.7.3 IPlantObjectProperty (RT Uni) ...1187
19.9.7.4 IPlantObjectPropertyValue (RT Uni) ..1189
19.9.7.5 IPlantObjectPropertySet (RT Uni) ..1191
19.9.7.6 IPlantObjectAlarmSubscription (RT Uni)..1198
19.9.8 Interfaces of the Calendar option (RT Uni) ..1201
19.9.8.1 ISHCCalendar (RT Uni) ...1201
19.9.8.2 ISHCCategory (RT Uni) ...1202
19.9.8.3 ISHCCategoryProvider (RT Uni) ..1203
19.9.8.4 ISHCCalendarSettings (RT Uni) ..1204
19.9.8.5 ISHCTimeSlice (RT Uni) ..1205
19.9.8.6 ISHCDay (RT Uni)..1206
19.9.8.7 ISHCDayProvider (RT Uni) ..1207
19.9.8.8 ISHCDayTemplate (RT Uni)...1211
19.9.8.9 ISHCDayTemplatesProvider (RT Uni) ...1213
19.9.8.10 ISHCShiftTemplate (RT Uni)..1216
19.9.8.11 ISHCShiftTemplatesProvider (RT Uni)...1218
19.9.8.12 ISHCShift (RT Uni)...1221
19.9.8.13 ISHCAction (RT Uni) ..1224
19.9.8.14 ISHCActionElement (RT Uni)..1225
19.9.8.15 ISHCActionTemplate (RT Uni) ...1226
19.9.8.16 ISHCActionTemplateElement (RT Uni)..1227
19.9.8.17 ISHCActionTemplatesProvider (RT Uni)..1228

19.10 Description of the C++ interfaces (RT Uni) ..1232
19.10.1 Error codes of the C++ interfaces (RT Uni)..1232
19.10.2 Interfaces of the Runtime environment (RT Uni)..1232
19.10.2.1 IOdkRt (RT Uni) ...1232
19.10.2.2 IRuntime (RT Uni) ..1234
19.10.2.3 IProduct (RT Uni) ...1238
19.10.2.4 IOption (RT Uni) ...1239
19.10.2.5 IOptionEnumerator (RT Uni) ..1241
19.10.2.6 IVersionInfo (RT Uni) ...1243
19.10.2.7 IErrorResult (RT Uni) ...1244
19.10.2.8 IErrorResultEnumerator (RT Uni)...1247
19.10.2.9 IErrorInfo (RT Uni)..1249
19.10.3 Interfaces of the tags (RT Uni) ...1251
19.10.3.1 IProcessValue (RT Uni) ...1251
19.10.3.2 IProcessValueEnumerator (RT Uni)...1253
19.10.3.3 ITag (RT Uni) ...1254
19.10.3.4 ITagCallback (RT Uni)..1259
19.10.3.5 ITagSet (RT Uni) ..1264
19.10.3.6 ITagSetQCD (RT Uni) ..1272
19.10.3.7 ITagSetQCDItem (RT Uni) ...1277
19.10.3.8 ILoggedTagValue (RT Uni) ..1279
19.10.3.9 ILoggedTagValueEnumerator (RT Uni) ...1281

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 17

19.10.3.10 ILoggedTagCallback / ILoggedTagSetCallback (RT Uni) ..1282
19.10.3.11 ILoggedTag (RT Uni) ...1287
19.10.3.12 ILoggedTagSet (RT Uni) ..1290
19.10.3.13 ITags (RT Uni)..1293
19.10.3.14 ITagAttributes (RT Uni) ..1295
19.10.3.15 ITagAttributesEnumerator (RT Uni) ...1297
19.10.3.16 ITagAttributesCallback (RT Uni) ..1298
19.10.3.17 ILoggingTags (RT Uni)...1299
19.10.3.18 ILoggingTagAttributes (RT Uni) ...1300
19.10.3.19 ILoggingTagAttributesEnumerator (RT Uni)...1301
19.10.3.20 ILoggingTagAttributesCallback (RT Uni)..1301
19.10.4 Interfaces of the alarms (RT Uni) ...1302
19.10.4.1 IAlarmResult (RT Uni) ..1302
19.10.4.2 IAlarmResultEnumerator (RT Uni) ...1312
19.10.4.3 IAlarm (RT Uni) ..1313
19.10.4.4 IAlarmCallback (RT Uni) ..1316
19.10.4.5 IAlarmSourceCommandCallback (RT Uni) ..1320
19.10.4.6 IAlarmSet (RT Uni)...1324
19.10.4.7 IAlarmSetResult (RT Uni)...1328
19.10.4.8 IAlarmSetResultEnumerator (RT Uni)..1329
19.10.4.9 IAlarmTrigger (RT Uni)...1329
19.10.4.10 ITextList (RT Uni) ...1337
19.10.4.11 IAlarmSubscription (RT Uni) ..1338
19.10.4.12 ILoggedAlarmResult (RT Uni) ..1343
19.10.4.13 ILoggedAlarmResultEnumerator (RT Uni) ...1349
19.10.4.14 IAlarmLogging (RT Uni) ...1350
19.10.4.15 IAlarmLoggingCallback (RT Uni)..1353
19.10.4.16 IAlarmLoggingSubscription (RT Uni)..1354
19.10.5 Interfaces for connections (RT Uni) ...1356
19.10.5.1 IConnectionResult (RT Uni) ...1356
19.10.5.2 IConnectionResultEnumerator (RT Uni) ..1359
19.10.5.3 IConnectionStatusResult (RT Uni) ...1360
19.10.5.4 IConnectionStatusResultEnumerator (RT Uni) ..1363
19.10.5.5 IConnection (RT Uni) ...1364
19.10.5.6 IConnectionReadNotification (RT Uni) ...1365
19.10.5.7 IConnectionStateChangeNotification (RT Uni)...1368
19.10.5.8 IConnectionSet (RT Uni) ..1370
19.10.6 Interfaces of the Plant Model (RT Uni)...1375
19.10.6.1 IPlantModel (RT Uni)..1375
19.10.6.2 IPlantObject (RT Uni) ...1378
19.10.6.3 IPlantObjectProperty (RT Uni) ...1383
19.10.6.4 IPlantObjectPropertyValue (RT Uni) ..1385
19.10.6.5 IPlantModelPropertySubscriptionNotification (RT Uni) ..1386
19.10.6.6 IPlantObjectPropertyValueEnumerator (RT Uni) ...1389
19.10.6.7 IPlantObjectPropertySet (RT Uni) ..1390
19.10.6.8 IPlantObjectPropertySetReadReply (RT Uni) ..1394
19.10.6.9 IPlantObjectPropertySetWriteReply (RT Uni) ..1396
19.10.6.10 IPlantObjectEnumerator (RT Uni) ..1398
19.10.6.11 IPlantObjectAlarmSubscription (RT Uni)..1400
19.10.6.12 IPlantObjectAlarmCallback (RT Uni)..1402
19.10.6.13 IPlantObjectAlarmSubscriptionCallback (RT Uni) ..1404
19.10.7 Interfaces of the Calendar option (RT Uni) ..1405

Table of contents

WinCC Engineering V16 - Runtime Unified
18 System Manual, 11/2019, Online help printout

19.10.7.1 ISHCCalendarOption (RT Uni)...1405
19.10.7.2 ISHCCalendar (RT Uni) ...1409
19.10.7.3 ISHCCalendarSettings (RT Uni) ..1411
19.10.7.4 ISHCCategory (RT Uni) ..1412
19.10.7.5 ISHCCategoryEnumerator (RT Uni)...1414
19.10.7.6 ISHCCategoryProvider (RT Uni) ..1416
19.10.7.7 ISHCTimeSlice (RT Uni) ..1417
19.10.7.8 ISHCTimeSliceEnumerator (RT Uni) ...1418
19.10.7.9 ISHCDay (RT Uni)..1419
19.10.7.10 ISHCDayEnumerator (RT Uni)...1422
19.10.7.11 ISHCDayProvider (RT Uni) ..1424
19.10.7.12 ISHCDayTemplate (RT Uni)...1434
19.10.7.13 ISHCDayTemplatesProvider (RT Uni) ...1436
19.10.7.14 ISHCShiftTemplate (RT Uni)..1446
19.10.7.15 ISHCShiftTemplateEnumerator (RT Uni) ...1448
19.10.7.16 ISHCShiftTemplatesProvider (RT Uni)...1450
19.10.7.17 ISHCShift (RT Uni)...1460
19.10.7.18 ISHCShiftEnumerator (RT Uni) ...1468
19.10.7.19 ISHCAction (RT Uni) ..1471
19.10.7.20 ISHCActionEnumerator (RT Uni) ...1472
19.10.7.21 ISHCActionElement (RT Uni)...1475
19.10.7.22 ISHCActionElementEnumerator (RT Uni) ...1476
19.10.7.23 ISHCActionTemplate (RT Uni) ..1479
19.10.7.24 ISHCActionTemplateEnumerator (RT Uni) ...1481
19.10.7.25 ISHCActionTemplatesProvider (RT Uni)..1483
19.10.7.26 ISHCActionTemplateElement (RT Uni)..1492
19.10.7.27 ISHCActionTemplateElementEnumerator (RT Uni) ..1493

20 Working with plant objects and plant views ..1497

20.1 Basics...1497
20.1.1 Introduction ..1497
20.1.2 Applications..1499
20.1.3 Requirements...1501
20.1.4 Type/instance concept in object-oriented configuration ...1501
20.1.5 Configuration concept ..1504
20.1.6 Plant model and target systems...1506
20.1.7 Structure of a plant model ..1507

20.2 Elements and basic settings ..1509
20.2.1 Overview ..1509
20.2.2 Options for creating plant objects...1513

20.3 Object- and technology-oriented configuration ..1514
20.3.1 Creating a plant hierarchy ..1514
20.3.2 Assigning a plant hierarchy to a HMI device ..1515
20.3.3 Creating plant object types...1516
20.3.4 Creating plant objects ..1517
20.3.5 Example: Determine plant object type ...1518
20.3.6 Configure plant object types...1520
20.3.7 Configuring plant object types from the data blocks of an S7-1500...................................1522
20.3.8 Assigning process data to plant objects...1524
20.3.9 Basic information on configuring screens ..1525
20.3.10 Configuring screens for plant objects...1527

Table of contents

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 19

20.3.11 Example: Configuring screens for brewery production lines ..1529
20.3.12 Configuring "Plant overview" control and companion controls...1532
20.3.13 Configuring an alarm control for plant objects..1534
20.3.14 Configuring trend control for plant objects ...1536
20.3.15 Basic information on configuring alarms ..1537
20.3.16 Configure discrete alarms for plant objects..1538
20.3.17 Configuring analog alarms for plant objects...1541
20.3.18 Temperature monitoring example Configuring analog alarms for a plant object type........1544
20.3.19 Configuring the logging of plant object types ...1545

20.4 Visualizing plant objects in runtime ..1547
20.4.1 Displaying plant objects in runtime...1547
20.4.2 Operating "Plant overview" in runtime..1548
20.4.3 Display process data of the plant objects in a trend control...1550
20.4.4 Displaying alarms for plant objects in runtime..1555

20.5 Options...1558
20.5.1 Plant Intelligence Options ..1558

21 Unified Collaboration ..1561

21.1 Basics...1561
21.1.1 Introduction ..1561
21.1.2 Requirements...1561
21.1.3 Restrictions ..1562

21.2 Using Unified Collaboration..1563
21.2.1 Configuration concept ..1563
21.2.2 Defining collaboration settings ...1564
21.2.3 Export screen references for Unified Collaboration ...1566
21.2.4 Import screen references for Unified Collaboration..1567
21.2.5 Configuring the screen window ..1569

Index...1571

Table of contents

WinCC Engineering V16 - Runtime Unified
20 System Manual, 11/2019, Online help printout

Configuring screens (RT Uni) 1
1.1 Basics (RT Uni)

1.1.1 Basics of screens (RT Uni)

Introduction
In WinCC you create screens that a user can use to control and monitor machines and plants.
When you create screens, the pre-defined object templates support you in visualizing your
plant, displaying processes and specifying process values.

Structure of screens
Insert the objects you need to represent the process into your screen. Configure the objects to
match the requirements of your process.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 21

A screen can consist of static and dynamic elements:

● ① Static elements such as text or graphic objects in the screen above do not change in
runtime.

● ② Dynamic elements change their status based on the process. You visualize current
process values from the memory of the PLC or the HMI device. Dynamic objects include, for
example, alphanumeric displays, trends and bars, as well as input fields on HMI device,
such as I/O fields, switches and sliders. Process values and operator inputs are exchanged
between the PLC and the HMI device by means of tags.

Start screen
The start screen is the initial screen displayed when the project is started in runtime. You must
define a separate start screen for each target system. From the start screen, the user navigates
to the other screens. Create the start screen in runtime settings under "General > Screen >
Start screen".

Note

To compile and download a project, you need to have defined a start screen in the project.
Ensure that a start screen is specified in your project.

Screen window
You display other project screens in the screen window. The screen window enhances
navigation between screens and allows "screen in a screen" display.

Screen windows can, for example, be used for:

● Frequent switching between plant units

● Showing and hiding screens, for example without exiting central process visualization

● Displaying multiple plant units in one screen

Property list in the Inspector window
You can view and edit the properties of an object using the property list in the Inspector window.
Changes to the size and position or dynamizations of the object are possible, for example.

The properties are displayed either in alphabetical order or in categories.

You can sort the property list as follows:

● Display of properties in alphabetical order

● Display of the properties grouped in categories

With both views, all details of the individual properties can be shown or hidden:

● All details are shown

● All details are hidden

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
22 System Manual, 11/2019, Online help printout

1.1.2 Task cards (RT Uni)

Introduction
The following task cards are available in the "Screens" editor:

● Toolbox: Display and operating objects

● Layout: Aid for customizing the display

● Libraries: Administration of the project library and of the global libraries

Toolbox
The "Toolbox" task card contains objects in different panes:

● Basic objects

● Elements

● Controls

● My controls

● Graphics

You paste objects from the palettes into your screens by drag&drop or a double click. The
objects available for selection are determined by the features of the HMI device you are
configuring.

Layout
The "Layout" task card contains the following panes for displaying objects and elements:

● Layers: Serves to manage screen object layers The layers are displayed in a tree view and
contain information about the active layer and the visibility of all layers.

● Objects out of range: Objects that lie outside the visible area are displayed with name,
position and type.

Libraries
The "Libraries" task card show the following libraries in separate panes:

● Project library: The project library is stored together with the project.

● Global library: The global library is stored in a separate file in the specified path on your
configuration PC.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 23

1.1.3 Change size and position of an object (RT Uni)

Introduction
When you select an object, it is enclosed by a rectangle with handles. You have the following
options for changing the size and position of an object:

● Drag the handles using the mouse.

● Configure properties in the Inspector window.

Note

The position of the "Polygon", "Polyline" and "Line" objects can be changed by specifying
positions X and Y in the Inspector window.

Requirement
You have opened the work area containing at least one object.

Change object size
1. Select the object you want to resize.

The selection rectangle appears. The following figure shows a selected object:

2. Drag a resizing contact of the rectangle to a new position.
The size of the object changes.

Alternatively, enter the "Height" and the "Width" of the object under "Properties".

Change object position
1. Select the object whose position you want to change.

The selection rectangle appears.

2. Click on the object and drag it to the desired position.
The object is moved to the new position.

Alternatively, enter the coordinates "Position X" and "Position Y" for the position of the object
in relation to the screen origin under "Properties". The zero position is located at the top left-
hand corner of the screen.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
24 System Manual, 11/2019, Online help printout

1.1.4 Using layers (RT Uni)

1.1.4.1 Basic information on using layers (RT Uni)

Layers
Use layers in order to achieve differentiated editing of the objects in a screen. Using layers,
multiple objects can be combined and edited together, for example. Layers are also used to
improve clarity during configuring, because multiple objects can be hidden and displayed again
when required.

A screen has 32 layers. The name of the individual layers is determined by the user interface
language and changes when the user interface language is changed. If you assign objects to
the layers, you thereby define the screen depth. Objects of layer 0 are located in the screen
background, while objects of layer 31 are located in the foreground.

The objects of a single layer are also arranged hierarchically. If you create a new object, it is
arranged in the foreground. You can shift objects forwards and backwards within a layer.

Principle of the layer technique
Always one layer of the 32 layers is active. New objects you add to the screen are always
assigned to the active layer. The active layer is indicated in the "Layout > Layers" task card.

When you open a screen, all 32 layers of the screen are displayed. You can hide all layers
except for the active layer in the "Layout > Layers" task card. You then explicitly edit objects of
the active layer.

In the "Layout > Layers" task card, you can also manage layers and objects with drag-and-drop
and the shortcut menu.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 25

Application examples
Use layers, for example, in the following cases:

● To hide the labeling of objects when editing,

● To hide individual objects, while you configure other objects

1.1.4.2 Moving objects between layers (RT Uni)

Introduction
By default, newly inserted objects are in the foreground of the active layer. You can assign an
object to a different layer and change the order of objects within a layer at a later time.

Requirement
● A screen with an object is open.

Moving objects between layers
1. Select the object in the "Layout > Layers" task card.

2. Drag-and-drop the object to the required layer.

Changing the order of objects within a layer
1. Select the object in the screen.

2. Select the desired command under "Arrange" in the shortcut menu. Depending on the
current position of the object, you can move it completely into the foreground, to the front,
to the back or completely into the background.

Result
The object is arranged according to the selection. In the "Layout > Layers" task card, the order
of the objects is displayed as follows: Objects of layer 0 are located in the screen background,
while objects of layer 31 are located in the foreground. Within a layer, the objects displayed at
the top of the list are in the background of the layer.

1.1.4.3 Specifying the active layer (RT Uni)

Introduction
The screen objects are always assigned to one of the 32 layers. There is always an active layer
in the screen. New objects you add to the screen are always assigned to the active layer.

The active layer is indicated by the icon in the "Layout > Layers" task card.

You can activate a different layer during configuration, if necessary.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
26 System Manual, 11/2019, Online help printout

Requirement
● You have opened a screen which contains at least one object.

Procedure
1. Select "Layout > Layers" in the "Layout" task card.

2. Select the "Set to active" command from the shortcut menu of a layer.

Result
The selected layer becomes the active layer.

1.1.4.4 Hiding and showing layers (RT Uni)

Introduction
You can show or hide the layers of a screen as required.

Requirement
● The screen is opened.

Procedure
1. Select the layer that you want to hide or show in the "Layout > Layers" task card.

2. Click one of the icons next to the corresponding layer:

● A shown layer is hidden

● A hidden layer is shown

Note

You cannot hide the active layer.

Alternative procedure
1. Select "Layout > Layers" in the "Layout" task card.

2. Select the "Hide layer" or "Show layer" command from the shortcut menu of a layer.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 27

Result
The shown layers are displayed in the engineering system.

Note

All layers are always displayed in runtime.

1.1.5 Select multiple objects (RT Uni)

Introduction
To align the object with one another or rotate them, select all affected objects. This procedure
is called "multiple selection."

The Inspector window shows all the properties of the selected objects.

You have the following options to select multiple objects:

● Draw a selection frame around the objects.

● Hold down the <Shift> key, and click the required objects.

Selection frame of a multiple selection
The selection frame surrounds all objects of a multiple selection. The selection frame is
comparable with the rectangle that surrounds an individual object.

The selection frame is only visible as long as it is pulled up with the mouse button pressed.
When you have made your multiple selection, the following frame is displayed:

● The reference object is indicated by the rectangle around it.

● The other selected objects are indicated by a frame.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
28 System Manual, 11/2019, Online help printout

Specifying a reference object
The reference object is the object upon which the other objects are oriented. The reference
object is framed by a rectangle with handles. The following figure shows a reference object with
three additional selected objects:

You have the following options to specify the reference object:

● Select the objects via multiple selection. The object selected first is then the reference
object.

● Draw a selection frame around the objects. As a reference object, the object is automatically
defined as on top in the foreground. If you wish to specify a different object within the
selection as the reference object, click on the desired object. This action does not cancel
your multiple selection.

Requirement
You have opened the work area containing at least two objects.

Selecting multiple objects with a selection frame
1. Position the mouse pointer in the work area close to one of the objects to be selected.

2. Hold down the mouse button, and draw a selection frame around the objects to be selected.

Selecting multiple objects using the <Shift> key
1. Hold down the <Shift> key.

2. Click the relevant objects, working in succession.
All the selected objects are identified by frames.
The object selected first is identified as reference object.

Note

To remove an object from the multiple selection, press <SHIFT>, hold it down and then click
the relevant object once again.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 29

Result
Multiple objects are selected. One of those is identified as the reference object. You can now
perform the following steps:

● Moving all the objects in one group

● Aligning the objects to the reference object

1.1.6 Aligning objects (RT Uni)

Introduction
You can align the screen objects in the screen with reference to a reference object.

Aligning objects flush
The selected objects will be aligned flush to the reference object.

Icon Description
Aligns the selected objects to the left edge of the reference object.
Aligns the selected objects to the vertical center axis of the reference object.
Aligns the selected objects to the right edge of the reference object.
Aligns the selected objects to the upper edge of the reference object.

Aligns the selected objects to the horizontal center axis of the reference object.
Aligns the selected objects to the lower edge of the reference object.
Centers the selected objects to the center points of the reference object.
Centers the selected objects vertically in the screen.

 Centers the selected objects horizontally in the screen.

Procedure
1. Select the objects via multiple selection.

2. Specify an object as the reference object.

3. Select the desired command for alignment in the toolbar or the shortcut menu.
The selected objects are aligned.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
30 System Manual, 11/2019, Online help printout

1.1.7 Rotating an object around a pivot point (RT Uni)

Introduction
You define the rotation of an object around a pivot point. In the Inspector window of an object,
specify the coordinates "X pivot point" and "Y pivot point". Specify the angle of rotation for the
object under "Properties > Rotation".

The pivot point can be outside the object.

Pivot point
The pivot point can be defined as follows:

● Absolute from center: Sets the rotation to around the absolute center of the object.

● Absolute to screen: Sets the rotation to around the absolute zero point of the screen. The
zero point is in the top left corner of the screen.

Rotation position
The attributes "X pivot point" and "Y pivot point" define the horizontal and vertical distance of
the pivot point from the point of origin (center of the object or zero point of the screen).

The values are specified as a device-independent pixel (DIP).

The pivot point value can be outside the selection rectangle. This means that both negative
values and positive values are possible.

Rotation
Defines the rotation of an object around the pivot point. Rotation is specified in degrees. The
configured start point corresponds to a value of 0°. The position of an object deviates from its
configured initial position by the rotation value. Both negative values and positive values are
possible.

The object can also be placed outside the visible area. You can view objects outside the visible
area by using the "Layout > Objects out of range" task card. In the inspector window, the
position of an object can be modified under "Properties".

Example: Configuring rotation for a rectangle
1. Open the "Basic objects" palette in the "Toolbox" task card.

2. Drag the "Rectangle" object into the screen.

3. Click "Properties > Pivot point" in the Inspector window.

4. Select "Absolute from center" from the "Static value" column.

5. Enter a value of 45 for "Rotation".

The object is rotated clockwise by 45°.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 31

1.1.8 Rotating object (RT Uni)

Introduction
You can rotate a suitable object clockwise or counterclockwise around its center axis in steps
of 90°.

You can also rotate multiple objects using the multiple selection function. Each object has its
own reference point for the rotation and is rotated by its own reference point during multiple
selection. Certain WinCC objects, such as Controls, cannot be rotated.

The alignment of elements in an object will change in a rotated object. The following figure
shows how a rectangle and an ellipse behave under the different commands for rotating an
object:

Requirement
You have opened the work area containing at least one object.

Procedure
1. Select the object that you want to rotate.

2. Click one of the following toolbar icons:
, to rotate the object clockwise around its center point. The angle of rotation is 90°.
, to rotate the object counterclockwise around its center point. The angle of rotation is

90°.
, to rotate the object clockwise by 180°.

Alternatively, select from the shortcut menu the desired command to rotate the objects.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
32 System Manual, 11/2019, Online help printout

Result
The object is shown at its new angle.

1.1.9 Designing the fill pattern (RT Uni)

Introduction
WinCC lets you design the background color and the fill pattern of an object. The design options
change in the Inspector window depending on object for which you are making the filling pattern.

For certain objects, you can not only define the color, but also a transparent background or a
background with a color gradient.

Requirement
The object has been created and selected.

Designing the background color of an object
1. Click "Properties > Background color" in the Inspector window.

2. Select a color for the background of the object, for example, yellow.
The object is filled with the selected color.

Designing the fill pattern of an object
1. Click "Properties > Background fill pattern" in the Inspector window.

2. To define a transparent background for the object, for example, select transparent.
The object is shown as transparent.

Restriction for objects with events
Events for operator actions are only triggered if the operator action takes place in the marked,
visible area of the object. If the fill pattern of an object is transparent, the user in Runtime must
hit exactly the border of the object when tapping or clicking in order to trigger the events
configured for the object. Select the border width so that the user can hit the border easily.

Note

Objects for which the "Opacity" property has the value "0" are also not visible in Runtime and
do not trigger events.

Configuring screens (RT Uni)
1.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 33

1.1.10 Defining color gradients (RT Uni)

Introduction
For the objects in WinCC, color gradients can be specified as background for various surfaces.

Change the category in the Inspector window, depending on which surface you fill with a color
gradient. The procedure remains the same.

The following section describes how to configure the color gradient of a rectangle.

Horizontal color gradient with two colors
1. Select an object, for example a rectangle.

2. In the Inspector window, select "Horizontal gradient" under "Properties > Background fill
pattern".

3. Go to "Properties > Fill direction" and select the direction in which the color is to run, for
example "From left to right".

4. Select a background color for the horizontal color gradient, for example orange.

5. Select the second color for the gradient under "Alternative background color", for example
yellow.

Result
The background of the rectangle is displayed with a color gradient of orange to yellow.

1.2 Advanced design (RT Uni)

1.2.1 Configuring toolbar and status bar (RT Uni)

Introduction
You operate the controls in runtime using the buttons in the toolbar. The status bar displays
status messages from the control. During configuration, set the content of the toolbar and
status bar.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
34 System Manual, 11/2019, Online help printout

Requirement
● The control is selected in the screen

● The Inspector window is open

Configuring the toolbar
1. In the Inspector window, configure the general properties of the toolbar, such as orientation

and background color or displayed buttons, under "Properties > Toolbar".

2. In the Inspector window, enable the buttons you need in runtime under "Properties >
Toolbar > Elements".

3. If required, configure the button display, for example background color, border and
maximum and minimum size.

4. If necessary, select the authorization needed to operate the buttons in runtime.

5. If a button is not to be operated in Runtime, deselect "Allow operator control".
You can reactivate a deactivated a button using a script in runtime, for example.

Configuring the status bar
1. In the Inspector window, configure the general properties of the status bar such as

orientation and background color under "Properties > Status bar".

2. In the Inspector window, select the elements you need in runtime such as date and time
under "Properties > Status bar > Elements".

3. You can adjust the display of an element in the status bar under "Properties > Status Bar >
Elements" for the respective element.

1.2.2 Configuring flashing (RT Uni)

Introduction
You have the option of displaying the objects as flashing in runtime. You select the flashing
frequency, the condition and the colors for the object.

You configure flashing characteristics for each color setting of an object that supports flashing.

Note
No change to the color value through flashing

If the property is displayed flashing in Runtime, this does not change the color value configured
for the property.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 35

You choose from the following conditions:

● "Never": Flashing is not active.

● "Always": The configured property always flashes in runtime.

● "Range violation": The property only flashes if the configured range has been exceeded.

The following options are available for the rate:

● "Slow"

● "Medium"

● "Fast"

Requirement
You have opened the work area containing at least one object.

Procedure
1. Select the object that is to flash, e.g. an I/O field.

In the Inspector window under "Properties", select the property for which you want to define
the flashing characteristics, for example "Background color".

2. Select "Flashing" in the "Dynamization" column.
The "Flashing" page will appear.

3. Select the color and the alternative color for the states "On" and "Off".

Note

Flashing is only visible in runtime when there is a difference between the two colors.

4. Select the condition for the object flashing in runtime, for example "Always".

5. Select the flash rate, for example "Fast".

Result
In runtime, the object flashes in the selected colors and at the set rate.

1.2.3 Connecting tags and text lists in the text (RT Uni)

Introduction
You can connect tags or text lists with the following objects:

● Text field

● Button

● Check box

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
36 System Manual, 11/2019, Online help printout

● List box

● Switch

You configure the connection of tags and text lists for each text property of an object that
supports this.

Requirement
● The object has been created and selected

Connecting tags
1. In the Inspector window, select "Properties > Text".

2. Select "Tag" in the "Dynamization" column.
The "Tag" page will open.

3. Select an existing tag with "Tag > Process > Tag" or create a new tag using the "Add" button.

4. Confirm your entries.

The name of the connected tag is displayed in the text field of the object.

Connecting the text list
1. In the Inspector window, select "Properties > Text".

2. Select "Resource list" in the "Dynamization" column.
The "Resource list" page will open.

3. Select the text list from which a text entry is displayed.

4. Confirm your entries.

The reference to the text list entry is displayed in the text field of the object.

Note

The number of references to text list entries that in turn include references to text list entries or
tags is limited to three layers.

1.2.4 External graphics (RT Uni)

Introduction
You can use graphics created with an external graphic program in WinCC. To use these
graphics you store them in the project graphics of the WinCC project.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 37

You can save graphics in the project graphics:

● When you drag-and-drop graphics objects from the "Graphics" pane into the work area,
these are stored automatically in the project graphics. The graphic names are numbered in
the order of their creation, for example, "Graphic_1." Use the <F2> function key to rename
the graphic.

● As a graphic file with the following formats:
*.bmp, *.ico, *.emf, *.wmf, *.gif, *.tif, *.png, *.svg, *.jpeg or *.jpg

● As an OLE object that is embedded in WinCC and is linked to an external graphic editor. In
the case of an OLE link, you open the external graphic editor from WinCC. The linked object
is edited using the graphic editor. An OLE link only works if the external graphic editor is
installed on your PC, and supports OLE.

Use of graphics from the project graphics
Graphics from the project graphics are used in your screens:

● In a graphic view

● In a graphic list

● As labeling for a button

To use a graphic in the screen or in the screen object, drag-and-drop the desired graphic to the
screen or the screen object. Alternatively, select the graphic from the drop-down list in the
"Graphic" property in the Inspector window.

Transparent graphics
In WinCC you also use graphics with a transparent background. When a graphic with a
transparent background is inserted into a graphic object of WinCC, the transparency is
replaced by the background color specified for the graphic object. The selected background
color is linked firmly with the graphic. If you use the graphic in another graphic object of WinCC,
this object is displayed with the same background color as the graphic object that was
configured first. If you want to use the graphic with different background colors, include this
graphic in the project graphics again under a different name. The additional background color
is configured when the graphic is used at the corresponding graphic object of WinCC.

Managing graphics
An extensive collection of graphics, icons and symbols is installed with WinCC. In the Toolbox
window of the "Graphic" pane the graphic objects are structured by topic in the "WinCC
graphics folder." The link to the WinCC graphics folder cannot be removed, edited or
renamed.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
38 System Manual, 11/2019, Online help printout

The "Graphics" pane is also used to manage the external graphics. The following possibilities
are available:

● Creating links to graphics folders
The external graphic objects in this folder, and in the subfolders, are displayed in the toolbox
and are thus integrated in the project.

● Editing folder links

● You open the program required for editing of the external graphic in WinCC.

Restrictions on SVG graphics
The SVG graphics are converted to Siemens SVG Standard. Note the following restrictions
when using SVG graphics:

● The CSS definitions are converted to inline attributes.

● The embedded scripts and non-local URL links are not supported in the SVG graphics and
are removed from the original graphics during conversion.

● The use of SVG graphics with embedded graphics and animations is not supported.

● The use of large SVG graphics affects performance due to the load associated with the
increased characters.

● Migration of SVG graphics from WinCC V7 to TIA Portal is not supported.

● The following SVG characteristics are not supported:

– Scripting - no Inline-JavaScript

– Interactivity

– Styling

– Expandability - no ForeignObjects

– Animations

The representation of SVG graphics depends on the browser used:

● The attributes "Width" and "Height" must be set for the correct display of an SVG graphic in
the Firefox browser.

Note
Scaled SVG graphics in Chrome

Elements using an SVG graphic that was scaled in the engineering system as background
graphic are not displayed correctly in Chrome in Runtime.

Editing SVG graphics
It is not possible to open SVG graphics in an external editor using the "Edit" command.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 39

1.2.5 Managing external graphics (RT Uni)

Introduction
External graphics that you want to use in WinCC are managed in the "Screens" editor by using
the "Tools" task card in the "Graphics" pane.

Requirement
● The "Screens" editor is open.

● The "Tools" task card is open.

● The graphics are available.

● The graphics have the following formats:
*.bmp, *.ico, *.emf, *.wmf, *.gif, *.tif, *.svg, *.jpeg or *.jpg

Creating a folder link
1. Click "My graphics folder."

2. Select "Link" in the shortcut menu.
The "Create link to folder" dialog is opened. The dialog suggests a name for the folder link.

3. Edit the name as required. Select the path containing the graphic objects.

4. Click "OK" to confirm your input.
The new folder link is added to the "Graphics" object group. The external graphics that are
located in the target folder and in sub-folders are displayed in the toolbox.

Editing folder links
1. Select the folder link to edit.

2. Select the "Edit link..." command from the shortcut menu.
The "Create link to folder" dialog is opened.

3. Edit the name and path of the folder link as required.

4. Click "OK" to confirm your input.

Renaming the folder link
1. Select the folder link to rename.

2. Select "Rename" from the shortcut menu.

3. Assign a name to the new folder link.

Removing a folder link
1. Select the folder link you want to delete.

2. Select "Remove" in the shortcut menu.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
40 System Manual, 11/2019, Online help printout

Edit external graphics
1. Select the graphic you want to edit.

2. Select the "Edit graphic" command from the shortcut menu.
This opens the screen editor associated with the graphic object file.

Editing graphics folders from WinCC
1. Select the graphic you want to edit.

2. Select "Open folder" from the shortcut menu.
The Windows Explorer opens.

1.2.6 Defining the output format (RT Uni)

Introduction
You can customize the output format for the displayed values in many objects or define it
yourself. The process value that is displayed in the object can be processed and output in
different notations.

You define the output in the "Output format" property of a screen object for the following data:

● Binary

● Hexadecimal

● Decimal

● Text

● Floating-point numbers

● Duration, date, time

● Numerical values

The definition of the output format is based on UNICODE CLDR. You can find additional
information on the CLDR project and on the definitions on the Internet at http://cldr.unicode.org/
(http://cldr.unicode.org/)

Defining the output format
The definition for a format pattern can be rewritten as a sequence of formatting codes. The
formatting codes act as placeholders for a specific group of characters. For example, if a
formatting code for which only the display of the numbers 0 to 9 is preset for a specific position
in the display of an I/O field, no letters can be input at this position. The definitions for the output
format are independent of the language. The output format can be language-specific and thus
take linguistic differences into account, for example, for output of the date.

You can define and combine different format patterns yourself. The tables below show
examples for the definition of output formats that are frequently used.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 41

http://cldr.unicode.org/

Binary data format
You use the "Binary" data format to display binary values. The "Binary" data format requires
three inputs in the output format: The sign "B" followed by the optional number of digits and
optional information on forming blocks.

Output format example Mindigits Block size Tag value Result
{B} Default - 16 1 0000
{B8} 8 - 16 0001 0000
{B8} 8 - 80 0101 0000
{B8,4} 8 4 80 0101 0000
{B,2} Default 2 80 1 01 00 00
{B} Default - -1 1111 1111

mindigits Number of digits
(optional)

Minimum: 1 Maximum: 64 Default value:
1

blocksize Number of digits in
front of the separa‐
tor (optional)

Minimum: 0 (none) Maximum: 8 Default value:
4

Hexadecimal data format
You use the "Hexadecimal" data format to display hexadecimal values. The "Hexadecimal"
data format requires three inputs in the output format: The sign "H" followed by the optional
number of digits and optional information on forming blocks.

Output format example Mindigits Block size Tag value Result
{H} Default - 1 1
{H} Default - 15 F
{H} Default - 45054 AFFE
{H4,2} 4 2 45054 AF FE
{H,2} Default 2 45054 AF FE

mindigits Minimum number
of digits (optional)

Minimum: 1 Maximum: 16 Default value:
1

blocksize Number of digits in
front of the separa‐
tor (optional)

Minimum: 0 (none) Maximum: 8 Default value:
4

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
42 System Manual, 11/2019, Online help printout

Integer data format
You use the "Integer" data format to display decimal values. The "Integer" data format requires
three inputs in the output format: The sign "I" followed by the number of digits. A plus or minus
symbol can be placed in front of the sign.

Output format example Mindigits Tag value Result
{I} Default 9 9
{I4} 4 9 0009
{I2} 2 123 123
{I} Default 1.6 1
{+I} Default 1 +1
{I1} 1 123456789 123456789

+/- Sign (optional) Default value:
None

mindigits Minimum number
of digits (optional)

Minimum: 1 Maximum: 16 Default value:
1

String data format
You use the "String" format to display texts. The "STRING" data format requires three inputs in
the output format: The sign "S" followed by the optional number of characters and optional
formatting parameter.

Output format example Maxchars String format Tag value Result
{S} Default - Motor Motor
{S4} 4 - Motor Moto
{S,trim} Default trim Motor Motor
{S,upper} Default upper Motor MOTOR
{S,lower} Default lower Motor motor
{S,trim,upper} Default trim, upper Motor MOTOR
{S3,trim,upper} 3 trim, upper Motor MOT

maxchars Number of charac‐
ters (optional)

Minimum: 1 Maximum: 99 Default value:
Complete in‐
put

stringformat Parameter for for‐
matting of the input
(optional)

trim: Outputs the input string without spaces
upper: Outputs the input string in uppercase letters
lower: Outputs the input string in lowercase letters

"Duration" data format
The accuracy of the duration inputs is limited to 1 ms. All inputs of less than 1 ms are shown as
0 in runtime.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 43

To display fractions of a second, use .S, .SS or .SSS according to the pattern for the duration.

The "Duration" data format requires three inputs in the output format: The sign "P" followed by
the optional units of time.

Output format example Tag value (ns) Result
{P,s} 10000000 1
{P,s} -10000000 -1
{P,s} 10000000 01
{P,m:ss} 35990000000 59:59
{P,h:mm:ss} 36000000000 1:00:00
{P,hh:mm:ss} 36000000000 01:00:00
{P,D hh:mm:ss} 864000000000 1D 00:00:00
{P,DD hh:mm:ss} 864000000000 01D 00:00:00
{P,s.S} 10000 0.0
{P,s.SS} 10000 0.00
{P,s.SSS} 10000 0.001
{P,s.SSS} 9999 0.000

durationunit Duration

The output format {P} enables automatic mode. In the mode the result with the smallest
necessary unit of time is written. The table below shows some examples for tag values and their
output in automatic mode.

Tag value (ns) Result Meaning
9999 0 0.9999 ms
10000 0.001 1ms
9990000 0.999 999ms
10000000 1 1s
10010000 1.001 1s 1ms
600000000 1:00 1m
700000000 1:10 1m 10s
35999990000 59:59.999 59m 59s 999ms
36000010000 1:00:00.001 1h 1ms
863999990000 23:59:59.999 23h 59m 59s 999ms
937845670000 1D 02:03:04.567 1D 2h 3m 4s 567ms
86400000000000 100D 100D

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
44 System Manual, 11/2019, Online help printout

Localized output
Some data formats can be localized. In this case the output format depends on the system
language. The table below shows the examples for the output formats for "German".

Data format Permitted values and default
values

Output format exam‐
ple

Tag value Result

Floating-point
numbers: {FAc‐
curacy}

Accuracy: from 1 to 9
Default value: 2

{F} 123.456 123.46
{F3} 123.123 123,123
{+F} 123.1 +123.10

Number: {NAccur‐
acy}

Accuracy: from 0 to 9
Default value: 2

{N} 123 123.00
{+N} 123 +123.00
{N1} 123 123.0

{#|0|,|.} User-defined numerical val‐
ues to CLDR

{#,##0.###} 1234.567 1,234.567
{#,##0.##} 1234.123 1234.12
{#,###.#} 1234.123 1,234.1

Exponential:
{EAccuracy}

Accuracy: from 0 to 9
Default value: 2

{E} 1123 1.12E+3
{E1} 1123 1.1E+3
{E3} 1123 1.123E+3
{+E} 1123 +1.12E+3
{E0} 1123 1E+3

Date: {D,Length} Length:
short
medium
or code according to CLDR
format with the sign @
Default value: short

{D} 2019-06-15T13:45
:30

15.06.19

{D,medium} 2019-06-15T13:45
:30

15.06.2019

{D,@y} 2019-06-15T13:45
:30

2019

{D,@EEEE, MMMM
d, yy}

1996-07-10 Sa., July 10, 96

Time: {T,Time for‐
mat}

Time format:
short
medium
medium.S
medium.SS
medium.SSS
or code according to CLDR
format with the sign @
Default value: medium

{T} 2019-06-15T13:45
:30

1:45:30

{T,short} 2019-06-15T13:45
:30

1:45

{T,@h:mm a} 09:08:15 9:08 AM
{T,@hh:mm a} 09:08:15 09:08 AM
{T,@HH:mm:ss} 09:08:15 19:08:15
{T,@HH:mm:ss.SS
S}

09:08:15.1230 19:08:15.123

{T,medium.SSS} 09:08:15.1239 19:08:15.123

Combined output
You have the option of combining output formats.

Description Output format example Tag value Result
Date and time {D} – {T} 2019-06-15T13:45:30 15.06.2019 – 1:45:30 PM

{D} {T} 2019-06-15T13:45:30 15.06.2019 1:45:30 PM

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 45

Description Output format example Tag value Result
Date and time with line break {D}\n{T} 2019-06-15T13:45:30 15.06.2019

1:45:30 PM
Two numerical values hex {H} – dec {I} 45054 hex AFFE – dec 45054
Text with prefix myMotor {S} motor34 myMotor motor34

See also
Configuring an alarm control (Page 253)

http://cldr.unicode.org/ (http://cldr.unicode.org/)

1.2.7 Example: Configuring a rectangle (RT Uni)

Task
In this example you configure a rectangle:

● Color = red

● Black frame 2 pixels wide

● Position = (20, 20)

● Size = (100,100)

Changing the color of the rectangle
To change the color of the rectangle:

1. Select the rectangle.

2. Specify the background color in the Inspector window "Properties > Background color".

3. Select the "Solid" option under "Background fill pattern".

4. Define the color for the border in the Inspector window.

5. Enter the value "2" for "frame width".

Interim result
The rectangle is red and has a black frame with a width of two pixels.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
46 System Manual, 11/2019, Online help printout

http://cldr.unicode.org/

Repositioning and resizing the rectangle
To change the position and size of the rectangle:

1. Select the rectangle.

2. In each case set the value "20" for the positions "X position" and "Y position" in the Inspector
window.

3. Set "100" for the height and for the width.

Result
The rectangle is positioned at the coordinates (20, 20), and has a width and height of 100 pixels.

1.2.8 Example: Configuring an I/O field (RT Uni)

Task
In this example, you configure an I/O field and connect it to a tag:

● Color = blue

● Border color = gray

● Mode = Input/output

● HMI tag = MyTag

Configuring an I/O field
1. Open the "Elements" palette in the "Toolbox" task card.

2. Drag the "I/O field" object to the screen.

3. In the Inspector window, select "Properties > Background color".

4. Select another color, for example blue, from the "Static value" column.

5. Select another border color, for example gray.

6. Select "Input/output" mode under "Properties > Mode".

Connecting the I/O field to a tag
1. In the Inspector window, click "Properties > Process value" in the "Dynamization" column.

2. Select the entry "Tag" from the list.
The "Tag" page will open.

3. Click on the selection button under "Tag > Process > Tag".

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 47

4. Select the required tag "MyTag" from the list.
Confirm your selection.

5. Go to "Properties > Reaction to input" and set how the values are to be handled in runtime,
for example "Accept value after exit".

Result
The I/O field is now configured in accordance with the settings and connected to the tag. In
runtime, you see the current value of the tag in the I/O field and can also enter the value for the
tag. The value is applied to the tag.

1.2.9 Example: Set values (RT Uni)

Introduction
You want to display specific process values in a screen in runtime, enter values yourself and
correct them, if necessary.

In the steps below you visualize the display of the velocity actual value of a motor and regulate
the velocity yourself.

● You configure 2 I/O fields for input and output of the process values.

● You configure text fields for a clearly structured display in the screen.

● You configure a slider to display and adjust the values.

Requirement
● A project is open.

● A screen has been configured.

● The tags "SetValue" and "ActualValue" have been created as process values for the motor
speed.

Display and input of values
With an I/O field you are displaying the current value of the tags in your screen and, if
necessary, enter the values for the process yourself.

1. Add the "I/O field" object to the screen from the "Toolbox" task card.

2. Go to "Properties" and set the required height, width and position of the object.

3. Under "Properties > Mode" specify the "Input/output" mode in the "Static value" column.

4. Click under "Properties > Process value".

5. In the "Dynamization" column, select the entry "Tag".
The "Tag" dialog opens on the right in the Inspector window.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
48 System Manual, 11/2019, Online help printout

6. Under "Tag" specify the "SetValue" tag whose values you want to display and change in
runtime.

7. Specify an additional I/O field for the "ActualValue" tag in the "Output" mode.

8. Configure two text fields "Actual value" and "Set value" for labeling the I/O fields.

Tips for effective procedure

● You can also create a new I/O field by dragging a configured tag from the Details view to an HMI screen.
An I/O field is created automatically and connected to the desired tag.

Adjusting values
You use a slider to intervene in the process and correct the displayed process value.

1. Add the "Slider" object to the screen from the "Toolbox" task card.

2. Go to "Properties" and set the required height, width and position of the object.

3. Under "Properties > Process value indicator mode" specify the "Detailed indicator" mode in
the "Static value" column.

4. Click under "Properties > Process value".

5. In the "Dynamization" column, select the entry "Tag".
The "Tag" dialog opens on the right in the Inspector window.

6. Under "Tag" specify the "SetValue" tag whose values you want to display and change in
runtime.

Result
In runtime the motor speed is displayed in the I/O field. You can transfer the speed to the motor
in the "Set value" I/O field.

Using the slider, you can read the actual velocity and control the speed yourself by moving the
slider.

Configuring screens (RT Uni)
1.2 Advanced design (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 49

1.3 Configuring objects (RT Uni)

1.3.1 Basic objects (RT Uni)

1.3.1.1 Line (RT Uni)

Application
The "Line" object is an open object. The line length and gradient slope are defined by the height
and width of the rectangle enclosing the object.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:

● "Dash type"

● "Line start" and "Line end":

Dash type
You specify the line display under "Properties > Dash type" in the Inspector window. The line
is shown without interruption if you select "Solid", for example.

Note

The dash types available depend on the HMI device selected.

Line start and end
You define the start and end points of the line under "Properties" in the Inspector window.

Use arrow points, for example, as the start and end points of the line. The available start and
end points depend on the device.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
50 System Manual, 11/2019, Online help printout

1.3.1.2 Polyline (RT Uni)

Application
The "Polyline" is an open object. Use the "Polygon" object if you want to fill the object with color.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:

● "Line start" and "Line end": Specifies the type of line start and line end.

● "Points": Modifies, deletes or adds corners.

Line start and end
Define the start and end of the line in the "Properties" Inspector window. Use arrow point, for
example, as start and end point. The available start and end points depend on the device.

Points
The corner points are numbered in the order of their creation. You can change, delete, or add
more corner points:

1. Select "Properties > Points" in the Inspector window.

2. Select the required corner point. Enter a value for "X coordinate" and "Y coordinate".

3. Click on the selection button in the "Static value" column to add or delete a corner point.
A dialog opens.

4. Use the "Add" command to create a new point. You can delete corner points by selecting
the corresponding row in the dialog and selecting "Delete" from the shortcut menu for the
row.

Configuring rotation in runtime
You configure the "Polyline" object so that it rotates about a reference point in runtime.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 51

Enter the values for rotation in degrees:

1. Select "Properties" in the Inspector window.

2. Enter the required values for the following attributes:

– Pivot point

– Rotation

– X pivot point

– Y pivot point

1.3.1.3 Polygon (RT Uni)

Application
The "Polygon" is a closed object which you can fill with a background color.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. In particular, you can customize the following property:

● "Points": Modifies, deletes or adds corners.

Points
The corner points are numbered in the order of their creation. You can change, delete, or add
more corner points:

1. In the Inspector window, select "Properties > Points".

2. Select the required corner point. Enter a value for "X coordinate" and "Y coordinate".

3. Click on the selection button in the "Static value" column to add or delete a corner point.
A dialog opens.

4. Use the "Add" command to create a new point.
You can delete corner points by selecting the corresponding row in the dialog and selecting
"Delete" from the shortcut menu for the row.

Configuring rotation in runtime
You configure the "Polygon" object so that it rotates about a reference point in runtime.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
52 System Manual, 11/2019, Online help printout

Enter the values for rotation in degrees.

1. In the Inspector window, select "Properties".

2. Enter values for the following attributes in the "Rotation" area.

– Pivot point

– Rotation

– X pivot point

– Y pivot point

1.3.1.4 Ellipse (RT Uni)

Application
The "Ellipse" is an enclosed object that can be filled with a color or pattern.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:

● "X radius": Specifies the horizontal radius of the elliptical object.

● "Y radius": Specifies the vertical radius of the elliptical object.

X radius
The horizontal radius of the "Ellipse" object is specified in the Inspector window. The value is
entered in pixels.

1. Click "Properties" in the Inspector window.

2. Enter a value of between 0 and 2500 under "X radius."

Y radius
The vertical radius of the "Ellipse" object is specified in the Inspector window. The value is
entered in pixels.

1. Click "Properties" in the Inspector window.

2. Enter a value of between 0 and 2500 for "Y radius".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 53

1.3.1.5 Ellipse segment (RT Uni)

Use
The "Ellipse segment" is a closed object that you can fill with a color or pattern. By default, an
ellipse segment is a quarter ellipse. It can be customized as required.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:

● "X radius" and "Y radius": Specifies the horizontal and vertical radius of the elliptical object.

● "Angle start" and "Angle range": Specify where the start and end point lie on a virtual circle
of 360°.

Defining the radius
Define the horizontal and vertical radius of the "Ellipse segment" object in the Inspector
window. Enter the values using Pixels as the unit:

1. Click "Properties" in the Inspector window.

2. Enter one value each for "X radius" and "Y radius".

Defining the start angle and angle range
Set the size of the ellipse segment using the "Start angle" and "Angle range" attributes. Enter
the values using Degrees as the unit:

1. Click "Properties" in the Inspector window.

2. Enter one value each for "Start angle" and "Angle range".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
54 System Manual, 11/2019, Online help printout

1.3.1.6 Circle segment (RT Uni)

Use
The "Circle segment" is a closed object that you can fill with a color or pattern. By default, a
circle segment is a quarter circle. It can be customized as required.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:

● "Radius": Define the size of the circle segment.

● "Angle start" and "Angle range": Specify where the start and end angle lie on a virtual circle
of 360°.

Radius
You define the radius of the "Circle segment" object in the Inspector window. Enter the value
using Pixels as the unit.

1. Click "Properties" in the Inspector window.

2. Enter a value for "Radius".

Defining the start angle and angle range
Set the size of the circle segment using the "Start angle" and "Angle range" attributes. Enter the
values using Degrees as the unit.

1. Click "Properties" in the Inspector window.

2. Enter one value each for "Start angle" and "Angle range".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 55

1.3.1.7 Elliptical arc (RT Uni)

Use
The "Elliptical arc" is an open object. Use the "Ellipse segment" object if you want to fill the
object with color. By default, an elliptical arc is a quarter ellipse. It can be customized as
required.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:

● "X radius" and "Y radius": Specifies the horizontal and vertical radius of the elliptical object.

● "Angle start" and "Angle range": Specify where the start and end point lie on a virtual circle
of 360°.

Defining the radius
Define the horizontal and vertical radius of the "Elliptical arc" object in the Inspector window.
Enter the values using Pixels as the unit.

1. Click "Properties" in the Inspector window.

2. Enter one value each for "X radius" and "Y radius".

Defining the start angle and angle range
Set the length of the elliptical arc using the "Start angle" and "Angle range" attributes. Enter the
values using Degrees as the unit.

1. Click "Properties" in the Inspector window.

2. Enter one value each for "Start angle" and "Angle range".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
56 System Manual, 11/2019, Online help printout

1.3.1.8 Circular arc (RT Uni)

Use
The "Circular arc" is an open object. Use the "Circle segment" object if you want to fill the object
with color. By default, a circular arc is a quarter circle. It can be customized as required.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:

● "Radius": Define the size of the circular arc.

● "Angle start" and "Angle range": Specify where the start and end angle lie on a virtual circle
of 360°.

Defining the radius
You define the radius of the "Circular arc" object in the Inspector window. Enter the value in
pixels.

1. Click "Properties" in the Inspector window.

2. Enter a value for "Radius".

Defining the start angle and angle range
You set the length of the elliptical arc using the "Start angle" and "Angle range" attributes. Enter
the values using Degrees as the unit.

1. Click "Properties" in the Inspector window.

2. Enter one value each for "Start angle" and "Angle range".

1.3.1.9 Circle (RT Uni)

Application
The "Circle" object is a closed object which can be filled with a color or pattern.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 57

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:

● "Radius": Specifies the size of the circle.

Radius
The radius of the "Circle" object is specified in the Inspector window. The value is entered in
pixels.

1. Click "Properties" in the Inspector window.

2. Enter a value of between 0 and 2500 for "Radius".

1.3.1.10 Rectangle (RT Uni)

Application
The "Rectangle" is a closed object which you can fill with a color.

Layout
In the Inspector window you can customize the settings for the position, geometry and color of
the object. You can adapt the following properties in particular:

● "Corner radius": Specifies the horizontal and vertical distance between the corner of the
rectangle and the start point of a rounded corner.

Corner radius
The corners of the "Rectangle" object can be rounded to suit your requirements. If the "Radius"
property for all four corners is set to 0, a standard rectangle without rounded corners is
displayed.

1. Select "Properties > Corners" in the Inspector window.

2. Enter the radius for each corner.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
58 System Manual, 11/2019, Online help printout

1.3.1.11 Text box (RT Uni)

Use
The "Text box" is a closed object which you can fill with a color.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:

● "Text": Specifies the text for the text box.

● "Text trimming": Specifies whether ellipsis is to be displayed after a line break for a long text.

● "Text break": Specifies whether the next word is to be automatically moved to the next row
for a long text.

Text
Specify the text for the text box in the Inspector window.

1. Click "Properties" in the Inspector window.

2. Enter a text.

Trimming text
You can specify ellipsis for a text that cannot be displayed in full in a text box.

1. Click "Properties > Text trimming" in the Inspector window.

2. Select the option "With character ellipsis" in the "Static value" column.

The text displayed is truncated with ellipsis.

Enabling line breaks
You can enable line breaks for a text that cannot be displayed in full in a text box. If you find that
the text box is large enough for display with a line break:

1. Click "Properties > Text break" in the Inspector window.

2. Select the option "Word wrap" in the "Static value" column.

The text is displayed in full with line breaks.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 59

1.3.1.12 Graphic view (RT Uni)

Application
The "Graphic view" object is used to display graphics.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:

● "General > Graphic": Specifies the graphic file that is displayed in the object.

● "Format > Scale background graphic": Specifies how the graphic is scaled.

Scale background graphic
The following modes for scaling graphics are available:

● None
The graphic is inserted centered into the graphic view. If the graphic is larger than the
graphic view, the graphic is displayed incompletely.

● Fill
The graphic fills the graphic view. This mode can lead to a distortion of the graphic.

● Uniform
The graphic is fully displayed and without distortion in the graphic view.

● Stretch to fit
The graphic is adjusted to the size of the graphic view without distortion. This may cause the
graphic to be displayed incompletely.

● Tiled
The graphic is displayed in original size, multi-tiled until the graphic view is filled.

To select a mode for scaling the graphic, proceed as follows:

1. Click "Format > Scale background graphic" in the Inspector window.

2. Select the desired mode in the "Static value" column.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
60 System Manual, 11/2019, Online help printout

Inserting graphics
Use the following image formats in the "Graphic Display" object: *.bmp, *.tif, *.png, *.ico, *.emf,
*.wmf, *.gif, *.svg, *.jpg or *.jpeg. You can also use graphics as OLE objects in the Graphic view .

1. In the Inspector window, click "General > Graphic".

2. Select the graphic that you wish to insert.
The graphic preview is shown in the right pane.
You have the option to create the graphic from a file using the button, or to create a new
graphic from an OLE object using the button.

3. Click "Apply" to insert the graphic in the Graphic view .

1.3.2 Elements (RT Uni)

1.3.2.1 I/O field (RT Uni)

Application
The "I/O field" object is used to enter and display process values.

Layout
In the Inspector window, you customize the position, shape, style, color and font types of the
object. You can adapt the following properties in particular:

● "Mode": Specifies whether the values and entered and displayed in runtime or displayed
only.

● "Behavior during input": Specifies the response of the object in runtime.

● "Hidden input": Specifies whether the input value is displayed normally or encrypted during
input.

Note
Reports

In reports, I/O fields only output data. "Output" mode is preset. Properties for configuring
input are not available, for example "Hidden input".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 61

Mode
The response of the I/O field is specified in the Inspector window under "Properties".

Mode Description
"Input/output" Values can be input and output in the I/O field in runtime.
"Output" The I/O field is used for the output of values only.

Hidden input
In runtime, the input can be displayed normally or encrypted, for example for hidden input of a
password. A "*" is displayed for each character in hidden input. The data format of the value
entered cannot be recognized.

1. In the Inspector window, select "Properties > Reaction to input".

2. Select "Hidden input".

1.3.2.2 Button (RT Uni)

Application
The "Button" object allows you to configure an object that the operator can use in runtime to
execute any configurable function.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:

● "Format > Content > Content mode": Defines the graphic representation of the object.

● "Format > Content > Scale background graphic": Specifies how the graphic is scaled.

Content mode
The button display is specified under "Format > Content > Content mode" in the Inspector
window.

Content mode Description
"Text" The button is displayed with text. This text explains the function of the button.
"Graphic" The button is displayed with a graphic. This graphics represents the function

of the button.
"Graphics or text" The button is displayed with text or graphics.

If the graphics cannot be displayed, the corresponding text is displayed.
"Graphics and text" The button is displayed with text and graphics.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
62 System Manual, 11/2019, Online help printout

Different options are available depending on the device.

Scale background graphic
The following modes for scaling graphics in buttons are available:

● None
The graphic is inserted centered inserted into the button. If the graphic is larger than the
button, the graphic will be displayed incompletely.

● Fill
The graphic fills the button. This mode can lead to a distortion of the graphic.

● Uniform
The graphic is fully displayed and without distortion in the button.

● Stretch to fit
The graphic is adjusted to the size of the button without distortion. This may cause the
graphic to be displayed incompletely.

To select a mode for scaling the graphic, proceed as follows:

1. In the Inspector window, click "Format > Content > Scale background graphic".

2. Select the desired mode in the "Static value" column.

Text / Graphic
The "Content mode" property settings are used to define whether the display is static or
dynamic. The display is defined under "Properties > Text" or "Graphic" in the Inspector window.

You can, for example, select the following options for the "Graphic" or "Text" type.

Type Description
"Graphic" Use "Graphic with pressed button" to specify a graphic displayed in the button in the

"ON" state.
"Text" Use "Text with pressed button" to specify the text displayed in the button for the "ON"

state.

1.3.2.3 Switch (RT Uni)

Application
The "Switch" object is used to configure a switch that is used to switch between two predefined
states in runtime. The current state of the "Switch" object can be visualized with either a label
or a graphic.

The following figure shows a "Switch" type switch.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 63

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. In particular, you can customize the following property:

● "Content mode" Defines the graphic representation of the object.

Type
Switch display is specified under "Properties > Content > Content mode" in the Inspector
window.

Type Description
"Graphic" The current state of the switch is shown with a graphic. In runtime click on the

button to actuate the switch.
"Text" The current state of the switch is shown with a label. In runtime click on the

button to actuate the switch.
"Graphics or text" The switch displays graphics or a text. If the graphics are not available, the text

is displayed.
"Graphics and text" The switch displays graphics and a text.

1.3.2.4 Check box (RT Uni)

Application
You use the "Check box" object to display and select multiple entries. You activate a selection
item by default so that the operator only changes the preset value if necessary. The operator
can select several options in runtime. You can specify a text or a graphic for each option.

To integrate the check box into the process, dynamize the corresponding properties.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:

● "Number of check boxes": Defines the number of options.

● "Selection of check boxes": Defines which options are displayed as activated by default.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
64 System Manual, 11/2019, Online help printout

Note
Default standard height

The item height option of the radio button is set to "0" during the creation of a new object. This
value does not represent the actual value 0, but a default setting.

Specify number of check boxes
1. Click "Properties > Selection items" in the Inspector window.

2. Click on the selection button in the "Static value" column.
A dialog opens.

3. Specify the desired number of check boxes with "Add".
To delete entries, click in the corresponding line and press the key.

Using graphics and texts in the selection items
You can mark the selection items with texts or graphics. The following modes are available:

● "Graphic and text": The selection item shows text and graphic.

● "Graphic or text" The selection item is visualized either by a graphic or a text. If the graphic
is not available, the text is displayed.

● "Graphic": The selection item is visualized with a graphic.

● "Text": The selection item is visualized with an inscription.

 To configure the CheckBox contents, follow these steps:

1. Under "Properties > Content > Content mode" select the mode for display of the selection
items, e.g. "Graphic and text".

2. Under "Selection items > Selection item [N] > Text" enter the text that is to be shown in the
check box as selection item.

3. Under "Selection items > Selection item [N] > Graphic" open the drop-down list and select
the corresponding graphic.

Specify default of the check box
Use the "Select item" property of a selection item to define whether it is to be shown as enabled
in a check box list. You can activate multiple options.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 65

1.3.2.5 Bar (RT Uni)

Use
The tags are displayed graphically using the "Bar" object. The bar graph can be labeled with a
scale of values.

Layout
In the Inspector window, you customize the settings for the position, shape, style, color, and
font types of the object. You can adapt the following properties in particular:

● "Show trend indicator": Shows whether the current value is higher or lower than the previous
value.

● "Bar mode": Defines the gradations on the bar scale.

● "Linear scale": Specifies the properties for the bar scale.

● "Process value indicator mode": Specifies how the process value is displayed in the bar
chart.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
66 System Manual, 11/2019, Online help printout

Bar mode
You define how the color change is represented in "Properties > Bar mode" in the Inspector
window.

Color transition Description
"Segmented" The bar changes to the predefined color segment by segment from the start

value to the process value. With segment by segment representation, you
visualize, for example, which limits are exceeded by the displayed value.

"Unicolor" The entire bar changes to the predefined color from the start value to the
process value.

"Segmented static" The bar background color changes segment by segment from the minimum
scale value to the maximum scale value. With segment by segment repre‐
sentation, you visualize, for example, which limits are exceeded by the dis‐
played value.

"Unicolor static" The bar background changes to a predefined color from the minimum scale
value to the maximum scale value.

Displaying the process value indicator
You use the property "Process value indicator mode" to select the process value of the selected
tag in the bar in runtime:

1. In the Inspector window, select "Properties > Process value indicator mode".

2. Select another "Indicator" mode in the "Static value" column.

3. Go to "Foreground color process value indicator" and select the display color for the process
value.

Define bar segments
You define the settings for the bar scale under "Properties > Linear scale":

● "Scaling type": Specifies how the bar scale is calculated, for example "Linear".

● "Alignment": Specifies whether the bar is displayed horizontally or vertically.

● "Scale mode": Specifies whether the scale is subdivided with ticks or labels or not at all.

● "Maximum scale value" and "Minimum scale value": Specifies the start and end value
displayed on the scale.

Defining scale gradation
Use the "Division count" property to define the subdivision count for the bar scale divisions.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 67

The "Subdivision count" property defines the number of ticks between the division marks.

1. Click "Properties > Linear scale" in the Inspector window.

2. Enable "Show scale".

3. Enter the required values for the "Division count" and "Subdivision count".

Note

The division count can only be changed if "Automatic scaling" is disabled.

1.3.2.6 Gauge (RT Uni)

Use
The "Gauge" object shows numeric values in the form of an analog gauge. For example, a
glance in runtime is enough to note that the boiler pressure is in the normal range. The gauge
is for display only and cannot be controlled by the operator.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:

● "Peak indicator": Specifies whether the measurement range is indicated with a peak
indicator.

● "Maximum scale value" and "Minimum scale value": Specifies the top and bottom values of
the scale.

● "Color of normal range": Specifies the color in which the normal range is displayed.

● "Scale": Specifies various settings for the scale view.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
68 System Manual, 11/2019, Online help printout

Display peak value
The "Peak indicator" property can be used to enable a marker function for the maximum or
minimum pointer movement in runtime.

1. Click "Properties > Peak indicator" in the Inspector window.

2. Select the option "High" or "Low" in the "Static value" column.

Maximum and minimum scale value
You can set the top and bottom end values of the scale in the Inspector window.

1. Click "Properties > Scale" in the Inspector window.

2. Enter a number at "Maximum scale value" and "Minimum scale value".
If you select a tag as the end value of the scale, the number will be no longer available.

Configuring a scale
1. Click "Properties > Scale" in the Inspector window.

2. Under "Start angle", specify the angle at which the scale is to start. The angle is specified in
degrees, starting at the zero position.
The scale runs clockwise. A starting value of 0 corresponds to a display of 3 o'clock.

3. Under "Angle range", specify the range in degrees to be covered by the scale.

4. Under "Scale mode", specify whether the divisions are displayed as ticks or numbers.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 69

1.3.2.7 Slider (RT Uni)

Use
Process values are monitored and adapted within a defined range with the "Slider" object. The
monitored range is visualized in the form of a slider. By adjusting the slider, you intervene in the
process and correct the displayed process value.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can, in particular, adapt the following properties as required:

● "Maximum scale value" and "Minimum scale value": Specifies the top and bottom values of
the scale.

● "Process value indicator mode": Specifies how the current process value is displayed in the
slider.

● "Show trend indicator": Specifies how the current value has changed compared to the
previous values.

Maximum and minimum scale value
The top and bottom end values of the scale are specified in the Inspector window.

1. Click "Properties > Linear scale" in the Inspector window.

2. Enter a number at "Maximum scale value" and "Minimum scale value". If you select a tag as
the end value of the scale, the number will be no longer available.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
70 System Manual, 11/2019, Online help printout

Show value
Specify that the value of the current position is displayed below the slider in the Inspector
window.

1. Click "Properties" in the Inspector window.

2. Select "Show value".

Process value indicator mode
Specify a mode for process value display:

Mode Description
Bar Displays the bar with the process value indicator.
Indicator Shows the process value indicator as a position on the bar.
Detailed indicator Shows the process indicator in the bar.
Bar with detailed indicator Shows the current process value and its position in the slider bar.

1. In the Inspector window, activate "Properties > Properties > Layout".

2. Deactivate "Display bar".

1.3.2.8 Radio button (RT Uni)

Application
You use the "Option buttons" object to display and select various options. Only one of these
options can be selected by the operator. Enable one of the options by default so that the
operator only changes the default value if necessary. To incorporate an option button into the
process, dynamize the corresponding attribute.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:

● "Selection items": Defines the options.

● "Select item": Specifies which entries are displayed as activated.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 71

Note
Default standard height

The item height option of the radio button is set to "0" during the creation of a new object. This
value does not represent the actual value 0, but a default setting.

Defining the number of entries
You specify the number of entries in the Inspector window:

1. Click "Properties > Selection items" in the Inspector window.

2. Click on the selection button in the "Static value" column.
A dialog opens.

3. Specify the required number of entries.

Using graphics and texts in the selection items
You can mark the selection items with texts or graphics. The following modes are available:

● "Graphic and text": The selection item shows text and graphic.

● "Graphic or text" The selection item is visualized either by a graphic or a text. If the graphic
is not available, the text is displayed.

● "Graphic": The selection item is visualized with a graphic.

● "Text": The selection item is visualized with an inscription.

 To configure the check box contents, follow these steps:

1. Under "Properties > Content > Content mode" select the mode for display of the selection
items, e.g. "Graphic and text".

2. Under "Selection items > Selection item [N] > Text" enter the text that is to be shown in the
check box as selection item.

3. Under "Selection items > Selection item [N] > Graphic" open the drop-down list and select
the corresponding graphic.

Specifying the default setting of the option buttons
Use the "Select item" property to specify which option button entry is to be shown as enabled.
Go to "Properties > Selection items" and enable the property "Select item" for an entry to make
its default status enabled. Only one entry can be enabled at any one time.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
72 System Manual, 11/2019, Online help printout

1.3.2.9 List box (RT Uni)

Application
You use the "List box" object to present and select multiple list entries. You activate list entries
by default so that the operator only changes the preset entry if necessary. If the list box is larger
than the selection rectangle, WinCC automatically adds a scroll bar to the right margin.

To incorporate list fields into the process, dynamize the corresponding properties.

Layout
In the Inspector window, you customize the position, style, colors and font type settings of the
object. You can adapt the following properties in particular:

● "Selection items": Defines the list entries.

● "Selection of entries": Defines which entry is displayed as activated by default.

● "Selection mode": Specifies whether only one entry or multiple entries can be selected.

Defining the number of entries
1. Click "Properties > Selection items" in the Inspector window.

2. Click on the selection button in the "Static value" column.
A dialog opens.

3. Specify the required number of selection items.

Specifying the default setting of the list boxes
Use the "Select item" property of a selection item to specify which list item is to be shown as
enabled.

To do so, select the check box in the "Static value" column of the "Select item" property of the
respective selection item.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 73

1.3.2.10 Clock (RT Uni)

Application
The "Clock" object displays the time.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:

● "Clock face mode": Specifies whether the hour marks of the analog clock are displayed as
ticks or numbers.

● "Show hours pointer", "Show minutes pointer" and "Show seconds pointer": Specifies
whether the hour hand, minute hand and second hand are displayed on the clock.

Configuring the clock face
In the Inspector window, you can specify how the hour marks are displayed.

1. Click "Properties > Clock face mode" in the Inspector window.

2. Select "Ticks" to display hours as ticks.
Alternatively, select "Numbers" for a numerical display of the hours.

1.3.2.11 Symbolic I/O field

Application
The "Symbolic I/O field" object can be used to configure a selection list for input and output of
texts in Runtime.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
74 System Manual, 11/2019, Online help printout

Layout
In the Inspector window, you customize the position, shape, style, color and font types of the
object. You can customize the following properties in particular:

● Mode: Specifies the response of the object in Runtime.

● Text list: Specifies the text list that is linked to the object.

Mode
The response of the symbolic I/O field is specified in the Inspector window in "Properties >
Properties > General > Type".

Mode Description
"Output" The symbolic I/O field is used to output values.
"Input" The symbolic I/O field is used to input values.
"Input/output" The symbolic I/O field is used for the input and output of values.
"Two states" The symbolic I/O field is used only to output values and has a maximum of two

states. The field switches between two predefined texts. This is used, for ex‐
ample, to visualize the two states of a valve: closed or open.

Text list
In the Inspector window you specify which text list is linked to the symbolic I/O field.

1. In the Inspector window, select "Properties > Properties > General":

2. Open the selection list for "Text list".

3. Select a text list.

1.3.2.12 Touch area (RT Uni)

Application
The "Touch area" object allows you to configure an object that the operator can use in runtime
to execute any configurable function. A gesture on the user interface starts the execution of the
function.

Note

A gesture is recognized in the area where it begins.

Layout
In the Inspector window you can customize the settings for the position, geometry and color of
the object.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 75

Available gestures
The operator can select between four predefined gestures in the Inspector window under
"Properties > Events":

● 1-finger swipe downward

● 1-finger swipe left

● 1-finger swipe right

● 1-finger swipe upward

1.3.3 Controls (RT Uni)

1.3.3.1 Alarm control (RT Uni)

Use
The "Alarm view" object displays alarms that occur during the process in a plant. You also use
the alarm view to visualize alarms in list format.

WinCC offers various views, such as "Current alarms" or "Logged alarms".

Layout
You change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. You can adapt the following properties in particular:

● "Toolbar": Defines the control elements of the alarm view.

● "Status bar": Defines the elements in the status bar.

● "Text format": Defines the font and font size.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
76 System Manual, 11/2019, Online help printout

● "Allow sorting": Defines whether the alarms are sorted in runtime.

● "Alarm view": Defines the different properties for display of the alarms, e.g. background
color and row height.

Configuring output of alarms
● "Alarm source": Defines which alarms are displayed in this alarm view.

● "Show recent": Defines whether it is always the latest alarm that is selected in the alarm view.

Operator controls
You define the control elements for the alarm view in runtime, and their operator authorizations,
under "Properties > Toolbar" in the Inspector window. Some buttons are enabled by default. To
display additional buttons in the control, activate the "Visibility" property in the settings of the
corresponding button.

The following control elements are available for the alarm view :

Button Function
Show active alarms Shows the currently active alarms.

Show logged alarms Shows the logged alarms.

Show and update logged
alarms

Updates the logged alarms and shows them.

Show defined alarms Shows the alarms configured in the system.

Alarm annunciator Shows all alarms for which the alarm annunciator was con‐
figured. The alarm annunciator is a visible or sound signal, for
example a horn or warning light, that is displayed in addition to
the alarm view in the system.

First line Selects the first of the active alarms. The visible area of the
alarm view moves, if necessary. This button can only be used
if the "Show recent" function is disabled.

Previous line Selects the previous alarm in relation to the currently selected
alarm. The visible area of the alarm view moves, if necessary.
This button can only be used if the "Show recent" function is
disabled.

Next line Selects the next alarm in relation to the currently selected
alarm. The visible area of the alarm view moves, if necessary.
This button can only be used if the "Show recent" function is
disabled.

Last line Selects the last of the active alarms. The visible area of the
alarm view moves, if necessary. This button can only be used
if the "Autoscroll" function is disabled.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 77

Button Function
Move to next acknowledge‐
able alarm

Selects the next alarm in relation to the currently selected
alarm. The visible area of the alarm view moves, if necessary.
This button can only be used if the "Autoscroll" function is
disabled.

Previous page Navigates to the next page

Next page Moves to the previous page

Single acknowledgment Acknowledges an individual alarm.
A counter shows how many alarms are not acknowledged.
The counter includes all connected servers, but no filters.

Group acknowledgment Acknowledges all active visible alarms in the alarm view that
require acknowledgment, unless they are subject to single
acknowledgment.

Single confirm Resets the alarm. Relevant for alarms with the state machine
"Alarm with acknowledgment and confirmation" that have al‐
ready been acknowledged and are outgoing.

Show recent Defines whether it is always the latest alarm that is selected in
the alarm view. The visible area of the alarm view moves, if
necessary.
You can only select individual alarms if "Autoscroll" is not ac‐
tive.

Info text configuration Opens a dialog to display an infotext.

Disable alarm Disables an alarm in the current alarm list and in the alarm log
lists. The alarm is added to the display "Disabled alarms."

Enable alarm

Shows an alarm once again.

Shelve alarm Shelves an alarm to prevent, for example, that an error alarm
affects the effectivity of your system. The alarm appears in the
"Shelved alarms" display.

Unshelve alarm Unshelves the respective alarm.

Copy lines Copies the selected alarms.

Time base setup Opens a dialog for setting the time zone for the time informa‐
tion shown in alarms.

Selection display Opens a dialog for filtering alarms. Here you define the filter
criteria directly or filter the alarms by criteria defined in the
engineering system.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
78 System Manual, 11/2019, Online help printout

Button Function
Sorting setup Opens a dialog for setting user-defined sort criteria for the

displayed alarms.

Display options setup Opens a dialog for configuring the display options of the alarm
view. Here you define which alarms are displayed, for exam‐
ple, only shelved alarms or all alarms.

Disabled alarms setup Opens a dialog for configuring the display options of the
locked alarms.

Print Starts printing the alarms displayed in the alarm view.

Export Starts exporting the alarms to a .CSV file.

Status bar
You define which of the status bar elements are displayed using "Properties > Status bar" in the
Inspector window.

Access protection in runtime
Configure access protection with the properties "Allow operator control" and "Authorization"
under "Properties" in the Inspector window. If a logged-on user has the required authorization,
he can acknowledge, and edit alarms using the control elements in the alarm view.

Set up sort order
1. Click "Properties > Alarm view > Columns" in the Inspector window.

2. Select the sort criteria and sorting order for the individual columns.

Note

You define the sorting direction of the alarms in the alarm view under "Properties > Default
sorting direction", e.g. "Ascending".

Displaying current alarms
When you select the property "Show recent", it is always the latest alarm that is selected in the
alarm view. The visible area of the alarm view moves, if necessary.

You can only select individual alarms when the "Show recent" property is not enabled.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 79

Set to a table in the alarm view
1. Click "Properties > Alarm view" in the Inspector window.

2. Define the settings for the rows and cells.

– "Row height": Defines the height of the rows in the alarm view.

– "Trim cell content": If the text is longer than the cell, the text is displayed truncated.

3. Under "Header settings" you define the settings for the headers:

– "Row header": Defines whether or not each row has a header.

– "Column header": Defines the display of the column header.

4. Specify the width and color of the grid lines.

5. Specify the use of scroll bars.

See also
Configuring an alarm control (Page 253)

1.3.3.2 Screen window (RT Uni)

Application
You use the "Screen window" object to represent other screens from the project in the current
screen. You can make the object dynamic to constantly update the content of a screen window,
for example.

You can also use independent screen windows independently of the screen in question. With
appropriate hardware equipment and support by the operating system you can also control
multiple monitors and map processes in a more comprehensive and differentiated manner.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
80 System Manual, 11/2019, Online help printout

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:

● "Zoom factor": Defines the size of the embedded screen.

● "Fit to size": Specifies whether the embedded screen is to be adjusted to the screen window
size or the screen window to the size of the embedded screen. If the embedded screen is
larger than the screen window, you configure scroll bars for the screen window.

Matching the size of the embedded screen and screen window
You can match the size of the embedded screen to the size of the screen window in the
following ways:

● You want the embedded screen to appear smaller.
Enter the required zoom factor under "Properties" in the Inspector window.

● You want to scroll to a section of the embedded screen.
In the "Properties" Inspector window, show the horizontal and vertical scroll bars and specify
their position.
The user can scroll to details of the embedded screen in runtime.

● You can adapt the embedded screen to the size of the screen window, or vice versa.
Select either "Fit window to screen", or "Fit screen to window" under "Properties > Fit to size"
in the Inspector window.
Choose between two options in scaling mode for the "Fit screen in window" setting:
The aspect ratio is retained with both options.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 81

1.3.3.3 Trend control (RT Uni)

Application
You use the "Trend view" object to display tag values from the current process or from the log
in the form of trends as a function of the time.

Layout
In the Inspector window, you customize the position, geometry, style, colors and font types of
the object. You can adapt the following properties in particular:

● "Configure trend area"

● "Configuring trends"

● "Define buttons in the toolbar"

Configure trend area
Configure the display of trends under "Properties > Trend areas":

● Common or individual trend areas

● Common or separate axes

● Writing direction of all trends

The first trend area [0] is by default already available in the control. You can create more trend
areas using the selection button in the "Static value" column.

1. Configure the value axes and the time axes.

2. Open the settings of the time axis under "Properties > Time axis bottom > Time axis [0]".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
82 System Manual, 11/2019, Online help printout

3. Configure the "Time range" of the trend display.

– "Time interval": You define the time range using a starting time and a following time
interval.

– "Start time and end time": You define the time range using a starting time and an end
time.

– "Measuring points": You define the time range using a starting time and a number of
measuring points.

4. Open the settings of the value axis under "Properties > Left value axis > Value axis [0]".

5. If required, configure the "Value range", "Format" and "Scaling" of the value axis.

6. If required, specify the use of user-defined axis segments and add the segments.

7. Go to "Properties > Trend areas > Trends" and configure the trends for the trend area.

Configuring trends
You can configure the trends for each trend area in the Inspector window by expanding the
index number for each trend required.

1. Select the data supply for a given trend under "Properties > Trend areas > Trends > Trend
[0] > Data source Y > Source".

– "Logging tag": The trend view is supplied with values from a data log.

– "HMI_Tag": The trend view is supplied with values of a tag.

2. Select the data supply for the tag under "Properties > Trend areas > Trends > Trend [0] >
Data source Y > Tag".

– In the case of a HMI tag, specify the name of the tag in the "Static value" column.

– In the case of a logging tag, first enter the name of the HMI tag in the "Static value"
column and then the name of the associated logging tags separated by a colon, for
example, "HMITag_1:LoggingTag_1".

3. Configure the display mode for trends under "Trend mode".

Toolbar
You define the operator controls of the trend view in runtime under "Properties > Properties >
Toolbar" in the Inspector window. Some buttons are enabled by default. To display additional
buttons in the control, activate the "Visibility" property in the settings of the corresponding
button.

The following operator controls are available for the trend view:

Button Name Function
First record Shows the trend direction starting with the first logged value.

Previous data record Shows the trend direction of the previous time interval.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 83

Button Name Function
Start/stop Stops and starts the trend update. The values are buffered and up‐

dated as soon as you start trend update again.

Next record Shows the trend direction of the next time interval.

Last record Shows the trend direction up to the last logged value.

Previous trend Displays the previous trend in the foreground.

Next trend Displays the next trend in the foreground.

Show/hide ruler Determines the coordinates of a point of the trend.

Zoom time axis +/- Enlarges or reduces the time axis display.

Zoom value axis +/- Enlarges or reduces the value axis display.

Zoom area Increases the size of any section of the trend window.

Zoom +/- Enlarges or reduces the view in the trend window.

Move trend area Moves the display in the trend area.

Move axes area Moves the display in the axes area.

Original view Switches from the magnified trend view back to the normal view.

Select time range Opens the dialog for setting the time range displayed in the trend
window.

Select trends Opens the dialog for setting the visibility of trends.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
84 System Manual, 11/2019, Online help printout

Button Name Function
Select data connection Opens the dialog for selecting the logs and tags that serve as data

source for the trend view.

Statistics area Enables you to define a time range for which statistical values are
determined. Vertical lines which you use to set the time range are
displayed in the trend window.

Calculate statistics Opens a statistics window to display the minimum, maximum,
means, and standard deviation for the selected time range and the
selected trend.

Print Starts printing the trends shown in the trend window.

Export Opens the dialog for saving the trend data in CSV format.

The order of the buttons is fixed. Under "Hotkey" you can set up individual key assignments,
and shortcuts for every button on the toolbar.

See also
Configuring a trend control (Page 193)

Configuring toolbar and status bar (Page 199)

Defining the data source (Page 200)

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 85

1.3.3.4 Browser (RT Uni)

Use
The "Web control" object is designed for the visualization of simple HTML pages. This function
allows you to draw up machine-specific descriptions which are stored centrally and which can
then be displayed from different HMI devices.

Layout
Customize the object position and size in the Inspector window. In particular, you can
customize the following property:

● "URL": Specifies which Internet address is opened in the HTML Browser.

● "Toolbar": Specifies whether a navigation toolbar is shown.

Address
You set the Internet address in the Inspector window under "Properties > URL".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
86 System Manual, 11/2019, Online help printout

Displayed contents
Note the following information when using the control:

● The "Browser" control only displays content that is supported by the web browser in which
runtime is open.

● The control is implemented as IFrame. Pages with X-frame option settings that prevent
display in an IFrame are not displayed in the control.

● Compared to a standard browser, the "Browser" control has a limited range of functions:

– Navigation from the "Browser" control is not supported (top level navigation).

– Calls of queries and dialogs are not supported (pop-ups).

1.3.3.5 Parameter set control (RT Uni)

Use
The parameter set control is used to display parameter sets in runtime, to manage them and to
exchange them with the control system.

Note

The "Parameter set control" object is supported with version V16 exclusively for Unified PC. If
the user uses the object under Unified Comfort Panel, an error message of the compiler is
returned. Existing projects under Unified Comfort Panel that have configured the object, must
delete the object before compiling to version V16.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 87

Layout
You change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. You can adapt the following properties in particular:

● Display selection list: If you clear the check box of the property, the Parameter set type field
and the Parameter set type ID field with the associated labels are hidden.

Note

If you hide the two fields and do not select a parameter set type under "Properties > Fixed
parameter set type", the Parameter set type field is disabled in runtime. In addition, no
parameter set ID is displayed in the Parameter set ID field in runtime.

● "Parameter view": Defines the display of the parameter table in the control.

● "Toolbar": Defines the operator controls of the parameter set control.

● "Status bar": Specifies the display of the status line.

Note

The "Status Text" element is the only status line element of the parameter set display.
Status messages are displayed in this element in runtime.

Using a parameter set type.
If you only want to use a particular parameter set type with its parameter sets in runtime, select
the desired parameter set type under "Properties > Fixed parameter set type".

Operator controls
You define the operator controls for the parameter set control in runtime, and their operator
authorizations, under "Properties > Toolbar" in the Inspector window. By default, all buttons are
displayed in the toolbar. To hide specific buttons, deactivate the "Visibility" property in the
settings of the corresponding button.

The following operator controls are available for the parameter set control:

 Button Function
Create Creates a new parameter set.

Save Saves a parameter set.

Save as Saves an existing parameter set under a new name and new ID.

Rename Renames the selected parameter set.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
88 System Manual, 11/2019, Online help printout

 Button Function
Write to PLC Writes the values of the selected parameter set to the PLC.

Read from PLC Writes the values of the selected parameter set from the PLC.

Import Imports parameter sets from a "*.tsv" file.

Export Exports parameter sets to a "*.tsv" file.

Cancel Cancels the process.

Delete Deletes the selected parameter set.

Note

A "*.tsv" file is a text file that uses the tabulator as a list separator.

Enabling/disabling operator controls
In "Properties > Editing mode", configure the activation status of the toolbar buttons "Create",
"Save", "Save as", "Rename" and "Delete". These toolbar buttons are used to edit parameter
sets.

You can select between the following settings:

● "None": Deactivates all buttons.

● "Update": Activates the "Save" and "Rename" buttons.

● "Create": Activates the "Create" and "Save as" buttons

● "Delete": Activates the "Delete" button

Configuring a status bar
1. Configure the general properties of the status bar such as the font or the background color

under "Properties > Status bar".

2. To adjust the size of the "Status Text" element, activate the "Customized" property under
"Properties > Status bar > Elements > Control bar label [0]".

3. You can enter a pixel value for the width and height.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 89

Note

Status messages are displayed in runtime in the "Status text" element.

Configuring a time zone
Under "Properties > Time zone", you set the desired time zone in which you enter a numerical
value.

The numerical value stands for a time zone, for example:

● "-1" stands for UTC-1h (Central European Time, standard time)

● "1" stands for UTC-12h (International Date Line West)

● "2" stands for UTC-11h (Hawaii)

See also
Configuring the parameter set view (Page 805)

1.3.3.6 Faceplate container (RT Uni)

Application
The faceplate container is used to display faceplates in runtime. If a faceplate type has been
instantiated in the container, the desired faceplate type is specified in the "Contained type"
property.

You can find detailed information on configuring faceplates in the section "Configuring
faceplates".

Layout
You change the settings for the position, geometry, style, color, and font of the object in the
Inspector window.

You can adapt the following properties in particular:

● "Contained type": Defines the faceplate type that is instantiated in the faceplate container.

● "Properties": When a faceplate type is instanced in the faceplate container, you supply the
tags of the interface in the properties.

See also
Basics of faceplates (Page 103)

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
90 System Manual, 11/2019, Online help printout

1.3.3.7 Plant overview (RT Uni)

Application
You use the "Plant overview" object to display the configured plant view in runtime.

You use it to navigate to the plant objects within the plant structure and get an overview of your
plant at one glance.

If you have configured screens or alarms for the lower-level plant objects and have linked them
to the "Plant overview" object, navigate to these pictures and alarms and display them.

Note

The "Plant overview" object is supported with version V16 exclusively for Unified PC. If the user
uses the object under Unified Comfort Panel, an error message of the compiler is returned.
Existing projects under Unified Comfort Panel that have configured the object, must delete the
object before compiling to version V16.

Layout
You change the settings for the position, geometry, style, color of the object in the Inspector
window.

To enable navigation between the screens of the plant objects, configure the corresponding
controls under "Properties > Accompanying controls".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 91

Operator controls
The following operator controls are available for the "Plant overview" object in runtime:

Button Name Function
Expand Expands the plant view with the lower-level plant objects.

Collapse Collapses the plant view with the lower-level plant ob‐
jects.

1.3.3.8 Reports (RT Uni)

Use
The "Reports" object is used to create and manage report tasks in runtime. It also gives you
access to the reports generated by the report tasks.

You can find detailed information on configuring the object in engineering in the section
Configuring production reports in the engineering system (Page 933).

You can find detailed information on configuring report tasks in Runtime in the section Working
with production logs in runtime (Page 962).

Note

The "Reports" object is supported with version V16 exclusively for Unified PC. If the user uses
the object under Unified Comfort Panel, an error message of the compiler is returned. Existing
projects under Unified Comfort Panel that have configured the object, must delete the object
before compiling to version V16.

Layout
In the Inspector window, you change general settings of the object such as the position, height,
width, label and window settings.

See also
Basics of Reporting (Page 931)

The user interface of the "Reports" control (Page 962)

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
92 System Manual, 11/2019, Online help printout

1.3.3.9 Trend companion (RT Uni)

Application
You use the "Value table" object to show evaluated data and statistics in a table.

● Trend view

● f(x) trend view

Note

The "Value table" object is supported with version V16 exclusively for Unified PC. If the user
uses the object under Unified Comfort Panel, an error message of the compiler is returned.
Existing projects under Unified Comfort Panel that have configured the object, must delete the
object before compiling to version V16.

Layout
In the Inspector window, you customize the position, geometry, style, colors and font types of
the object. You can adapt the following properties in particular:

● "Data source for displaying the values"

● "Mode"

● "Toolbar"

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 93

Data source for displaying the values
You define which values are displayed in the value table in the "Properties > Data source"
Inspector window.

To adjust display to the corresponding control, enable the options "Use data source
background color" and "Use data source font color".

By default, the configuration for the display format, the format is taken from the connected
control. The size, value range and zoom factor of the control are taken into account to display
the optimum number of decimal places. You can configure the display formats for individual
values in the Inspector window of the value table yourself, for example, to show a precise
number of decimal places.

Mode
You define the mode in the "Properties > Value table mode" Inspector window. You have a
choice of three different types depending on the data source.

● The ruler window shows the coordinate values of the trends on the ruler or values of a
selected line in the table.

● The statistics area window shows the values of the lower limit and upper limit of the trends
between two rulers or the selected area in the table. The statistics area window is not
provided for the f(x) trend view object.

● The statistics window shows the statistical evaluation of the trends between two rulers or the
selected values in the table. The statistics window is not provided for the f(x) trend view
object.

Toolbar
You define the operator controls for the value table in runtime in the "Properties > Toolbar >
Elements" Inspector window. Some buttons are enabled by default. To display additional
buttons in the control, activate the "Visibility" property in the settings of the corresponding
button.

The following control elements are available for the recipe data:

Button Brief description Description
Calculate statistics

The button shows the statistical values in the statistics win‐
dow. The displayed values refer to a selected trend with the
configured calculation time period. The button can only be
pressed if a statistics window is connected with a trend view.

Statistics area Enables you to define a time range for which statistical values
are determined.

Ruler window You query the coordinate points of a trend with the button.
The trend data are displayed in the ruler window.

Printing

Start the print-out of the values shown in the table.

Export

This button is used for exporting all or the selected runtime
data into a "CSV" file.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
94 System Manual, 11/2019, Online help printout

See also
Configuring the trend companion (Page 198)

1.3.3.10 Media Player (RT Uni)

Use
In runtime, the Media Player is used to play multimedia files.

Layout
You can set the following properties in the Inspector window:

● "Display status bar": Determines whether to display the status bar.

● "Toolbar" > "Elements": Specifies the operator controls in runtime.

Operator controls
The operator controls that can be used to control the Media Player in runtime are specified in
the Inspector window under "Properties > Toolbar > Elements".

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 95

Supported file formats
All file formats that are supported by the browser used are also supported in the Media Player.

Note

Playing back multimedia files in the control depends on the video and audio codecs installed on
the PC, as well as on the file format.

Note
Data loss when copying the project

If you copy the project to another PC, keep the following in mind:

Files indicated in the WinCC Media Control are not copied along with the other files if they are
dynamically linked and no UNC path is specified. You have to load the files into the project
again.

See also
http://support.automation.siemens.com (http://support.automation.siemens.com/WW/view/en/
62101921)

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
96 System Manual, 11/2019, Online help printout

http://support.automation.siemens.com/WW/view/en/62101921
http://support.automation.siemens.com/WW/view/en/62101921

1.3.3.11 Function trend control (RT Uni)

Use
You use the "f(x) trend view" object to represent the values of a tag as a function of another tag.
This means that you can present temperature trends as a function of the pressure, for example.
You can also compare the trend to a setpoint trend.

Layout
In the Inspector window, you customize the position, geometry, style, colors and font types of
the object. You can adapt the following properties in particular:

● "Function trend area"

● "Adding and configuring trends"

● "Toolbar"

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 97

Configuring trends
1. Select the data supply for the function trend under "Properties > Function trend area >

Function trends > Function trend [0] > Data source X > Source type".

– "Log": The trend view is supplied with values from a data log.

– "Undefined": The trend view is supplied in runtime with user-defined scripts.

– "Online": The trend view is supplied with values of a tag.

2. Select the tag name under "Properties > Function trend area > Function trends > Function
trend [0] > Data source X > Tag".

– In the case of a HMI tag, specify the name of the tag in the "Static value" column.

– In the case of a logging tag, first enter the name of the HMI tag in the "Static value"
column and then the name of the associated logging tags separated by a colon, for
example, "HMITag_1:LoggingTag_1".

3. Configure the data supply for "Data source Y".

4. Configure the trend display for the "Time range".

– "Time interval": You define the time range using a starting time and a following time
interval.

– "Start time and end time": You define the time range using a starting time and an end
time.

– "Measuring points": You define the time range using a starting time and a number of
measuring points.

5. Configure the value range of the trend display under "Left value axis" and "Bottom value
axis".

– "Automatically adapt value range" The displayed value range is automatically adapted to
the current values.

– "Minimum scale value" / "Maximum scale value": You define the minimum value and
maximum value for the value range.

Toolbar
You define the control elements of the f(x) trend view in runtime under "Properties > Toolbar >
Elements" in the Inspector window. Some buttons are enabled by default. To display additional
buttons in the control, activate the "Visibility" property in the settings of the corresponding
button.

The following control elements are available for the f(x) trend view:

Button Name Function
Zoom +/- Enlarges and/or shrinks the trends in the trend window.

Zoom area Increases the size of any section of the trend window.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
98 System Manual, 11/2019, Online help printout

Button Name Function
Zoom X axis Enlarges and/or reduces the X axis in the trend window.

Zoom Y axis Enlarges and/or reduces the Y axis in the trend window.

Original view Switches from the magnified trend view back to the normal view.

Previous trend Displays the previous trend in the foreground.

Next trend Displays the next trend in the foreground.

Ruler Determines the coordinates of a point of the trend.

Move trend area You can move the trends in the trend window along the X axis and the
Y axis using the button.

Move axes area You can move the trends in the trend window along the value axis
using the button.

Select trends Opens a dialog for setting the visibility of trends.

Select data connection Opens a dialog for selecting logs and tags.

Print Click this button to print the trend shown in the trend window. The
print job used during printing is defined in the configuration dialog in
the "General" tab.

Export data This button is used for exporting all or the selected runtime data to a
csv file.

The order of the buttons is fixed. The operator can set up individual key assignments, and
shortcuts for every button on the toolbar.

See also
Configuring the function trend control (Page 195)

Configuring toolbar and status bar (Page 199)

Defining the data source (Page 200)

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 99

1.3.3.12 Process control (RT Uni)

Application
You use the "Process control" object to display the tag values in a table. You can display
current, or logged values in the table. You can configure up to nine value columns. The first
column is reserved for the time column.

Layout
In the Inspector window, you customize the position, geometry, style, colors and font types of
the object. You can adapt the following properties in particular:

● "Configuring data source and columns"

● "Configuring a table"

● "Configuring a toolbar"

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
100 System Manual, 11/2019, Online help printout

Configuring data source and columns
1. Go to "Properties > Process view > Columns > Time range column [0]" and open the settings

of the time column.

2. Select the time range of the table under "Properties > Process view > Columns > Time range
column [0] > Time range":

– "Time interval": You define the time range using a starting time and a following time
interval.

– "Start time and end time": You define the time range using a starting time and an end
time.

– "Measuring points": You define the time range using a starting time and a number of
measuring points.

3. Go to "Properties > Process view > Columns" and open the settings of the respective value
column.

4. Under "Data source" select the type of data source and the tag that supplies the column with
values.

5. Under "Sorting order" define the sorting order of the columns in the process control.

6. If necessary, define the "Sorting direction" in which the values are sorted.

Toolbar
You define the operator controls of the process control in runtime in the "Properties > Properties
> Toolbar" inspector window. Some buttons are enabled by default. To display additional
buttons in the control, activate the "Visibility" property in the settings of the corresponding
button.

The following operator controls are available for the process control:

Button Name Function
First record Shows the tag values starting with the first logged value.

Previous data record Shows the tag values in the previous time interval.

Start/stop Stops and starts the column update. The values are buf‐
fered and updated as soon as you start column update
again.

Next record Shows the tag values in the next time interval.

Last record Shows the tag values up to the last logged value.

Edit Allows the editing of data in any table field that is opened
when the user double-clicks it.

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 101

Button Name Function
Previous column Displays the previous column in the foreground

Next column Displays the next column in the foreground

Select time range Opens the dialog for setting the time range displayed in
the process control.

Select data connection Opens the dialog for selecting the logs and tags that
serve as data source for this process control.

Create archive value Creates an archived value.

Print Starts printing the columns displayed in the process con‐
trol.

Export

This button is used for exporting all or the selected run‐
time data into a "CSV" file.

See also
Configuring the process control (Page 196)

1.3.4 My Controls (RT Uni)

Use
You can use My Controls in WinCC that have been created externally. My Controls are freely
programmable and serve as a specific solution that goes beyond the functionalities of the
toolbox provided. Like all other tools, My Controls are used within screens and displayed in
runtime.

Requirement
● A WinCC project has been created

● A screen has been created

Configuring screens (RT Uni)
1.3 Configuring objects (RT Uni)

WinCC Engineering V16 - Runtime Unified
102 System Manual, 11/2019, Online help printout

Procedure
To use My Controls, proceed as follows:

1. Open the directory of your project.

2. Open the "UserFiles" subfolder.

3. Create a folder with the name "CustomControls".

4. Store the created program as *.zip archive in the "CustomControls" folder.

Note
Update

To use My Controls in the tool list, you need to close and restart the WinCC application.

1.4 Configuring faceplates (RT Uni)

1.4.1 Basics (RT Uni)

1.4.1.1 Basics of faceplates (RT Uni)

Introduction
Faceplates are user-defined groups of display and operating objects that are stored, managed
and edited centrally in the project.

Faceplates can be scripted and can therefore also open other faceplates in a pop-up window.

Depending on design and configuration, faceplates can be used universally and easily
integrated into existing projects and employed several times.

Use
You use faceplates to create individually configured display and operating objects. You use
faceplates several times in the project. All changes to the faceplate in the project can be
changed centrally in the faceplate type. This reduces the configuration effort.

Depending on the application, a faceplate is a user-defined simple screen item or a detailed
representation of a complex plant component.

Ideally, you should use faceplates for plant objects or parts that you use several times and that
have identical data structures.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 103

Type/instance concept
In order to support central changeability, faceplates are based on a type-instance model:

● You create properties for faceplate instances centrally in the faceplate type.

● The instances represent local point of use of the faceplate type.

Faceplate type
● You create a faceplate type with basic objects and elements in the "Unified Faceplate

Types" editor to match your needs.

● You specify the tags and user data types (UDTs) that will be accessible in the faceplate
instance.

● You configure interface properties which you can define differently at each faceplate
instance without changing the faceplate type.

● The properties of the faceplate type and the basic objects used can be dynamized.

● You configure reactions to events on the basic objects using a script. This can also be used
to create pop-ups, for example.

Faceplate container
The faceplate container is an independent object in which a faceplate type is instantiated.

● Each instance is connected to the faceplate type that has been used.
This means that if you change a property or the data structure of a faceplate type, this
property change immediately affects all faceplate instances that are based on faceplate
type.

● A faceplate container is used in screens just like any other display and operating object.

● If a faceplate type has been instantiated in the container, the corresponding faceplate type
is specified in the "Contained type" property.

● The tags and interface properties configured in the faceplate type are linked in the faceplate
container.

Example
If you use multiple valves within your project, you typically always use the same data structures
to control and query the status of these valves. Therefore, it makes sense to use the same
display and operating objects for the visualization of these valves.

1. In a faceplate type, you configure how the valve is displayed and which input and output tags
the valve has in the form of tags and UDT structures.

2. If required, configure another faceplate type that contains the same data structure and
functions as a pop-up window.
This pop-up window can be called by the first faceplate type using a script.

3. For each valve in the system with the same data structure, instantiate the desired faceplate
type and link its tags and UDT structures with the corresponding ones in the system.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
104 System Manual, 11/2019, Online help printout

1.4.1.2 Device dependency of faceplates (RT Uni)
Not all displays and HMI devices support faceplates. The screen and operating objects that are
not available in the respective HMI device are not displayed when using the faceplate.

Independent of the device, all properties are offered for the configuration during the generation
of faceplates. When using a faceplate container in a screen, only the properties supported by
the configured device are available.

Devices
The following devices support faceplates:

Runtimes
● WinCC Unified Scada RT

Comfort Panels
● Unified Comfort Panel

1.4.1.3 "Unified Faceplate Types" editor (RT Uni)

Layout

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 105

The editor for faceplate types is divided into 3 main areas:

● Visualization
You can visually design the faceplate type here.
In the Inspector window, you define the properties of the faceplate type in the area
"Properties > Properties". Here, you define display name, appearance and size, for
example.

● Tags of the interface
Here you configure tags and specify existing user data types that you need in the faceplate
type.

● Interface properties
Here, you define the interface properties of the faceplate type.

"Visualization" tab
In the "Visualization" tab, you place the objects you need in the faceplate type, similar to the
familiar procedure in the "Screens" editor.

You insert new objects from the "Toolbox" task card under "Basic objects" and "Elements". Edit
these objects according to your requirements.

"Interface tags" tab
In the "Interface tags" tab, you configure the tags of the faceplate type.

Here, you also use user data types (UDTs) that you have previously created in controllers
(PLC).

"Interface properties" tab
In the "Interface properties" tab, you configure the interface properties of the faceplate type.

You create interface properties of the following data types:

● Color

● Resource list

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
106 System Manual, 11/2019, Online help printout

1.4.2 Creating and managing faceplates (RT Uni)

1.4.2.1 Creating a faceplate type (RT Uni)

Creating a faceplate type
1. In the project tree in the "Devices" tab, expand the "Shared data" > "Unified faceplate types"

folder.

2. Double-click the "Add new faceplate type" entry.
The "Unified faceplate types" editor opens.

3. Add objects from the "Toolbox" task card, which you are familiar with from the "Screens"
editor.
You can currently use objects from the following categories:

– Basic objects

– Elements

Editing properties
1. Configure the properties for the faceplate type and the objects used in the Inspector window

under "Properties > Properties".

2. Configure events on the relevant objects.

3. Dynamize the object properties as required.

Configuring tags and using user data types
1. Switch to the "Interface tags" tab.

2. Select "<Add>".

3. Specify the data type for the tag.

4. Configure all required tags.

5. When you use a user data type, select "Struct" as the data type and then select the
corresponding user data type.

Use the buttons "Moves selected element up" and "Moves selected element down" to
change the order of the tags.

Configuring interface properties
1. Switch to the "Interface properties" tab.

2. Select "<Add>".

3. Specify a data type:

– Color

– Resource list

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 107

Use the buttons "Moves selected element up" and "Moves selected element down" to
change the order of the properties.

You use the configured interface properties to dynamize properties within the faceplate. Use
the "Interface properties" entry in the "Dynamization" column for this purpose.

You dynamize the "Text list" property of a symbolic I/O field with an interface property of the
"Resource list" data type.

Note

If you change the data type of an interface property that you have already used to dynamize a
property in the "Visualization" tab, you need to adapt the dynamization of the property.

Result
● The faceplate type created can be instantiated in one or more faceplate containers.

● The configured tags of the faceplate type can be used within the faceplate type. If the
faceplate type is used in a plant object type, these tags can be linked to interface tags of the
plant object type.

● To dynamize colors and resource lists within the faceplate type, use the configured interface
properties. When you instantiate the faceplate type, you specify the values for the interface
properties. This allows you to use different colors and resource lists for each instantiated
faceplate container.

See also
Basics of screens (Page 21)

Configuring a faceplate type (Page 112)

1.4.2.2 Link faceplate type to a plant object type (RT Uni)

Introduction
Faceplate types can be linked to plant object types. The tags of the faceplate type are linked to
the interface tags of the plant object type.

Requirement
● A plant object type is configured.

● Interface tags are defined in the plant object type.

● A faceplate type with appropriately configured visualization, tags and interface properties
has been created.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
108 System Manual, 11/2019, Online help printout

Procedure
1. Open the editor of the plant object type.

2. Switch to the "Visualization" tab.

3. Drag-and-drop the faceplate type you want to connect to the plant object type from the
device view into the work area on "Drop faceplate here".

4. Expand the faceplate type.

5. Connect the faceplate tags to the respective interface tags of the plant object under
"Interface connection".
All interface tags do not have to be assigned.

Note

In TIA Portal V16, only one faceplate type can be linked.

Result
You have connected a plant object type to a faceplate type and assigned the corresponding
tags.

See also
Creating a faceplate type (Page 107)

1.4.2.3 Creating a faceplate instance (RT Uni)

Introduction
Faceplate types are stored in the project tree in the "Devices" tab under "Shared data" >
"Unified Faceplate types".

When you use the faceplate type in a screen, you create an instance of the faceplate type.

Note

The number of faceplate instances in a screen is basically not limited.

However, overall performance decreases more sharply
● When more faceplate instances are used in a screen.
● When more scripts are used in the instanced faceplate type.

Note

If you want to copy a faceplate instance from one project to another:
1. First copy the faceplate type into the target project.
2. Then copy the faceplate instances into the target project.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 109

Requirements
● The project contains at least one faceplate type.

● A screen is open.

Procedure using drag-and-drop
1. In the project tree, open the node "Common data" > "Unified Faceplate Types" in the

"Devices" tab.

2. Drag the desired faceplate type from the project tree into the screen.
The faceplate container with the faceplate instance is added to the screen.

3. Open the Inspector window under "Properties > Properties > General > Interface".

4. Connect the faceplate tags to project tags.

5. Specify colors and resource lists for the interface properties.

Procedure via task card
1. Open the "Toolbox > Controls" task card.

2. Drag-and-drop the "Faceplate container" control into the screen.
An instance of the "Faceplate container" control is configured, but no faceplate type is linked
yet.

3. Select the faceplate container.

4. Open the Inspector window under "Properties > Properties > General".

5. Select the desired faceplate type under "Contained type" in the "Static value" column.

6. Open the Inspector window under "Properties > Properties > General > Interface".

7. Connect the faceplate tags to project tags.

8. Specify colors and resource lists for the interface properties.

Procedure via plant objects
If you have linked the faceplate type to a plant object type, proceed as follows:

1. Open the "Plant objects" tab in the project tree.
The plant view is displayed.

2. Drag-and-drop the required plant object into the screen.
The faceplate container with the faceplate instance is added to the screen.
The tags and interface properties defined in the faceplate type are transferred.

3. Open the Inspector window under "Properties > Properties > General > Interface".

4. Specify colors and resource lists for the interface properties.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
110 System Manual, 11/2019, Online help printout

Result
● The faceplate type is instantiated in a faceplate container.

● The objects configured in the faceplate type are visible in the faceplate container.

● Faceplate tags and interface properties are defined for the faceplate container.

● If required, the properties of the faceplate container can be configured and dynamized in the
inspector window.

1.4.2.4 Copying faceplate types and faceplates to other projects (RT Uni)

Introduction
Faceplates and faceplate types can also be transferred to other projects.

Requirements
● The target project contains the devices on which faceplates can be used.

● Faceplate types: If user data types are used in the faceplate type, the same user data types
must be available in the target project.

● Faceplate instances: It must also be possible to integrate the tags of the used faceplate
types into the target project.

● Both projects (source and target) are open.

Procedure

Note
Dependencies

Hierarchical dependencies exist between user data types, faceplate type and faceplate
instances:
1. Faceplate instances use faceplate types.
2. Faceplate types use user data types where necessary.

Therefore, note the order:
1. Configure the user data types.
2. Copy the faceplate type.
3. Copy the faceplate instances.

Configuring user data types
1. Switch to the project from which you want to copy the faceplates.

2. Check the faceplate type to be copied for any user data types that might be used.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 111

3. Go to the target project.

4. In the target project, configure the user data types required in the faceplate type that is to be
copied.

Copying a faceplate type
1. Switch to the project from which you want to copy the faceplates.

2. Copy the desired faceplate type.

3. Go to the target project.

4. Insert the faceplate type into the target project.

5. Integrate the required user data types into the new faceplate type.

Copying a faceplate instance
1. Switch to the project from which you want to copy the faceplate instance.

2. Copy the faceplate container that the previously copied faceplate type uses.

3. Go to the target project.

4. Open the screen in which the faceplate instance is to be inserted.

5. Insert the faceplate container and check whether it uses the desired faceplate type .

6. Link the required tags and user data types in the faceplate container with those in the project.

See also
Basics of faceplates (Page 103)

1.4.3 Editing faceplate types (RT Uni)

1.4.3.1 Configuring a faceplate type (RT Uni)

Introduction
In the Inspector window under "Properties" you define the properties of the faceplate type and
the objects used in it.

In the "Tags Interface" tab of the faceplate editor, tags can be defined that are linked in the
faceplate instance to the tags in the configuration. Existing user data types can also be used
instead of using tags.

In the "Interface properties" tab, interface properties can be defined that can be used within the
faceplate type to dynamize properties. To do this, use the "Interface properties" entry in the
"Dynamization" column of the respective property. When you instantiate the faceplate type, you
specify the values for the interface properties. This allows you to use different colors and
resource lists for each instantiated faceplate container.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
112 System Manual, 11/2019, Online help printout

Requirement
● The faceplate type is created.

● The faceplate type is open for editing in the "Unified Faceplate Types" editor.

● The "Properties" tab is opened in the Inspector window .

Procedure
The faceplate type can be configured in many ways:

● Edit properties of the faceplate type

● Define tags and re-use existing user data types

● Create interface properties in the "Interface properties" tab and use for the dynamization of
properties

● Configure reactions to events in the faceplate type

● Dynamize properties in the faceplate type

● Configure scripts for events and for dynamizing properties

Note

Faceplate type tags and interface properties are referenced. When tags or interface properties
are added, deleted, or renamed, they are displayed updated at each use of the faceplate type.

See also
Creating a faceplate type (Page 107)

Editing properties of a faceplate type (Page 114)

Configuring tags in the faceplate type (Page 114)

Basics for the dynamization of faceplates (Page 116)

Basics of dynamizing screens (Page 131)

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 113

1.4.3.2 Editing properties of a faceplate type (RT Uni)

Adapting properties
Both the properties of the faceplate type and the properties of the objects used are edited in the
Inspector window under "Properties" > "Properties".

1. Select the required object.

– If you want to adapt the properties of the faceplate type, click in a free area of the "Unified
Faceplate Type" editor.

– If you want to adapt the properties of a used object, click on it.
The displayed handles indicate the selected object.

2. Open the shortcut menu with a right-click and select the "Properties" entry.
The Inspector window displays the properties of the object or faceplate type.

3. Edit the properties according to your needs.

See also
Configuring tags in the faceplate type (Page 114)

1.4.3.3 Configuring tags in the faceplate type (RT Uni)

Introduction
In the faceplate type you configure tags with which you can dynamize the properties of the
objects contained in the faceplate type or which you can embed in scripts.

The tags of a faceplate type are exclusively linked to the project tags via the faceplate container.

Note

The use of special characters such as "." and "@" is not permitted in tag names.
● Make sure that no special characters appear in the tag names.

Requirements
● The faceplate type has been created and open for editing.

● The "Tags Interface" tab is open in the "Unified Faceplate Types" editor.

General
The integration of existing UDT structures and the creation of new faceplate type tags is
basically identical.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
114 System Manual, 11/2019, Online help printout

Defining tags and re-using existing user data types

Note

Only tags of the faceplate type are displayed within the "Unified Faceplate Types" editor.

1. Click the "Add Tag" button.

2. Click on the name of the tag and assign a name.

3. Select the desired data type.
If you want to specify a user data type:

– Select the "Struct" data type.

– Specify the required user data type.
All tags from the user data type are available in the faceplate type.

4. Repeat the procedure for all other required tags.

5. In the "Unified Faceplate Types" editor, go back to the "Visualization" tab.

Result
You have configured the tags and user data types required for the faceplate type.

The tags defined in the faceplate type are accessible in the corresponding faceplate instances
and can be used for dynamization and for creating scripts within the faceplate type.

See also
Configuring an event in the faceplate type (Page 115)

1.4.3.4 Configuring an event in the faceplate type (RT Uni)

Introduction
In the Inspector window of the "Unified Faceplate Types" editor you define the reaction to
events for the objects that are used in the faceplate type.

Use the tags that were previously created in the faceplate type to trigger the reaction to events
in the faceplate instance.

Requirement
● A faceplate type has been created.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 115

Procedure

Note
Using tags

Only use tags that are defined within the faceplate type.

Tags are used in the following cases:
● Dynamizing properties through a tag
● Dynamize properties with a script (if tags other than those defined in the script were used).

You link the tags defined in the faceplate type with the project tags in the faceplate instance.

● The reaction to events on objects in the faceplate type is configured in the inspector window
under "Properties" > "Events".

● For creating scripts there are special snippets, which can be reached in the shortcut menu
under "Snippets" > "Faceplates".

● Creating scripts in the faceplate type works the same way as creating scripts on objects in
screens.

See also
Configuring tags in the faceplate type (Page 114)

Configuring faceplate scripts (Page 119)

Runtime scripting (Page 355)

1.4.4 Dynamizing faceplates (RT Uni)

1.4.4.1 Basics for the dynamization of faceplates (RT Uni)

General
Both the properties of the faceplate type and the properties of the objects used are dynamized
in the Inspector window under "Properties" > "Properties".

Application
You can dynamize events and properties of faceplates at two levels.

1. Dynamizing objects in faceplate type

2. Dynamizing a faceplate instance

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
116 System Manual, 11/2019, Online help printout

Dynamize properties of objects in faceplate type

Note
Using tags

Only use tags that are defined within the faceplate type.

Tags are used in the following cases:
● Dynamizing properties through a tag
● Dynamize properties with a script (if tags other than those defined in the script were used).

You link the tags defined in the faceplate type with the project tags in the faceplate instance.

Properties of objects in the faceplate type can be dynamized in the "Unified Faceplate Types"
editor. You configure the individual objects as in the "Screens" editor.

● To dynamize properties and events, the following methods are available in the "Unified
faceplate types" editor:

– Tag

– Script

– Flashing (for colors)

– Interface properties (for colors and text lists)
With this method, you use the interface properties configured in the "Interface properties"
tab.

Depending on the property, only certain methods are available.

● You do not have access to the tags and scripts of the project within the faceplate type.
To do this, you must configure tags in faceplate type, which you link to the tags of the project
in the faceplate instance.

● Each faceplate instance created with the faceplate type has the same objects with identical
dynamization.
You edit this dynamization exclusively in the "Unified Faceplate Types" editor.

Dynamizing a faceplate instance
You configure the events or dynamic properties individually on the faceplate container. This
dynamization refers exclusively to the entire faceplate container.

Properties of the objects used in the faceplate type cannot be dynamized directly. For this
purpose, faceplate type tags must be defined in order to trigger a dynamization.

See also
Configuring faceplate scripts (Page 119)

Basics of dynamizing screens (Page 131)

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 117

1.4.4.2 Dynamizing a faceplate instance (RT Uni)

Introduction

Note

A faceplate type is always instanced in a faceplate container.

You dynamize properties of the faceplate instance in exactly the same way as you dynamize
properties of another object in the "Screens" editor.

In the "Screens" editor, you can connect the dynamic properties of the faceplate container with
a tag or a script that provides the property with values in runtime.

You have previously created the tags and scripts in the project.

Requirement
● A faceplate container with a faceplate instance is inserted in the screen.

Procedure
1. Select the relevant faceplate instance.

2. Open the shortcut menu of the faceplate instance (right-click) and select "Properties".

3. In the "Dynamization" column of the Inspector window, select the menu of the property that
you want to dynamize.

4. Select the required method:

– Tag

– Script

– Resource list (for strings)

– Flashing (for colors)

Depending on the property, only certain methods are available.

See also
Basics for the dynamization of faceplates (Page 116)

Basics of dynamizing screens (Page 131)

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
118 System Manual, 11/2019, Online help printout

1.4.4.3 Configuring faceplate scripts (RT Uni)

Introduction
In the configuration area of the "Unified Faceplate Types" editor, you create scripts which you
only use within a faceplate type. You can only refer to tags of the faceplate type or properties
of the contained objects within the script. The script is used as a copy in the instance of the
faceplate type.

Requirement
● The faceplate type has been created and opened in the "Unified Faceplate Types" editor.

● Faceplate tags or dynamic properties are created.

Procedure

Note
Using tags

Only use tags that are defined within the faceplate type.

You link the tags defined in the faceplate type with the project tags in the faceplate instance.

Creating scripts for objects in faceplate types works the same way as in the "Screens" editor.

See also
Basics for the dynamization of faceplates (Page 116)

Runtime scripting (Page 355)

1.4.5 Example: Creating and using faceplates (RT Uni)

1.4.5.1 Example: Configuring a faceplate (RT Uni)
In the following example, you create a faceplate type to specify a motor speed and then use an
instance of this faceplate type in the project.

Procedures overview
The example is divided into the following steps:

1. Creating a faceplate type

2. Configuring tags in the faceplate type

3. Instead of tags: Use PLC data types (UDT) and thus minimize configuration workload

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 119

4. Configuring interface properties in the faceplate type

5. Creating a local script in the faceplate type

6. Creating a faceplate instance and integrating it in the project

See also
Example: Creating a faceplate type (Page 120)

Example: Configuring tags in the faceplate type (Page 122)

Instead of tags: Using the user data type (UDT) in the faceplate type (Page 123)

Example: Creating a local script in the faceplate type (Page 127)

Example: Creating a faceplate instance and integrating it in the project (Page 128)

1.4.5.2 Example: Creating a faceplate type (RT Uni)

Task
You create a faceplate type.

Requirement
● A project has been created.

Procedure
1. Create a new faceplate type and give it a meaningful name.

2. Open the faceplate type.

3. In the "Unified Faceplate Types" editor, go to the "Visualization" view.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
120 System Manual, 11/2019, Online help printout

4. Open the "Toolbox" task card.

5. Drag the required objects to the faceplate type; see table below.
Arrange the objects according to your needs. This could look like this, for example:

Objects in the faceplate type

Object Object name Meaning/Properties
Gauge Revolutions_Gauge Display of the current motor speed
Text field EngineName_Textbox Text: Motor identification
Text field SetPoint_Textbox Text: Default setpoint
Text field Unit_Textbox Text: Unit for speed
Text field Mode_Textbox "Mode" text:
I/O field Revs_InputField Input field for the speed setpoint
Switch InputMode_Switch Mode selection for motor

Text ON: Auto
Text OFF: Man

Button ApplyValue_Button When the button is pressed, the speed setpoint and
mode are transferred to the corresponding tags.

Result
The objects required in the faceplate type have been configured.

See also
Creating a faceplate type (Page 107)

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 121

1.4.5.3 Example: Configuring tags in the faceplate type (RT Uni)

Task
You configure tags in the faceplate type with which you can dynamically control properties and
which are required for data exchange in the project.

Configuring tags

Note

Tags are required to exchange values between the faceplate instance and project.

When used in screens, access to individual object properties in faceplates is possible
exclusively via faceplate tags.

If you follow the example with PLC data types, you use the tags from the PLC data type
accordingly.

1. Switch to the "Interface tags" tab in the "Unified faceplate types" editor.

2. Configure the required tags. To do this, click the icon.
The required tags are listed in the table below.

3. Switch to the "Visualization" tab in the "Unified faceplate types" editor.

Tags in the faceplate type

Tag Data type Meaning Source Target
rpmInputTag Int Speed setpoint Input field

(Faceplate)
Project

rpmCurrTag Int Current speed value (actual value) Project Gauge
(Faceplate)

engineName‐
Tag

WString Motor name (verbal identification) Project Text field
(Faceplate)

modeSwitch‐
Tag

Bool Mode (automatic/manual) Switch
(Faceplate)

Project

Assigning tags
1. Select the pointer instrument "Revolutions_Gauge".

2. Open the shortcut menu with a right-click and select "Properties".

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
122 System Manual, 11/2019, Online help printout

3. Set the "tag" value under "General > Process value" in the "Dynamization" column.
A screen for selecting the tag is shown on the right-hand side of the Inspector window.

4. Assign the "rpmCurrTag" tag to the "Process value" property.
When the "rpmCurrTag" tag is linked in the project, the pointer instrument shows the
corresponding values.

Note

All other tags in the faceplate type are later used in the script and linked in the project.

If you follow the example with PLC data types, you assign the tags from the PLC data type
accordingly.

See also
Configuring tags in the faceplate type (Page 114)

Instead of tags: Using the user data type (UDT) in the faceplate type (Page 123)

1.4.5.4 Instead of tags: Using the user data type (UDT) in the faceplate type (RT Uni)

Introduction
You have configured multiple motors of the same type. To do so, use data blocks based on a
user data type (UDT).

You also want to use this user data type in the faceplate type, which displays some motor data
and allows data input.

The following advantages arise from reusing the user data type:

● You minimize the configuration effort.

● You reduce the consumption of resources.

● They ensure unique and consistent naming of tags in data blocks and faceplates and hereby
significantly reduce the probability of configuration errors.

Task
You use the existing user data type in the faceplate type.

Then link the tags of the data blocks defined in the user data type with those in the faceplate
instance.

Requirement
● A controller is configured that supports user data types, e.g. from the SIMATIC S7-1200 or

SIMATIC S7-1500 series.

● A suitable user data type for the motor type is configured.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 123

● A data block is configured for each motor based on the user data type.

● The "Unified Faceplate Types" is opened with the created faceplate type.

Procedure
1. Adapt the faceplate type so that the user data type for the motors is also used in this

faceplate type.

– Switch to the "Interface tags" view.

– You use the defined user data type (UDT) instead of the tag.
The user data type now supplies the faceplate type with the corresponding tags.

– Go back to the "Visualization" view.

– Take into account that tag access in the faceplate type now takes place via the user data
type.
This affects, for example, the use of faceplate tags in dynamized object properties and
in local scripts.

2. From the faceplate type, create the same number of faceplate instances as the number of
motors you have configured.

3. Link the tags from the data blocks and faceplate instances with each other.

– The tag names in data blocks and faceplate instance are hierarchically structured.

– This means that the tags from the individual faceplate instances can always be assigned
uniquely to the tags of the respective data block.

– If the user data type contains tags that you do not require in the visualization, ignore
these tags.

See also
Configuring tags in the faceplate type (Page 114)

1.4.5.5 Example: Configuring interface properties in the faceplate type (RT Uni)

Introduction
You configure interface properties in the faceplate type with which some properties can be
dynamically controlled. Interface properties allow you to use different colors and resource lists
in each faceplate instance.

Task
Design the background color of the EngineName_Textbox text box with interface properties.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
124 System Manual, 11/2019, Online help printout

Configure interface property
1. Switch to "Interface properties" tab in the "Unified faceplate types" editor.

2. Click the icon.

3. Assign the name "backEngineName".

4. Switch to the "Visualization" tab in the "Unified faceplate types" editor.

Assign interface property
1. Select the "EngineName_Textbox" text box.

2. Open the shortcut menu with a right-click and select "Properties".

3. Set the "Interface properties" under "Appearance > Background color" in the
"Dynamization" column.
A screen for selecting the interface property is shown on the right side of the Inspector
window.

4. Assign the "backEngineName" interface property to the "Background color" property.
If the value of the "backEngineName" interface property is defined for the faceplate
instance, the background of the "EngineName_Textbox" text box is displayed in the
corresponding color in runtime.

1.4.5.6 Example: Link faceplate type to plant object type (RT Uni)

Introduction
If you link the faceplate type to a plant object type, connect the tags of the faceplate type directly
to the interface tags of the plant object type. Each time a faceplate instance is used, the tags
of the linked plant object are accessed directly. This saves you configuration work when
creating faceplate instances.

Task
You link the faceplate type with the plant object type.

Requirement
● A plant object type has been created.

Create interface tags at the plant object type
1. Open the editor of the plant object type.

2. Switch to the "Interface" tab.

3. Create the following project tags.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 125

Faceplate tag Project tag Type Meaning and function
engineNameTag Engine-01_Mode Bool Set mode (manual/automatic) of the motor

Transfer the set mode from the faceplate instance to the project
modeSwitchTag Engine-01_Name WString Name of the motor (e.g. motor number or similar)

Transfer the motor name from the project to the text box of the
faceplate instance.

rpmCurrTag Engine-01_rpmCurr Int Current speed of the motor
Transfer the measured speed from the project to the gauge in
the faceplate instance.

rpmInputTag Engine-01_rpmInput Int Default value for speed
Transfer the preset speed from the faceplate instance to the
project.

Note

If you follow the example with PLC data types (UDT), note the deviating tag names.

Link faceplate type tags to project tags
1. Switch to the "Visualization" tab of the plant object type.

2. Drag-and-drop the faceplate type from the project tree into the work area to "<Drop
faceplates here>".

3. Expand the faceplate type.

4. Under "Interface connection", connect the interface tags of the plant object type to the tags
of the faceplate type.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
126 System Manual, 11/2019, Online help printout

Result
You have linked the faceplate type to the plant object type and connected all tags.

1.4.5.7 Example: Creating a local script in the faceplate type (RT Uni)

Task
You create a script that is triggered when a button is pressed and transfers values to tags.

Procedure
1. In the "Unified Faceplate Types" editor, go to the "Visualization" view.

2. Select the button.

3. Open the shortcut menu with a right-click and select "Properties".
The properties of the button are displayed in the Inspector window.

4. Click "Events".

5. Select the "Click left mouse button" entry.

6. Click on the "Convert function to script" button.
The script is created and displayed on the right-hand side of the Inspector window.

7. Write the code with which the values of the input field and of the switch are assigned to the
corresponding tags.

Note

If you follow the example with user data types (UDTs), note the deviating tag names.

Sample code

export function ApplyValue_Button_OnTapped(item, x, y, modifiers, trigger)
{
 let rpm = Tags('rpmInputTag');
 rpm1 = Faceplate.Items('Revs_InputField');
 rpm.Write(rpm1.ProcessValue');
 //write value from Input Field to tag 'rpm'

 let mode = Tags('modeSwitchTag');
 let mode1 = Faceplate.Items('InputMode_Switch');
 mode.Write(mode1.IsAlternateState);
 //write value from Switch to tag 'mode'
}

Result
The script has been created in the faceplate type.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 127

If you use the faceplate type in a screen, you assign a tag from the project to the tags. The
values of these tags are given as new value to the assigned tags of the faceplate type. In this
way, you supply values to the tags of the faceplate type.

See also
Configuring an event in the faceplate type (Page 115)

Configuring faceplate scripts (Page 119)

1.4.5.8 Example: Creating a faceplate instance and integrating it in the project (RT Uni)

Task
You insert an instance of the faceplate type in a screen and link the tags of the faceplate
instance with tags in the project.

Requirement
● SIMATIC PC station - WinCC Unified SCADA RT has been configured.

● The HMI device is assigned in the plant view.

● The plant object type is used in the plant view.

● A new screen has been created.

● The "Screens" editor is open.

Creating a faceplate instance
1. Switch to the "Plant objects" tab in the project tree.

2. Drag-and-drop the faceplate type to the "Screens" editor.
A faceplate container is created with an instance of the faceplate type.

3. Select the faceplate container and open its properties via the shortcut menu.

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
128 System Manual, 11/2019, Online help printout

4. Define the properties of the faceplate container.

5. Assign a value for the interface property "backEngineName" (see below).

Result
The faceplate type is instantiated on a screen in a faceplate container.

You have assigned a value to the background color property of the "EngineName_Textbox" text
box.

This completes integration of the faceplate type in the project.

See also
Creating a faceplate instance (Page 109)

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 129

Configuring screens (RT Uni)
1.4 Configuring faceplates (RT Uni)

WinCC Engineering V16 - Runtime Unified
130 System Manual, 11/2019, Online help printout

Configuring dynamization (RT Uni) 2
2.1 Basics of dynamizing screens (RT Uni)

Dynamizing objects
Dynamics are used to change the properties of screen objects and screens in runtime
depending on another value. The source for this value changes is referred to as "Dynamization
type".

Dynamization types
The following table shows the dynamization types available in WinCC:

Dynamization type Description Supported property classes Examples
Tag Defines the property value

depending on the tag value.
 All "Process value" or "Left"

properties
Script Defines the property value

depending on the return val‐
ue.

All "Process value" or "Left"
properties

Resource list Defines the property value
depending on an entry from a
text list or graphic list.

Text / Graphic Properties "Text", "Tooltip" or
"Graphic".

Flashing Defines that the property
flashes in configurable col‐
ors.

Colors Properties "Foreground col‐
or" or "Border color".

Examples of dynamizations
The table below shows typical application examples for each type of dynamization:

Dynamization type Application example
Tag Visualize the level. The "Process value" property of a bar graph is dynamized with a tag that

contains the level from the PLC.
Script Simulate the filling process. To simulate a movement of bottles on a conveyor belt, the prop‐

erties "Left", "Top" and "Visible" are dynamized with scripts.
Resource list Display the plant status. The meaning of a quality code is saved in a text list. Depending on

the transferred numerical quality code, its meaning is displayed on the HMI device.
Flashing Visualize limit violations. When the level of a tank drops below a limit, the visualized tank is to

flash in two signal colors.

See also
Dynamizing an object property with a "Script" (Page 132)

Dynamizing an object property with a "Tag" (Page 133)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 131

Dynamizing an object property with "Flashing" (Page 134)

Dynamizing an object property with a "Resource list" (Page 134)

2.2 Dynamizing an object property with a "Script" (RT Uni)

Requirement
● A screen is open.

● An object is configured.

● The object property supports the dynamization type "Script".

Procedure
To dynamize an object property using a "Script", follow these steps:

1. Select the object.

2. Under "Properties > Properties > Dynamization" select the object property in the Inspector
window.

– Select the option "Script".

– Write the code.

– Select the trigger that triggers the dynamization in runtime.

3. If necessary, create a "Global definition".

– Select a dynamized property.

– Click "Global definition".

– Write the code.

– Select the trigger that triggers the dynamization in runtime.

Result
The object property is dynamized with a script. The return value of the script specifies the
property value in runtime.

Note

The dynamization of an event is only monitored regarding an operator authorization if the
triggering event, e.g. "Press button", is triggered by a user.

See also
Basics of dynamizing screens (Page 131)

Dynamizing an object property with a "Tag" (Page 133)

Configuring dynamization (RT Uni)
2.2 Dynamizing an object property with a "Script" (RT Uni)

WinCC Engineering V16 - Runtime Unified
132 System Manual, 11/2019, Online help printout

Dynamizing an object property with "Flashing" (Page 134)

Dynamizing an object property with a "Resource list" (Page 134)

2.3 Dynamizing an object property with a "Tag" (RT Uni)

Requirement
● A screen is open.

● An object is configured.

● You have configured a tag.

● The object property supports the dynamization type "Tag".

Procedure
To dynamize an object property using a tag, follow these steps:

1. Select the object.

2. Under "Properties > Properties > Dynamization" select the object property in the Inspector
window.

3. Select the "Tag" option.

4. Select the tag.

5. If required, enable the options "Indirect addressing" or "Read only" in the "Settings" area.

6. Define the type of tag:

– None

– Area
Define the conditions for the respective property.

Result
The object property tag is dynamized with a tag. The tag value specifies the property value in
runtime.

See also
Basics of dynamizing screens (Page 131)

Dynamizing an object property with a "Script" (Page 132)

Dynamizing an object property with "Flashing" (Page 134)

Dynamizing an object property with a "Resource list" (Page 134)

Configuring dynamization (RT Uni)
2.3 Dynamizing an object property with a "Tag" (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 133

2.4 Dynamizing an object property with "Flashing" (RT Uni)

Requirement
● A screen is open.

● An object is configured.

● The object property supports the dynamization type "Flashing".

Procedure
To dynamize an object property using "Flashing", follow these steps:

1. Select the object.

2. Under "Properties > Properties > Dynamization" select the object property in the Inspector
window.

– Select the "Flashing" option.

– Select the flash colors.

– Select the condition that triggers flashing.

– Select the flashing frequency.

Result
The object property is dynamized. When the configured condition occurs in runtime, the object
property flashes in the configured colors.

See also
Basics of dynamizing screens (Page 131)

Dynamizing an object property with a "Script" (Page 132)

Dynamizing an object property with a "Tag" (Page 133)

Dynamizing an object property with a "Resource list" (Page 134)

2.5 Dynamizing an object property with a "Resource list" (RT Uni)

Requirement
● A screen is open.

● An object is configured.

● A tag is configured.

Configuring dynamization (RT Uni)
2.5 Dynamizing an object property with a "Resource list" (RT Uni)

WinCC Engineering V16 - Runtime Unified
134 System Manual, 11/2019, Online help printout

● A text list or graphic list is configured.

● The object property supports the dynamization type "Resource list".

Procedure
To dynamize an object property using a "Resource list", follow these steps:

1. Select the object.

2. Under "Properties > Properties > Dynamization" select the object property in the Inspector
window.

– Select the "Resource list" option.

– Select the tag.

– Select the text list or graphic list.

Result
The object property tag is dynamized with a resource list. The tag value specifies the entry from
the configured text list or graphic list that is displayed in runtime.

See also
Basics of dynamizing screens (Page 131)

Dynamizing an object property with a "Script" (Page 132)

Dynamizing an object property with a "Tag" (Page 133)

Dynamizing an object property with "Flashing" (Page 134)

Configuring dynamization (RT Uni)
2.5 Dynamizing an object property with a "Resource list" (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 135

Configuring dynamization (RT Uni)
2.5 Dynamizing an object property with a "Resource list" (RT Uni)

WinCC Engineering V16 - Runtime Unified
136 System Manual, 11/2019, Online help printout

Configuring tags (RT Uni) 3
3.1 Basics (RT Uni)

3.1.1 Basics of tags (RT Uni)

Introduction
Process values are forwarded in runtime using tags. Process values are data which is stored
in the memory of one of the connected automation systems. They represent the status of a plant
in the form of temperatures, fill levels or switching states, for example. Define external tags for
processing the process values in WinCC.

WinCC works with two types of tag:

● External tags

● Internal tags

The external tags form the link between WinCC and the automation systems. The values of
external tags correspond to the process values from the memory of an automation system. The
value of an external tag is determined by reading the process value from the memory of the
automation system. It is also possible to rewrite a process value in the memory of the
automation system.

Internal tags do not have a process link and only convey values within the WinCC. The tag
values are only available as long as runtime is running.

In WinCC, you can visualize and change process values, which are transferred using tags, on
your HMI device.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 137

Tags in WinCC
For external tags, the properties of the tag are used to define the connection that the WinCC
uses to communicate with the automation system and form of data exchange.

Tags that are not supplied with values by the process - the internal tags - are not connected to
the automation system. In the tag's "Connection" property, this is identified by the "Internal tag"
entry.

You can create tags in different tag tables for greater clarity. You then directly access the
individual tag tables in the "HMI tags" node in the project tree. The tags from all tag tables can
be displayed with the help of the table "Show all tags".

With structures you bundle a number of different tags that form one logical unit. Structures are
project-associated data and are available for all HMI devices of the project. You use the "Types"
editor in the project library to create and edit a structure.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
138 System Manual, 11/2019, Online help printout

See also
Overview of HMI tag tables (Page 139)

External tags (Page 140)

Internal tags (Page 144)

3.1.2 Overview of HMI tag tables (RT Uni)

Introduction
HMI tag tables contain the definitions of the HMI tags that apply across all devices. A tag table
is created automatically for each HMI device created in the project.

In the project tree there is an "HMI tags" folder for each HMI device. The following tables can
be contained in this folder:

● Default tag table

● User-defined tag tables

● Table of all tags

In the project tree you can create additional tag tables in the "HMI tags" folder and use these
to sort and group tags and constants. You can move tags to a different tag table using a drag-
and-drop operation or with the help of the "Tag table" field. Activate the "Tags table" field using
the shortcut menu of the column headings.

In WinCC you can display the locations of use for all tags. Use the "Cross-references"
command in the shortcut menu or the F11 key to call the "Cross-references" editor for a
selected tag table. In the editor you can see all objects that the respective tag uses and you can
jump directly to the location of use of the tag.

Default tag table
There is one default tag table for each HMI device of the project. It cannot be deleted or moved.
The default tag table contains HMI tags and, depending on the HMI device, also system tags.
You can declare all HMI tags in the standard tag table or, as necessary, in additional user-
defined tag tables.

User-defined tag tables
You can create multiple user-defined tag tables for each HMI device in order to group tags
according to your requirements. You can rename, gather into groups, or delete user-defined
tag tables. To group tag tables, create additional subfolders in the HMI tags folder.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 139

Show all tags
The "HMI tags" tab in the "All tags" table shows an overview of all HMI tags and system tags of
the HMI device in question. This table cannot be deleted, renamed or moved. The "Tags table"
column shows you in which tag table a tag is included. Using the "Tags table" field, the
assignment of a tag to a tags table can be changed.

The "All tags" table contains an additional tab "System tags". The system tags are created by
the system and used for internal management of the project. The names of the system tags
begin with the "@" character. System tags cannot be deleted or renamed. You can evaluate the
value of a system tag, but cannot modify it.

Discrete alarms, analog alarms and logging tags
The following tables are also available in an HMI tag table:

● Discrete alarms
In the "Discrete alarms" table, you configure discrete alarms to the HMI tag selected in the
HMI tag table. When you configure a discrete alarm, multiple selection in the HMI tag table
is not possible. You configure the discrete alarms for each HMI tag separately.

● Analog alarms
In the "Analog alarms" table, you configure analog alarms to the HMI tag selected in the HMI
tag table. When you configure an analog alarm, multiple selection in the HMI tag table is not
possible. You configure the analog alarms for each HMI tag separately.

● Logging tags
In the "Logging tags" table, you configure logging tags to the HMI tag selected in the HMI tag
table. When you configure a logging tag, multiple selection in the HMI tag table is not
possible. You configure the logging tags for each HMI tag separately.

With the help of these tables you configure alarms and logging tags for the currently selected
HMI tag.

3.1.3 External tags (RT Uni)

Introduction
External tags allow the data exchange between the components of an automation system, for
example, between an HMI device and a PLC.

An external tag is the image of a defined memory location in the PLC. You have read and write
access to this storage location from both the HMI device and from the PLC.

As external tags map a storage location in the PLC, the applicable data types depend on the
PLC that is connected to the HMI device.

If you write a PLC control program in STEP 7, the PLC tags created in the control program will
be added to the PLC tag table. If you want to connect an external tag to a PLC tag, access the
PLC tags directly via the PLC tag table and connect them to the external tag.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
140 System Manual, 11/2019, Online help printout

Data types
All simple data types available on the connected PLC are available at an external tag in WinCC.
If the data type of the PLC tag is not available in WinCC, a compatible data type is automatically
used at the HMI tag. Interconnected PLC data types and arrays are not supported.

If you use PLC data types, the data type is adopted by WinCC. You can change the data type
at the HMI tag, if necessary.

Central tag management in STEP 7
You can connect also connect DB instances of user-defined PLC data types (UDT) to the HMI
tags.

The PLC data type and the corresponding DB instances are created and updated centrally in
STEP 7. In WinCC, you can use the following sources as the PLC tag (DB instances):

● Data block elements that use a UDT as data type

● Data block instances of a UDT

The data type is taken from STEP 7 and is not converted to an HMI data type. The access type
is always "Symbolic access". Depending on the release for WinCC in STEP 7, elements and
structured elements of the PLC data type are applied to WinCC.

Note
Accessing PLC data types

Access to PLC data types is only available in conjunction with SIMATIC S7-1500.

Synchronization with PLC tags
A variety of options for synchronizing external tags with the PLC tags are available in the
runtime settings under "Settings for tags".

When you perform synchronization, you have the option of automatically applying the tag
names of the PLC to external tags and reconnecting the existing tags.

The generated tag name is derived from the position of the data value in the hierarchical
structure of the data block.

Update of tag values
For external tags, the current tag values are transmitted in runtime via the communication
connection between WinCC and the connected automation systems and then saved in the
runtime memory. Next, the tag value will be updated to the set cycle time. For use in the runtime
project, WinCC accesses tag values in the runtime memory that were read from the PLC at the
previous cycle time. As a result, the value in the PLC can already change while the value from
the runtime memory is being processed.

See also
Creating external tags (Page 152)

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 141

3.1.4 Addressing external tags (RT Uni)

Introduction
The options for addressing external tags depend on the type of connection between WinCC
and the PLC in question. A distinction must be made between the following connection
types:

● Integrated connection
Connections of devices which are within a project and were created with the "Devices &
Networks" editor are referred to as integrated connections.

● Non-integrated connection
Connections of devices which were created with the "Connections" editor are referred to as
non-integrated connections. It is not necessary that all of the devices be within a single
project.

The connection type can also be recognized by its icon.

Integrated connection
Non-integrated connection

Addressing with integrated connections
An integrated connection offers the advantage that you can address a tag both symbolically
and absolutely.

For symbolic addressing, you select the PLC tag via its name and connect it to the HMI tag. The
valid data type for the HMI tag is automatically selected by the system.

During the symbolic addressing of a data block with optimized access and standard access, the
address of an element in the data block is dynamically assigned and is automatically adopted
in the HMI tag in the event of a change. You do not need to compile the connected data block
or the WinCC project for this step.
For data blocks with optimized access, only symbolic addressing is available.

For symbolic addressing of elements in a data block, you only need to recompile and reload the
WinCC project in case of the following changes:

● If the name or the data type of the linked data block element or global PLC tag has changed.

● If the name or the data type of the higher level structure node of a linked element in the data
block element or global PLC tag has changed.

● If the name of the connected data block has changed.

Symbolic addressing is currently available with the following PLCs:

● SIMATIC S7-1500

● SIMATIC ET 200 CPU

● SIMATIC S7-1500 software controller

Symbolic addressing is also available if you have an integrated link.

You can also use absolute addressing with an integrated connection. You have to use absolute
addressing for PLC tags from a SIMATIC S7-300/400 PLC. If you have connected an HMI tag

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
142 System Manual, 11/2019, Online help printout

with a PLC tag and the address of the PLC tag changes, you only have to recompile the control
program to update the new address in WinCC. Then you recompile the WinCC project and load
it onto the HMI device.

In WinCC, symbolic addressing is the default method. To change the default setting, select the
menu command "Options > Settings > Visualization > HMI tags".

The availability of an integrated connection depends on the PLC used. The following table
shows the availability:

Controller Integrated connection Comments
S7-300/400 Yes The linking of tags is not checked in runtime. If

the tag address changes in the PLC and the HMI
device is not compiled again and loaded, the
change is not registered in runtime.

S7-1500 Yes A validity check of the tag connection is per‐
formed in runtime during symbolic addressing. If
an address is changed in the PLC, the change is
registered and an error message is issued. In the
case of absolute addressing, the behavior de‐
scribed for the S7-300/400 applies.

SIMATIC ET 200
CPU

Yes A validity check of the tag connection is per‐
formed in runtime during symbolic addressing. If
an address is changed in the PLC, the change is
registered and an error message is issued. In the
case of absolute addressing, the behavior de‐
scribed for the S7-300/400 applies.

SIMAT‐
IC S7-1500 soft‐
ware controller

Yes A validity check of the tag connection is per‐
formed in runtime during symbolic addressing. If
an address is changed in the PLC, the change is
registered and an error message is issued. In the
case of absolute addressing, the behavior de‐
scribed for the S7-300/400 applies.

Create an integrated connection in the "Devices & Networks" editor. If the PLC is contained in
the project and integrated connections are supported, you can then also have the connection
created automatically. To do this, when configuring the HMI tag, simply select an existing PLC
tag to which you want to connect the HMI tag. The integrated connection is then automatically
created by the system.

Addressing with non-integrated connections
In the case of a project with a non-integrated connection, you always configure a tag connection
with absolute addressing. Select the valid data type yourself. If the address of a PLC tag
changes in a project with a non-integrated connection during the course of the project, you also
have to make the change in WinCC. The tag connection cannot be checked for validity in
runtime, an error message is not issued.

A non-integrated connection is available for all supported PLCs.

Symbolic addressing is not available in a non-integrated connection.

With a non-integrated connection, the control program does not need to be part of the WinCC
project. You can perform the configuration of the PLC and the WinCC project independently of

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 143

each other. For configuration in WinCC, only the addresses used in the PLC and their function
have to be known.

3.1.5 Internal tags (RT Uni)

Introduction
Internal tags do not have any connection to the PLC.

Principle
Internal tags are stored in the memory of the HMI device. Therefore, only this HMI device has
read and write access to the internal tags. You can create internal tags to perform local
calculations, for example.

You can use the HMI data types for internal tags. Availability depends on the HMI device being
used.

The following HMI data types are available:

HMI data type Data format
Bool Binary tag
Byte Unsigned 8-bit value
DateTime Date/time format
DInt Signed 32-bit value
DWord Unsigned 32-bit value
Int Signed 16-bit value
LInt Signed 32-bit value
LReal Floating-point number 64-bit IEEE 754
LTime Signed duration
LWord Unsigned 64-bit value
Real Floating-point number 32-bit IEEE 754
SInt Signed 8-bit value
UDInt Unsigned 32-bit value
UInt Unsigned 16-bit value
ULInt Unsigned 64-bit value
USInt Unsigned 8-bit value
WChar Text tag, 16-bit character set
Word Unsigned 16-bit value
WString Text tag, 16-bit character set
Array Data structure

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
144 System Manual, 11/2019, Online help printout

System tags
System tags are required for internal management of the project. The names of these tags
always start with the "@" character. You may not delete or rename these tags. You cannot
change the value of a tag.

Note

You must not create any tags whose name starts with a @.

3.1.6 Updating the tag value in runtime (RT Uni)

Introduction
Tags contain process values which change while runtime is running. Value changes are
handled differently at internal and external tags.

Principle
When runtime starts, the value of a tag is equal to its start value. Tag values change in runtime.

In runtime, you have the following options for changing the value of a tag:

● A value change in an external tag in the PLC.

● By input, for example, in an I/O field.

● A value assignment in a script.

Updating the value of external tags
The value of an external tag is updated as follows:

● Cyclic in operation
If you select the "Cyclic in operation" acquisition mode, the tag is updated in runtime while
it is displayed in a screen or is logged. The acquisition cycle determines the update cycle for
tag value updates on the HMI device. You can either choose a default acquisition cycle or
define a user-specific cycle.

● Cyclic continuous
If you select the "Cyclic continuous" acquisition mode, the tag will be updated continuously
in runtime, even if it is not in the currently-open screen. This setting is activated for tags that
are configured to trigger a function list when their value changes, for example.
Only use the "Cyclic continuous" setting for tags that must truly be updated. Frequent read
operations increase communication load.

● On demand
If you select the "On demand" acquisition mode, the tag is not updated cyclically. It will only
be updated on demand using the "UpdateTag" system function, for example, or by a script.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 145

See also
Defining the acquisition cycle for a tag (Page 159)

3.1.7 Limits and start values of a tag (RT Uni)

Introduction
You can configure start values and restrict the value ranges with limits for numerical tags.

Use the limits to warn the operator when the value of a tag enters a critical range, for example.

Use the start values to assign a default value to an I/O field that is specified as start value in the
linked tag.

Tags limits
You can specify a value range defined by a high limit and a low limit for numerical tags.

You configure four limit values that limit the value range. Using the limits Upper 2 and Lower 2 ,
you specify the maximum and minimum value for the value range. The limits Upper 1 and Lower
1 specify the threshold values at which the normal range is exceeded or undershot.

Limit Application
Upper 2 Specifies the maximum value.
Lower 2 Specifies the minimum value.

If the operator enters a value for the tag that is outside the configured value range, the input is
rejected. When the tag value leaves the value range, the function list is processed.

Note

If you want to output an analog alarm when a limit is violated, configure the respective tag in the
"Analog alarms" tab. You can also configure the analog alarm in the "HMI alarms" editor. The
values for output of an analog alarm depend on the configured tag limits.

Start value of a tag
You can configure a start value for numeric tags and tags for date/time values. The tag will be
preset to this value when runtime starts. In this way, you can ensure that the tag has a defined
status when runtime starts.

The start value cannot have the data type Raw or TextRef.

For external tags, the start value will be displayed on the HMI device until it is overwritten by the
PLC or by input.

If no start value was configured, the tag contains the value "0" when starting runtime.

Use the "Persistence" setting to specify whether the value of the tag is to be retained when
runtime is closed. The value saved will be used as the start value when you restart runtime.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
146 System Manual, 11/2019, Online help printout

See also
Defining limits for a tag (Page 160)

3.1.8 Data logging (RT Uni)

Introduction
Data logging is used to collect, process and log process data from an industrial system. When
you analyze the logged process data, you can extract important business and technical
information regarding the operational state of the system.

The process values to be logged are compiled, processed and saved in the log database in
runtime. Current or previously logged process values can be output in runtime as a table or
trend. In addition, it is possible to print out logged process values as a report.

Use
You can use data logging for the following tasks:

● Early detection of danger / fault states

● Increase of productivity

● Enhancement of product quality

● Optimization of maintenance cycles

● Documentation of process value trends

Configuration
You configure the logging of process values in the "Logs" editor. You create a data log and an
alarm log. The data log stores process values in logging tags. When you configure the data log,
select the storage location, the logging period and the size of the log. You also specify the
settings for the logging segments.

You configure trend views and process controls for displaying process data in runtime in the
"Screens" editor. These views allow you to output the process data in the form of trends and
tables.

Logging tags
You can log the values of internal and external tags. Use the logging tags for logging tag values.
In logging tags, you specify how the values of the corresponding tags are written to the log.

You can create a logging tag for each HMI tag in the tag tables. You define the logging tags in
the "HMI Tags" editor under "Logging tags". You specify for each logging tag to which log the
tag is written.

With the default logging type "On change", the process value is compared to the saved value
and the new value is only written to the log if the process value has changed.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 147

To preserve memory, you can activate smoothing for the logging tags. By doing so,
insignificantly small changes are filtered out prior to writing and the number of logged values is
reduced.

You create logging tags for internal and external tags. When logging the PLC tag values, the
time stamp contains the time at which the value occurred in the PLC.

Note
Supported data type for logging external tags

When logging external PLC tags, all data types are supported except "Raw", "TextRef", "Struct"
and "Array". The data type "TextRef" must not be used within the "Faceplate container" object.

3.1.9 Basics of tag management (RT Uni)

Basics of tag management
You can always rename, copy or delete tags.

When a tag is renamed, the new name must be unique for the whole device.

Note

The connection to the tags can be interrupted in runtime under the following conditions during
renaming:
● HMI tag is used in a type, for example, to dynamize an object property via a script.
● One or more instances of the type are used in the project.
● Project is in runtime.
● After the renaming, execute the command "Compile > Software (only changes)".

Solution: Exit runtime and rename the tag. Execute the "Compile > Software (rebuild all)"
command.

If you use the "Copy" command to copy a tag to the clipboard, the references are copied along
with the tag.

If you use the "Insert" command to add a tag to another device, the tag will be added without
the connected references. Only the object name of the reference will be inserted. If a reference
of the same name and valid properties exists in the target system, the existing reference will
then be connected to the copied tag.

If you copy a tag, some of the objects linked to the tag are copied as well. The following objects
are copied:

● Logging tags

● Cycles

● Alarms

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
148 System Manual, 11/2019, Online help printout

If you add the copied tag to another device, the tag is added together with the linked objects.

Before you delete a tag, check in the "Cross-references" editor where the tag is used and what
impact the deletion of the tag will have on your project.

3.1.10 Basics of user data types (RT Uni)

Introduction
With user data types you bundle a number of different tags that form one logical unit. You create
a user data type as a type and use instances of this type in the project. User data types are
project-associated data and are available for all HMI devices of the project.

WinCC also supports the connection of PLC data types (UDTs) as user data types.

User data types also differ in their applicability with a specific communication driver. User data
types are available for the following communication drivers:

● SIMATIC S7-300/400

● SIMATIC S7-1500

Create user data types and user data type elements in the project library.

Principle
For example, the different conditions of a motor can be described using 6 unique Boolean tags.

If the overall condition should be described with a single tag, this tag can be created based on
a user data type. For each of the individual Boolean tags you create a user data type element
in the user data type.

This user data type can then be assigned complete to a faceplate for the motor. The created
and released version of user data type is displayed at the tag in the "Data type" selection field.

The configured properties of a user data type are used in the instances of the user data type.
If required, you change individual properties directly at the point of use, e.g. at a tag. Changing
a property at the tag does not affect the user data type created.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 149

3.1.11 Export and import of tags (RT Uni)

Introduction
With Export and Import, you have the option to export tags from one project and import them
into another project. There is also the option to create larger numbers of tags outside of WinCC,
edit them and subsequently import into any WinCC project.

You export and import tags with the "Import" and "Export" buttons in the "HMI Tags" editor.
When importing the tag data to WinCC, pay attention to the structure required in the import file.

Tag data structure
The tag data file must be in "*.xlsx" data format for the tag import and must be structured
according to specific rules.

The import file in Microsoft Excel consists of a number of worksheets:

● HMI Tags (tags)

● SubstituteValueUsage (substitute value)

Each tag is on a separate row in the import file. The import file with the tag data must have the
following format:

Example of the worksheet "HMI Tags"

Table 3-1 Meaning of the entries

List entry Meaning
Name Indicates the configured name of an HMI tag.
Path Specifies which folders in the project tree contain the tag. The folder structure is

represented by ",": "FolderName1,FolderName2,TagName".
PLC Tag Specifies which PLC tag is linked to the HMI tag.
Connection Indicates the name of the connection.
Date type Specifies the data type of the PLC tag. The data types allowed depend on the

communication driver being used. See the "Communication" section of the docu‐
mentation for additional information on the data types permitted for the various
communication drivers.

HMI Data type Specifies the data type of the HMI tag. The data types allowed depend on the
communication driver being used. See the "Communication" section of the docu‐
mentation for additional information on the data types permitted for the various
communication drivers.

Length Specifies the length of the tag in bytes. This entry is only useful for data types with
a dynamic length, for example, strings. This entry remains empty for other data
types.

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
150 System Manual, 11/2019, Online help printout

List entry Meaning
Access Method Specifies the type of access.
Address Specifies the tag address in the PLC. The tag address must exactly match the one

used in WinCC, for example, "%DB1.DBW0". The tag address is empty for internal
tags.

Start Value Specifies the start value of a tag.
Quality code Provides information on the quality of the connection.
Persistency Indicates whether the value is to be retained after the end of runtime.
Substitute Value Indicates the substitute value. The substitute value is used when a process value

with errors is read.
ID tag The update ID updates the value of a tag with the aid of a function or a PLC job.

The update ID must be unique within an HMI device.
Update Mode Indicates whether the tag is to be updated locally or for the entire project.
Acquisition mode Indicates the acquisition mode.
Acquisition cycle Indicates the acquisition cycle used.
Limit Upper 2 type Indicates whether the limit value "Upper 2" is monitored by a constant or not at all.
Limit Upper 2 Displays the limit value "Upper 2".
Limit Lower 2 type Indicates whether the limit value "Lower 2" is monitored by a constant or not at all.
Limit Lower 2 Displays the limit value "Lower 2".
End value PLC Specifies the end value of the PLC tag.
Start value PLC Specifies the start value of the PLC tag.
End value HMI Specifies the end value of the HMI tag.
Start value HMI Specifies the start value of the HMI tag.

Example of the worksheet "SubstituteValueUsage"

Table 3-2 Meaning of the entries

List entry Meaning
HMI Tag name Specifies the tag for which a substitute value has been defined. The tag must be

available in the "HMI-Tags" worksheet.
Substitute Value Usage Indicates the substitute value. The substitute value can be used in the following

situations:
● As start value
● After communication error
● Upper 2 limit value
● Lower 2 limit value

Configuring tags (RT Uni)
3.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 151

Note
"No value" in the table

Entries in the table which have the value "No value" delete the corresponding values in an
existing tag of the same name.

See also
Importing and exporting tags (Page 162)

3.2 Configuring tags (RT Uni)

3.2.1 Creating external tags (RT Uni)

Introduction
You can access an address in the PLC via a PLC tag using an external tag. The following
options are available for addressing:

● Symbolic addressing

● Absolute addressing

If possible, use symbolic addressing when configuring a tag. Symbolic addressing enables
high-performance data access and is therefore less prone to errors. The system monitors the
assignment of the storage address and the locations of use are automatically updated when
changes occur.

You create tags either in the standard tag table or in a tag table you defined yourself.

Requirement
● The project is open.

● A connection to the PLC is configured.

● The Inspector window is open.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
152 System Manual, 11/2019, Online help printout

Procedure
To create an external tag, proceed as follows:

1. Open the "HMI tags" folder in the project tree and double-click the standard tag table. The
tag table opens.
Alternatively, create and then open a new tag table.

2. In the "Name" column, double-click "Add" in the tag table.
A new tag is created.

3. Select the "Properties > Properties >General" category in the Inspector window and, if
required, enter a unique tag name in the "Name" field.
The tag name must be unique throughout the device.

4. If required, select the "Display name" field to enter a name to be displayed in runtime.

5. Select the connection to the required PLC in the "Connection" box.
If the connection you require is not displayed, you must first create the connection to the
PLC. You create the connection to a SIMATIC S7 PLC in the "Devices & Networks" editor.
You create the connection to external PLCs in the "Connections" editor.
If the project contains the PLC and supports integrated connections, you can also have the
connection created automatically. To do this, when configuring the HMI tag, simply select an
existing PLC tag to which you want to connect the HMI tag. The integrated connection is
then automatically created by the system.

6. If you are working with an integrated connection, click the button in the "PLC tag" field
and select an already created PLC tag in the object list. Click to confirm the selection.

Alternatively, use the autocomplete to select a PLC tag for an integrated connection.
If you select a PLC tag from the autocomplete list, it is entered in the input path. The
elements of the PLC tags are displayed in the autocomplete list. If you have selected a PLC
tag that can be connected to the HMI tags, the PLC tag is connected to the HMI tags.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 153

7. If you are working with a non-integrated connection, enter the address from the PLC in the
"Address" field. To enter the address, make sure that the access mode "Absolute access"
is configured.
The "PLC tag" field remains empty.

8. Configure the other properties of the tag in the inspector window.
You can also configure all tag properties directly in the tag table. To view hidden columns,
activate the column titles using the shortcut menu.

Tips for effective procedure

● You also create new tags directly at the location of use, for example, on an I/O field. To do this, click "Add new" in the object list.
You then configure the new tag in the Inspector window.

● You can also create external HMI tags by dragging and dropping data block elements or global PLC tags to an HMI tag table.

Result
An external tag has been created and linked to a PLC tag or an address in the PLC.

See also
Basics of tags (Page 137)

External tags (Page 140)

Addressing external tags (Page 142)

3.2.2 Creating internal tags (RT Uni)

Introduction
You must at least set the name and data type for internal tags. Select the "Internal tag" item,
rather than a connection to a PLC.

For documentation purposes, it is a good idea to enter a comment for every tag.

Procedure
1. Open the "HMI tags" folder in the project tree and double-click the entry "Standard tag table".

The tag table opens.
Alternatively, create and then open a new tag table.

2. In the "Name" column, double-click "Add" in the tag table. A new tag is created.

3. If the Inspector window is not open, select the "Inspector window" option in the "View" menu.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
154 System Manual, 11/2019, Online help printout

4. Select the "Properties > Properties >General" category in the Inspector window and, if
required, enter a unique tag name in the "Name" field.

Note

This tag name must be unique throughout the project. The tag name must not contain the
special characters line feed, carriage return or quotation marks.

5. If required, select the "Display name" field to enter a name to be displayed in runtime.
The name to be displayed is language-specific and can be translated for the required
runtime languages. The display name is available for Basic Panels, Panels and Runtime
Advanced.

6. Select "Internal tag" as the connection in the "Connection" field.

7. Select the required data type in the "Data type" field.

8. In the "Length" field, you can specify the maximum number of characters to be stored in the
tag in accordance with the selected data type.
The length is automatically defined by the data type for numerical tags.

9. As an option, you can enter a comment regarding the use of the tag. To do so, click
"Properties > Properties > Comment" in the Inspector window and enter a text.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 155

Tips for effective configuring

You also configure the tag properties directly in the tag table. To view hidden columns, activate the column titles using the shortcut menu.
You also create new tags directly at the location of use, for example, on an I/O field. To do this, click "Add new" in the object list. You then
configure the new tag in the Inspector window.

Result
An internal tag is created. You can now use this in your project.

In additional steps you can configure the tag, for example, by setting the start value and limits.

See also
Basics of tags (Page 137)

Internal tags (Page 144)

Configuring discrete alarms (Page 238)

Configuring analog alarms (Page 241)

3.2.3 Configuring multiple tags (RT Uni)

Introduction
In a tag table, you create a large number of identical tags by automatically filling the rows of the
table below a tag. The tag names are incremented automatically when filling in automatically.

You can also use the auto fill function to fill table cells below a tag with a single tag property and
thus modify the corresponding tags.

If you apply the automatic filling in to already filled cells of a tab table, you will be asked whether
you want to overwrite the cells or insert new tags.

If you do not want to overwrite already configured tags, activate insert mode. Activate insert
mode by keeping the <Ctrl> key pressed during insertion. Already existing entries in the tag
table are moved down if insert mode is activated.

Tips for effective configuring

You can configure multiple tags simultaneously and use them in the screen. If you use drag and drop to drag multiple tags from the detail
window to the screen, for example, for each tag an I/O field is created that is connected to the tag.

Requirement
● The project is open.

● A tag table is open.

● The tag which is to serve as a template for other tags is configured.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
156 System Manual, 11/2019, Online help printout

Procedure
1. If you want to create new tags, mark in the "Name" column the tag that should be used as

a template for the new tags.
If you want to copy a property of a tag to the tags below it, select the cell which contains this
property.
The selected cell will be highlighted in color and a small blue square will appear in its bottom
right corner. If you move the mouse over this square, the cursor will change to a black cross.

2. Hold down the mouse button and drag this square over the cells below that you wish to fill
automatically.
The marking will be extended to cover this area.

3. Now release the mouse button. All of the marked cells will be filled automatically.
New tags will be created in all empty rows in the marked area.

4. In the tag table, select all the tags that you want to configure at the same time.
If the selected property is identical for all the tags, the setting for this property will appear in
the Inspector window.
The associated field will remain blank otherwise.

5. You can define the shared properties in the Inspector window or directly in the tag table.

Result
Depending on which cells were selected, the function may automatically fill individual
properties or create and configure new tags.

3.2.4 Adapting the data type of a tag (RT Uni)

Introduction
When you create a tag, you assign one of the possible data types to the tag. This data type
depends on the type of data for which you would like to use the tag.

The data types available depend on the connected communication partner, such as a PLC.

Note

If you modify the data type of an existing, external tag, the previously defined tag address is
identified as invalid. This reason for this is that the PLC address changes when the data type
is modified.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 157

Format adjustment
WinCC sets the data type of an external tag according to the data type of the connected PLC
tag. If the data type of the PLC tag is not available in WinCC, a compatible data type is
automatically used at the HMI tag. As required, you can specify that WinCC uses a different
data type and converts the format of the data type of the PLC tag and the data type of the HMI
tag.

In WinCC, you have access to the following data types:

HMI data type Description Value range
Bool Binary tag 0 to 1
SInt Signed 8-bit value -128 ... +127
USInt Unsigned 8-bit value 0 ... 255
Int Signed 16-bit value -32768 ... +32767
UInt Unsigned 16-bit value 0 ... 65535
DInt Signed 32-bit value -2147483648 ... +2147483647
UDInt Unsigned 32-bit value 0 ... 4294967295
LInt Signed 64-bit value -9223372036854775808 to

+9223372036854775807
ULInt Unsigned 64-bit value 0 to 18446744073709551615
Real Floating-point number 32-bit IEEE 754 +-3.402823e+38
LReal Floating-point number 64-bit IEEE 754 +-1.79769313486231e+308
Byte Bit array of 8 bits 8-bit
Word Bit array of 16 bits 16-bit
DWord Bit array of 32 bits 32-bit
LWord Bit array of 64 bits 64-bit
String Text tag, 8-bit character set -
WString Text tag, 16-bit character set -
WChar Text tag -
DateTime Date/time format 01.01.1601 00:00 to 31.12.9999

23:59:59
LTime Signed 64-bit integer value -106751d23h47m16s854ms775

us808ns to
+106751d23h47m16s854ms775
us807ns

Raw Raw data type -

For format adaptation, select the desired PLC data type at the respective external tag. The
suitable standard data type is then selected automatically in the "HMI data type" field for use in
WinCC. Change the format adaptation as required.

Data types without format adaptation
The data types are shown 1:1 without format adaptation.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
158 System Manual, 11/2019, Online help printout

SIMATIC S7-300/400 data types without format adjustment

PLC data type Description
Bool No format adaptation
String No format adaptation

3.2.5 Defining the acquisition cycle for a tag (RT Uni)

Introduction
The value of an external tag can be changed in runtime by the PLC to which the tag is linked.
To ensure that the HMI device is informed of any changes in tag values by the PLC, the values
must be updated on the HMI. The value is updated at regular intervals while the tag is displayed
in the process screen or is logged. The interval for regular updates is set with the acquisition
cycle. The update can also be made continuous.

Requirement
● You have created the tag for which you want to define an acquisition cycle.

● The Inspector window with the tag properties is open.

Procedure
To configure an acquisition cycle for a tag, follow these steps:

1. In the Inspector window, select "Properties > Properties > Settings".

2. Select the acquisition mode for the tag:

– "Cyclic in operation": If you want to update the tag at regular intervals while it is displayed
on the screen or is being logged.

3. Select the required cycle time in the "Acquisition cycle" field or define a new acquisition
cycle using the object list.

Alternatively, you can configure the acquisition cycle directly in the work area of the tag table.
To view hidden columns, activate the column titles using the shortcut menu.

Note

For structured HMI tags, the acquisition mode can be selected for the respective structured HMI
tag as well as their individual subordinate elements.

When the acquisition mode of structured HMI tags is changed, it is applied to all subordinate
elements. This means changing the acquisition mode may overwrite subordinate elements.

Result
The configured tag is updated in runtime with the selected acquisition cycle.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 159

See also
Updating the tag value in runtime (Page 145)

3.2.6 Defining limits for a tag (RT Uni)

Introduction
For numerical tags, you can specify a value range by defining a low and high limit as well as the
threshold values.

Requirement
● The tag for which you want to set the limits is created.

● The Inspector window with the properties for this tag is open.

Procedure
To define limits for a tag, proceed as follows:

1. In the Inspector window, select "Properties > Properties > Range". If you want to define one
of the limits as a constant value, select "Constant" using the button. Enter a number in
the relevant field.
If you want to define one of the limits as a tag value, select "HMI tag" using the button.
Use the object list to define the tag for the limit.

2. To set additional limits for the tag, repeat step 1 with the appropriate settings.

Tips for effective configuring

You also configure the limits directly in the tag table. To view hidden columns, activate the column titles using the shortcut menu.

Result
You have set a value range defined by the limits for the selected tag.

See also
Limits and start values of a tag (Page 146)

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
160 System Manual, 11/2019, Online help printout

3.2.7 Synchronizing tags (RT Uni)

Introduction
To synchronize the PLC and HMI tags, WinCC offers the following options:

● Synchronizing tags with or without name matching between PLC and WinCC
The following options are available for this:

● Link tags with addresses in the PLC
This procedure is suitable, for example, if changes were made to the connection between
the HMI device and the PLC and the tag connections were lost. The function can also be
used if you have configured the control program and HMI project separately.

Requirement
● External HMI tags have been created.

● PLC tags have been created.

● An HMI connection to a PLC in the project has been established.

Procedure
To synchronize HMI tags with PLC tags, follow these steps:

1. In the project tree, select the directory that contains the tags in question.

2. Select "Synchronize with the PLC tag" from the shortcut menu.
A dialog opens.

3. Select the option you want to use.
If you want to synchronize the tags without name matching, disable "Replace WinCC tag
name with PLC tag name".
If you want to reconnect HMI tags with absolute access, select "Data type and absolute
address match".

4. Confirm with "Synchronize".
The system searches for a suitable PLC tag according to the selected option.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 161

Result
The external HMI tags are synchronized with the PLC tags.

If you have selected the option "Data type and absolute address match", the tag connection is
established as soon as a suitable PLC tag is found.

If you have selected a different option, the WinCC tags are updated accordingly and the PLC
tag names are applied in WinCC.

3.2.8 Importing and exporting tags (RT Uni)

Introduction
WinCC gives you the option of exporting tags to an .xlsx file and reimporting them into the
project once you are done editing them. You export and import tags in the "HMI Tags" editor.

For importing the tags, the xlsx import file must be structured according to the requirements.
You will find more detailed information on the import file under "Export and import of tags
(Page 150)".

Exporting tags
1. Click in the "HMI Tags" tab.

The "Export" dialog box opens.

2. Click "..." and specify in which file the data are saved.

3. Click "Export".
The export will start.

Note

It is not possible to export HMI tags of the data type "UDT" which contain structured elements
via Excel for subsequent editing.

After export, only the higher-level HMI tag appears in Excel. Its lower-level elements cannot be
edited.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
162 System Manual, 11/2019, Online help printout

Importing tags
1. Click in the "HMI Tags" tab.

The "Import" dialog box opens.

2. Click "..." and select the file that you want to import.

3. Click "Import".
The import will start.

Result
The relevant tags have been created in WinCC. Alarms relating to the import operation are
displayed in the output window. A log file is saved in the source directory of the import files. The
log file has the same name as the respective import file but with the "*.xml" extension.

Check when importing the data whether there are any links to objects, for example, dynamic
parameters such as tags.

● If an object with the same name already exists, the existing object is used.

● If no object of the same name yet exists, create an object with the relevant name or create
a new link.

Note

The syntax of the import file is checked during xlsx file import. The meaning of the properties
or dependencies between the properties is not checked.

3.2.9 Defining a substitute value (RT Uni)

Introduction
You can define a specific value as a substitute value for a tag.

In the "Use substitute value" area you define when WinCC should use this substitute value. The
current process value is then not accepted from the automation system.

You can define a substitute value for the following cases:

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 163

● The configured ranges have been violated
If you have set limit values for the tag, WinCC sets the substitute value as soon as the
process value violates a limit.

● In the event of a communication error
WinCC sets the substitute value when the connection to the automation system is disturbed
and there is no valid process value.

Requirement
● The tag table is open.

● The Inspector window with the tag properties is open.

● The HMI tag is linked to a PLC tag

Procedure
To configure a substitute value, follow these steps:

1. Select the desired tag in the tag table, and select "Properties > Properties > Values" in the
Inspector window.

2. In the "Use substitute value" segment, select when you want WinCC to use this substitute
value in the tag.

3. Enter the required substitute value in the "Substitute value" field.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
164 System Manual, 11/2019, Online help printout

Result
The configured tag is populated with the substitute value in runtime once the selected condition
is fulfilled.

Note

If you have set a high or low limit in an I/O field, you cannot enter any value outside these limits.

WinCC ignores incorrect entries and therefore does not set a substitute value. The substitute
value is only set by WinCC when an incorrect process value is read.

3.2.10 Connecting a tag to another PLC (RT Uni)

Introduction
In WinCC, you can change the PLC connection of a tag at any time. This is needed when you
change the configuration of your plant, for example.

Depending on the PLC selected, you may need to modify the configuration of the tag. The tag
properties which must be changed will be highlighted in color.

Requirement
● The external tag, whose connection you wish to change, must already exist.

● The connection to the PLC must already exist.

● The Properties window for this tag is open.

Procedure
To change the PLC connection of a tag, proceed as follows:

1. In the Inspector window select "Properties > Properties > General."

2. Select the new connection in the "Connection" field.
The tag properties that you must change will be highlighted in color in the tag table and in
the Inspector window.

3. Change all highlighted properties of the tag to suit the requirements of the new PLC.

Result
The external tag is connected to the new PLC.

Configuring tags (RT Uni)
3.2 Configuring tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 165

3.3 Configuring user data types (RT Uni)

3.3.1 Creating a user data type (RT Uni)

Introduction
You create a user data type in the project library.

Requirement
● A project is open.

● The "Libraries" task card is displayed or the library view is open.

Procedure
To create a user data type, follow these steps:

1. Click the "Libraries" task card.

2. Double-click the "Project library" item. The folder structure of the project library is open.

Configuring tags (RT Uni)
3.3 Configuring user data types (RT Uni)

WinCC Engineering V16 - Runtime Unified
166 System Manual, 11/2019, Online help printout

3. Click "Add new type".
A dialog opens.

4. Click the "HMI user data type" button in the dialog box.

5. In the "Specify device for the new type" area select the HMI device on which the user data
type is used.

6. Enter a descriptive name in the "Name" field.

7. Click "OK" to apply your settings. The user data type is created. The library view opens.

Result
A user data type with the configured properties is created. Version 0.0.1 of the user data type
is created and receives the status "in work".

Create the required user data type elements in the next step.

Before you use the version of user data types, for example at a tag, the version must be
released.

Configuring tags (RT Uni)
3.3 Configuring user data types (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 167

3.3.2 Creating user data type elements (RT Uni)

Introduction
You define user data type elements in the library view. You add or delete elements in the "HMI
user data types" table in the work area.

Requirement
● The library view is open.

● A user data type is created and opened in the editor.

Procedure
1. Select a communication driver for the user data type.

● If you select the <Internal communication> entry, you can only assign the user data type to
the internal tags as the data type.

● If a connection to a PLC is selected as the communication driver, the user data type can only
be assigned to tags with a connection to this PLC as the data type.

● The communication type set applies to all user data type elements of a user data type. In a
user data type for WinCC Runtime Unified, you can define for each user data type element
whether the configured driver for control or internal communication is used.

1. Double-click "Add" in the "Name" column of the table. A new user data type element is
added to the user data type.

2. Assign a name.

3. Select the required data type in the "Data Type" field.

4. Create as many user data type elements as you need.

5. You configure the user data type elements in the "Properties" group in the Inspector window.

Alternatively, you can configure the properties of the user data type elements directly in the
table. To view hidden columns, activate the column titles using the shortcut menu.

Result
You have added elements to version 0.0.1 of the user data type. The version 0.0.1 has the
status "in work".

To use the version in the project, release the version.

Configuring tags (RT Uni)
3.3 Configuring user data types (RT Uni)

WinCC Engineering V16 - Runtime Unified
168 System Manual, 11/2019, Online help printout

3.3.3 Managing versions of user data types (RT Uni)

Introduction
All user data types have at least one version. When a user data type is created, a version is
created at the same time and this version has the status "in work". You can edit the user data
type in this status as required. When the editing is complete, you release the version of the user
data type.

Requirement
● You have created a user data type.

● The user data type has the version 0.0.1. and the status "in work".

● The "Libraries" task card or the library view is open.

Releasing a version
1. Select the version 0.0.1 of the user data type in the project library.

2. Select "Release version" in the shortcut menu.
A dialog opens.

3. If necessary, change the properties of the version:

– Enter a name for the type in the "Name" field.

– In the "Version" field, define a main and an intermediate version number for the
version to be released.

– To clean up version management of the type, enable "Delete unused type versions from
the library".

You have released version 0.0.1 of the user data type.

Editing a version
1. Select, for example, the released version 0.0.1 of a user data type in the project library.

2. Select "Edit type" in the shortcut menu.

The library view opens. The new version 0.0.2 of the user data type is created.

The version has the status "in work".

Restoring the last version of a user data type
The last released version of the user data type is version 0.0.2.

You edit the user data type. A new version of the user data type, 0.0.3, is generated and
receives the status "in work".

1. Select the version of the user data type in the project library.

2. Select "Discard changes and delete version" in the shortcut menu.

Configuring tags (RT Uni)
3.3 Configuring user data types (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 169

Alternatively

1. If you have opened a version for editing, click "Discard changes and delete version" in the
toolbar.
The version is deleted.

All changes to the user data type since the last release operation are discarded. The user data
type is released again and has version 0.0.2.

Deleting user data type
If you delete a user data type, all instances and master copies of this user data type are deleted
as well. The same is true for HMI tags that use an HMI user data type.

To delete a user data type, follow these steps:

1. In the project library, under "Types", select the user data type you want to delete.

2. Select "Delete" from the shortcut menu.

3.3.4 Creating tags with a user data type data type (RT Uni)

Introduction
When a tag is created, you assign the version of user data type as a data type. In the "Tag"
editor you can create internal tags or tags with a link to a PLC. A tag provides all user data type
versions that use the same communication driver as the tag itself.
A user data type cannot be used in combination with a PLC unless you have selected absolute
addressing.

Requirement
● A user data type with a user data type element is created.

● The user data type is enabled.

● The tag table is open.

● The Inspector window with the tag properties is open.

Procedure
To create a tag of the "User data type" data type, follow these steps:

1. In the "Name" column, double-click "Add" in the tag table. A new tag is created.

2. In the Inspector window select "Properties > Properties > General".

3. Enter a unique tag name in the "Name" field.

4. Select the connection to the required PLC in the "Connection" box.

Configuring tags (RT Uni)
3.3 Configuring user data types (RT Uni)

WinCC Engineering V16 - Runtime Unified
170 System Manual, 11/2019, Online help printout

5. Select the desired version of the user data type in the "Data type" field.
The selected connection determines which user data types will be displayed.
For internal tags, only user data type versions of the <Internal user data type> type are
available.

Note

For tags with a connection to a PLC, only those user data types that have a link to a PLC can
be accessed.

6. Enter the address of the PLC that you want to access with the external tags in the "Address"
field of the "Settings" area. The specified address must always point to the start data bit, for
example, <DB1.DBX0.0>.

Result
You have created a tag of the "User data type" data type. In additional steps you can configure
the tag, for example, by setting the start value and limits.

If you wish to change the properties of a user data type tag, you must change the properties of
the user data type element.

Properties such as "Start value" and "Linear scaling" can also be changed in the user data type
instances used.

Configuring tags (RT Uni)
3.3 Configuring user data types (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 171

3.4 Logging tags (RT Uni)

3.4.1 Basics of data logging (RT Uni)

Introduction
Data logging is used to collect and log process data from an industrial system. You can use data
logging to analyze error states and to document the process.

When you analyze the logged process data, you can extract important business and technical
information regarding the operational state of the plant.

How it works
The process values to be logged are compiled, processed and saved in the log database in
runtime. Current or previously logged process values can be output in runtime as a table or
trend. The process values are logged if the tag value changes.

Configuration
You configure the logging of process values in the "Historical Logs" editor. You define the
acquisition cycles, logging cycles, log size and, if necessary, the storage path.

You configure the logging tags in the "HMI tag" for each tag and specify whether the number of
logged values is to be reduced with smoothing.

You configure trend views and process controls for displaying process data in runtime in the
"Screens" editor. These views allow you to output the process data in the form of trends and
tables.

Application
You can use data logging for the following tasks:

● Early detection of danger and fault conditions

● Increase of productivity

● Increase of product quality

● Optimization of maintenance cycles

● Documentation of process value trends

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
172 System Manual, 11/2019, Online help printout

3.4.2 Defining log size, segmentation and backup (RT Uni)

Introduction
For the log, you define the time period in which the data is written to a given log, and the
maximum size of the log file.

Each log consists of a configurable number of segments. You define a size in MB, a starting
time and a period (for example one day) for the segments.

Note

Make sure that the log size does not exceed the free memory space available. The system does
not validate the selected settings. A high number of linked log segments can lead to prolonged
waiting periods in the system when starting and ending runtime.

Note

You define the maximum log size as a multiple of the maximum segment size. Multiple log
segments must not exceed the maximum log size.

Segments
In a segmented log, multiple log segments of the same size are created, and filled in
succession. When all segments are completely full, the oldest segment is overwritten.

You can configure the following properties for the log segments:

● The segment time period defines the maximum period for one log segment, for example one
day.

● Maximum segment size defines the maximum size of a log segment in MB. When the log
segment reaches the defined size, the current segment is closed and a new segment is
created and filled with data.

● The start time and the time period define when to switch to the next log segment. The log
segments are written to the log from the start time. The segment changes at the end of the
configured time period, for example 8 hours. A new segment is created if the configured
segment size is exceeded. The next log segment change then takes place at the end of the
configured time period.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 173

Response to segment change
The individual segments are filled one after the other in runtime. Once a segment is totally full,
the next segment is created and filled. You can also configure the segment change at specific
times. If you define a time for the segment change, the next log segment is filled when the time
is reached.

1. The process values are written continuously to the first segment.

2. When the configured size of the segment is reached or the time period is exceeded, the
system switches to the next segment.

3. When all segments are full, the oldest segment is deleted and a new segment is created.

To avoid losing process data as a result of overwriting, you can export it to a backup.

Example
The following input has been configured:

Property Value
Time period of all segments 1 week
Maximum size of all segments 700 MB
Time period covered by a single segment 1 day
Maximum size of a segment 100 MB
Segment start time Friday, November 23, 2017, 18:00

With the configuration shown in the table, the started segment will be changed for the first time
at 18:00 on November 23, 2017. The next time-controlled segment change will take place
cyclically after periods of 1 day from the configured time.

Note

If you change the segmentation settings and run "Download to device", a new segment will be
created.

The segment will also change if the configured size of 100 MB is exceeded in the course of one
day. The oldest single segment will be deleted if the maximum log size of 700 MB is exceeded.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
174 System Manual, 11/2019, Online help printout

Backup
You can export process values from the log database as a backup. All process values
contained in a log segment are exported. A log segment is always exported upon segment
change, when it is full and a new segment is started. A log segment is also exported when the
time set for a segment change is reached and a new segment is started.

Note

Ensure that the memory for the swapped out process values is sufficient.

3.4.3 Data logging on change (RT Uni)

Introduction
Data logging on change saves the current process value to the log database in runtime when
the process value changes. You can also specify limits. The process value is then only logged
if it is within the defined limit range. A comparison of the process value with the limit values
takes place after acquisition of the process value.

Data logging on change ends when runtime closes.

How it works

The external tags in WinCC correspond to a certain process value in the memory of one of the
connected PLCs.

1. The process value is read cyclically from the memory of the connected PLC and monitored
for change.

2. The process value is logged when a change occurs in the tag.
The runtime component of the logging system processes the process value.

3. The current process value is then written to the logging database.
If you have configured smoothing for logging, the values calculated are logged.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 175

3.4.4 Creating a data log (RT Uni)

Introduction
The configuration of a data log consists of the following steps:

● Create a data log.

● Configure the data log, for example, by selecting the storage location.

Note

The SQL database under the folder configured for the Data log is only created after runtime has
been started.

Requirement
● A project is open.

● An HMI device has been created.

● The Inspector window is open.

Procedure
To create a data log, proceed as follows:

1. Double-click on the "Logs" entry in the project tree.
The editor for data logs and alarm logs opens.

2. Open the "Data logs" tab and double-click "<Add>" in the "Name" column of the "Data logs"
editor.
A new data log is created.

3. Select the storage path for the log in the "Storage path" field.

Note

The storage path of the log cannot be changed after the first transfer.

You have the option of leaving the memory path empty. In this case the log is stored under
the default path (in the current runtime project: ...\TLGDB\<TagLoggingDatabase>
\<Segmentname>.mdf).

4. Define the maximum time period for logging in the "Log time period" field, for example 7
days.
If you specify a value of "0" for the logging period, the log will be written continuously. As
soon as the maximum size is reached, the oldest segment is deleted from the log and a new
segment is written.

5. Define the maximum size of the log file in MB in the "Maximum log size (MB)" field.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
176 System Manual, 11/2019, Online help printout

6. Define the time period, the start time and the maximum size of log segments in the
"Segment" area.

Note

If you change the log size or the time period in runtime, the previous segment will be closed
and a new segment created with the new settings.

7. Set whether data is to be backed up and specify the path for the backup under "Backup >
Backup mode".

Note

The oldest single segment will be deleted if the maximum log size of 700 MB is exceeded.
Configure backup to avoid losing logged data.

If you subsequently change the primary path, the new backup file will only be written to the
new storage path after loading. The previous backup file will remain in the previous storage
path.

Tips for effective procedure

You can configure log properties directly in the "Data logs" editor. To view hidden columns, activate the column titles using the shortcut menu.

Result
The data log is created.

3.4.5 Configuring logging tags (RT Uni)

Introduction
Logging tags are configured and edited in the "HMI tags" editor.

Note

If you delete, move or copy in the "HMI tags" editor, the changes also take effect in the "Logs"
editor.

Requirement
● The "Logging tags" tab is open in the "HMI tags" editor.

● You have created a tag.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 177

Procedure
Proceed as follows to configure a logging tag in the "HMI tags" editor:

1. Select an existing tag in the tag table.
Alternatively, double-click "<Add>" in the "Name" column to create a new tag.

2. Click "Logging tags" in the lower editor. The editor for logging tags is brought to the
foreground.

3. In the table of the "Logging tag" editor table, double-click "<Add>" in the "Name" column. A
new logging tag is created. The logging tag is linked to the tag selected in the first step. The
data type of the logging tag is taken automatically from the linked tag.

4. Assign a data log to the new logging tag. It is possible to assign a different log to each
logging tag.

5. Select "Properties > Properties > Smoothing" in the Inspector window and select the
required smoothing mode for compressing the logged values.

6. If "Cyclic" was selected as logging mode, select the desired compression mode for
compressing the logged values under "Properties > Properties > Compression".

7. Select "Properties > Properties > Limits" in the Inspector window and enter the limit range
and the required limit values. Now enter the required limit values. Process values that are
outside the limits will not be logged.

Note
Using logging tag in the Engineering System

To visualize the value of a logging tag in a screen object, select the "Source type" as "Log" and
start by entering the name of the HMI tag under "Tag" and then enter the name of the
associated logging tag separated by a colon, e.g. "Hmi_Tag_1:Archive_Tag_1".

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
178 System Manual, 11/2019, Online help printout

Result
The configured logging tag is created in the "Logging tags" editor.

3.4.6 Configuring smoothing (RT Uni)

Introduction
You can compress the data volume of the logged data using smoothing to reduce the memory
space required. The process values are then only logged in accordance with certain predefined
criteria.

Two types of smoothing are supported:

● Analog value smoothing
Analog value smoothing allows you to set the maximum interval between the last value
archived and the current values.

● Time smoothing
Time smoothing allows you to define the minimum and maximum time interval after which
the next value is to be logged.

Smoothing mode
Select one of five smoothing modes for the logging tag:

● No smoothing
The values are logged without compression.

● Comparing values
You specify a time interval. No value changes are logged within this defined interval.

● Value
You specify a limit value that defines the maximum permitted distance between the values.
All value changes occurring within the defined interval from the last logged value are not
logged.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 179

● Relative value
You specify a percentage deviation that defines the maximum interval between the values.
All value changes occurring within the defined interval relative to the last logged value are
not logged.
Example:

– You define a deviation of 10% and the last logged value is 100.

– The value 105 is not logged as the value change is less than 10%. The value 130 is, on
the other hand, logged as the value change is greater than 10% and therefore relevant
for logging.

● Swinging door
The swinging door algorithm evaluates values on the basis of the defined rate of change and
only logs them if the following value is outside the calculated range. The compression rate
depends on the maximum deviation tolerated. The starting point for calculating the next
logging time is the last value logged.
Using the set deviation, you can influence the precision with which the values are saved.
The greater the deviation, the fewer values are logged. With the maximum time, you specify
the time after which a new value will definitely be logged. This specifies additional reference
values for the logged data even if no significant changes occur during this time. With the
minimum time, you specify the time interval after which the next value for logging is
calculated. All measured values within the minimum time are not logged.

Example – smoothing with the value
You specify a constant value for the deviation. All values that are within the defined deviation
and have not changed significantly are not logged.

Only the values outside the deviation are written to the log.

Example – swinging door with deviation and maximum time
You define the deviation and the maximum time after which the next value is to be written to the
log.

Once the first value has been saved, the following values are evaluated at the predefined rate
of change. If the value is within the rate of change, it is not logged. If the value is outside the
deviation, it is logged. Values that have not changed significantly compared to the previous log
value are also logged at regular, defined intervals.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
180 System Manual, 11/2019, Online help printout

Example – swinging door with deviation and minimum time
You define the deviation and the minimum time after which the next value is to be evaluated in
runtime.

Once the first value has been saved, the next value for logging in runtime is calculated after the
preset time. If the value is within the rate of change, it is not logged. If the value is outside the
deviation, it is logged.

3.4.7 Configuring compression (RT Uni)

Introduction
You can compress the data volume of the logged data using compression to reduce the
memory space required.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 181

If you have selected "Cyclic" as logging mode, HMI Runtime logs the tag values according to
the defined logging cycle exactly when the current value deviates from the one already stored.
Since only the changed value is saved, there is always an intentional loss of data.

Note

Please note that the LoggingCycle is independent of the data collection cycle of the logged tag.
Although it is possible to set the logging cycle shorter than the data collection cycle, note that
this does not make sense.

HMI Runtime provides different compression modes.

Compression can only be used in connection with the "Cyclic" log mode. Please note that when
you use "Cyclic" logging mode you have to select a compression mode in each case. If you do
not want a compressed calculation, select "End" as the mode to save only the most current
value of the log interval.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
182 System Manual, 11/2019, Online help printout

Compression mode
1. Select one of eight compression modes for the logging tag:

Compression mode Description
Minimum The minimum of the values determined within the logging interval,

including the start value, is logged. The logging receives a time stamp
of the interval start.

Maximum The maximum of the values determined within the logging interval,
including the start value, is logged. The logging receives a time stamp
of the interval start.

Minimum with time stamp The minimum of the values determined within the logging interval,
including the start value, is logged. Unlike in the "Minimum" mode, in
this mode the logged minimum value receives the time stamp of when
it occurred.

Maximum with time stamp The maximum of the values determined within the logging interval,
including the start value, is logged. Unlike in the "Maximum" mode, in
this mode the logged maximum value receives the time stamp of its
occurrence.

Total The total of all values determined within the specified logging interval
is logged without the start and end values.

Mean The average value of all values determined within the specified log‐
ging interval is logged without the start and end values.

Time average stepped The time-weighted average value of all values determined within the
specified logging interval without start and end value is logged.

End The last value determined within the specified logging interval is log‐
ged with a time stamp of occurrence.

2. Specify a time interval for compression mode:

– Quarter-hourly

– Hourly

– Daily

– Monthly

– Yearly

– plus: self-configurable

3. You have the option of defining a delay. The deceleration value determines the latest
possible point in time up to which the compression value is to be logged after the end of a
logging cycle and from which no new values are to be taken into account. Values with a time
stamp that is after the deceleration value are not logged.

Result
In runtime, the determined tag values are calculated and stored according to the configuration.

The following values are not stored:

● Values that lie outside the interval

● Values that were not included in the determination due to the selected compression mode,
are not saved.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 183

3.4.8 Configuring limits (RT Uni)

Introduction
You have the option of logging the logging tag values outside or within a defined value range.
Define a valid range and limits for the process values of the logging tag. In runtime, the process
values are evaluated after the configured limit range and only process value within the defined
range are logged.

Limit ranges
You can set the following ranges for the process values:

Range Description Example
No limits No limit values are defined for logging. No limit values are taken into account.
Upper The process values that are greater than the

configured low limit are logged.
Low limit = 3;
Logged values = 4, 5, 6.

Lower Only the process values that are less than the
configured high limit are logged.

High limit = 6;
Logged values = 3, 4, 5.

Upper or equal Only the process values that are greater than or
equal to the configured low limit are logged.

Low limit = 3;
Logged values = 3, 4, 5, 6.

Lower or equal Only the process values that are less than or
equal to the configured high limit are logged.

High limit = 6;
Logged values = 3, 4, 5, 6.

Within limits Only the process values that are within the two
configured limits are logged.

Low limit = 3, high limit = 6;
Logged values = 4, 5.

Within or equal Only the process values that are within the two
configured limits or equal to one of the config‐
ured limits are logged.

Low limit = 3, high limit = 6;
Logged values = 3, 4, 5, 6.

Outside limits Only the process values that are beyond the two
configured limits are logged.

Low limit = 3, high limit = 6;
Logged values = 1, 2, 7, 8.

Outside or equal Only the process values that are beyond the two
configured limits or equal to one of the config‐
ured limits are logged.

Low limit = 3, high limit = 6;
Logged values = 1, 2, 3, 6, 7, 8.

Configuring limits
You define the limit range and limit values for each logging tag in the "HMI tags" editor.

1. Select an existing logging tag from the "Logging tags" tab of the tag table.

2. Specify the limit range under "Limits" and enter the corresponding limit values.
Only numerical values are supported.

Result
The tag values are logged in accordance with the configured value range in runtime. Process
values outside the limit range are not logged.

Configuring tags (RT Uni)
3.4 Logging tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
184 System Manual, 11/2019, Online help printout

3.5 Displaying tags (RT Uni)

3.5.1 Basics (RT Uni)

3.5.1.1 Outputting the tag values (RT Uni)

Overview
With WinCC you can output tag values in the HMI screen with different screen objects and
change them.

● The I/O field is used for the input and output of process values.

● Bars are used for graphic display of the process values in form of a scale.

● Sliders are used for the input and output of process values within a defined range.

● The gauge is used to display the process values in form of an analog gauge.

In runtime you can also output tag values as table or as trend. You can use either process
values or logged values as source for the tag values.

● Use a trend for the graphic display of tag values. Trends allows you to display the change
in motor temperature, for example.

● Use a table to compare tag values. In the table you can, for example, compare fill levels of
supply tanks.

Controls for displaying tag values
To display tag values as a trend, use the trend control. The versions of trend views are
available:

● "Trend control": You display a tag value over time, for example, the change in temperature.
You can compare the current values and logged values or monitor the change in current
values on the HMI device.

● "Function trend control": You display a tag value against a second tag value, for example,
the engine speed against the heat produced.

You can use the "Trend companion" to create statistics, for example, from the displayed values.
Furthermore, you can use the trend companion as reading assistance for the trend control.

To display tag values in a table, use the process control.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 185

Displayed values
When configuring the trend control, specify which tag values are to be displayed.

● "Online": The trend is continued with current individual values from the PLC.

● "Log": In runtime, the trend control displays the values of a tag from a data log. The trend
shows the logged values in a particular window in time. The operator can move the time
window in runtime to view the desired information from the log.

3.5.1.2 Outputting tag values as trends (RT Uni)

Introduction
You have the option of displaying the values of tags graphically in runtime with the help of the
following controls:

● You can visualize the trend control to display currently pending process values or logged
values in runtime as trends over time.

● You use the function trend control to visualize currently pending process values or logged
values in runtime as trends in relation to other tags.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
186 System Manual, 11/2019, Online help printout

The axis designations are different for the two trend views:

● The trend control has a "Time axis" and a "Value axis"

● The function trend control has an "X axis" and a "Y axis"

You can display up to nine trends in both the function trend control and the trend control.

Structure of a trend control
Configure the trend control appearance in the Inspector window: You define the number of
trend areas and configure the trends it contains.

You can configure multiple trends, value axes and time axes for each trend area. You can alter
the appearance, labeling and assignment in the Inspector window for each individual trend,
value axis and time axis created.

Configure trend areas
You can divide the display area into multiple trend areas, if necessary. Each area functions like
a standalone trend control. This allows you to show temperature changes or values from
different days, for example, as trends and compare them. The "Range proportion" specifies
how much space is provided for a given area in the trend control.

Each range proportion is calculated on the basis of the total number of range components. If
you have configured a total of three trend areas, for example, a range proportion of "1" will result
in three trend areas of equal size. To increase the range proportions in relation to each other,
increase the range proportion of one or more trend areas.

Configuring axes
You configure the axes of the trend control for each trend area in the properties of the trend
areas.

The following properties are set by default with a value axis:

● The value range is based on the current values of the assigned trend

● The value axis scale is linear and based on the value range
Alternatively, you can configure a logarithmic scale:

– In logarithmic scaling, only positive values are displayed.

– In negative logarithmic scaling, only negative values are displayed.

If you configure a value axis for the trend control, you can also set up axis segments. You assign
a value range and a display name to each axis segment.

In the function trend control, the value axis corresponds to both the "X axis" and the "Y axis".

Configuring trends
You configure the axes for each trend area:

● The time and value axes in the trend control

● The different value axes in the function trend control

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 187

By default, the data area is based on the current values of the associated trend.

You can also configure the visualization of limits and values with "Uncertain status" for a trend.
If a trend exceeds or falls below a configured limit, the trend is colored.

Configuring the time axis and time range (trend control)
The time range for trend display is configured with time axes. In a trend control, you can create
multiple time axes that you can assign to one or more trend areas.

If you configure several time axes to a trend control, the sequence of the time axes in the
Inspector window corresponds to the sequence in the trend control. If multiple time axes run
along the same side of a trend control, the first time axis in the list is at the bottom left. The last
time axis is at the top right.

3.5.1.3 Representing multiple trends (RT Uni)

Introduction
If you display several trends simultaneously in the trend control, assign each trend its own value
and time axis. Alternatively, you can assign a shared time and/or value axis to several trends.

You configure the axes of a trend control for each individual trend in the Inspector window under
"Properties > Trend areas".

The axes are assigned to the configured trends in the Inspector window under "Properties >
Trend areas > Trends".

Representation using different axes
If the values to be displayed in a trend control differ greatly, a common value axis makes no
sense. If you assign each trend its own value axis, they should also display different scales.
Individual axes can be hidden if required.

The figure below shows two trends with different value axes using a trend control as an
example:

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
188 System Manual, 11/2019, Online help printout

Representation using common axes
If the comparability of the trend directions is important, common axes in a trend control is
sensible. Connected trend views can have a common time axis.

If you configure trends with a shared time axis, use tags with the same update cycle for the data
supply.

In the case of different updating cycles, the length of the time axis is not identical for all tags.
Since the trends are updated at different times due to the different updating cycles, a minimal
different in the end time for the time axis occurs on each change. As a result, the trends
displayed skip slightly to and fro on each change.

3.5.1.4 Basics of time range (RT Uni)

Time range
The time range is the range from which the values at the HMI device are shown. The time range
is determined by the start time and the end time. The time range is always in the past. If the end
time is later than the current system time, the current system time is used as a temporary end
time.

A distinction is made between the following time ranges:

● Static time range

● Dynamic time range

Static time range
The static time range is determined by fixed start and end times. The values are displayed
within this time range.

Dynamic time range
The dynamic time range is determined by a period of time beginning with a fixed start time. The
end time thus corresponds to the conclusion of the time period.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 189

You set the time period as follows:

● Duration, e.g. 30 minutes

● The number of measurement points multiplied by the update cycle also produces a duration.

Configuring time range
Configure the time range for all controls. Configure the time range in the time column or in the
time axis for the process control and the trend control. For the function trend control, configure
the time range directly at the trend.

You select one of three options for the time range:

● "Time span": You define the time range using a starting time and a following time span. You
set the time span with the settings "Time range basis" and "Time range factor", for example
30 minutes.

● "Start time and end time": You define the time range using a starting time and an end time.

● "Measuring points": You define the time range using a starting time and a number of
measuring points.

3.5.1.5 Representing trend directions (RT Uni)

Introduction
In a trend control, you display a trend direction with one of the following modes:

● Dots

● Interpolated

● Stepped

● Values

Select "Properties > Trend areas > Trends > Trend mode" to configure the trend display in the
Inspector window.

Dots
Values are shown as dots. The display of the points can be configured as you wish.

The following image shows the trend direction with the format pattern "Dots":

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
190 System Manual, 11/2019, Online help printout

Interpolated
The trend curve is interpolated on a linear basis from the values. The display of the lines and
points can be configured as you wish.

The following image shows the trend direction with the format pattern "Interpolated":

Stepped
The trend curve is interpolated as a stepped curve from the values. The display of the lines and
points can be configured as you wish.

The following image shows the trend direction with the format pattern "Stepped":

Values
The trend curve is displayed as values. The display of the lines and points can be configured
as you wish.

The figure below shows the trend direction with the format pattern "Values":

3.5.1.6 Outputting tag values in tabular format (RT Uni)

Introduction
To display tag values in tables in runtime, add a process control to a screen. A time stamp is
displayed for each value. The values are displayed in value columns, and the time stamps in
time columns. Assign the time column to one or several value columns. You have the option of
configuring a time column and nine value columns in the process control.

If you assign multiple value and/or time columns to a process control, the sequence of columns
in the Inspector window corresponds to the sequence in the process control. If you assign the

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 191

same time column to multiple value columns, the value columns in the list are automatically
grouped according to the assigned time column.

● The time range for the table display is configured using the time column. A table has a
common time column for multiple value columns. The first column [0] in the process view of
the process control is the time column.

● You configure the values of the process control using value columns. You can display
several value columns in a table, for example to compare the fill levels of several containers.
Each value column is connected to the time column.

Configuration options in the process control
You can configure the following properties in the process control in line with your requirements:

● Configure the appearance of the process control:

– Colors

– Time base

– Window settings of the control

● Configure the columns of the process control in the Inspector window.

– Configure the time range using the time columns. A table can have a common time
column for multiple value columns as well as separate time columns.

– Configure the display of the tag values using the value columns. Each value column is
connected to a time column. The value columns can have a common time column.

● Configure the appearance of the table

● Configure the toolbar and status bar of the process control.

● If required, configure data export from the process control.

3.5.1.7 Configuring tag evaluation (RT Uni)

Introduction
Also configure a trend companion if you want to evaluate data from the trend control in runtime.
You can also configure the trend companion as "Ruler".

You connect the trend companion to one of the following controls:

● Trend control

● Function trend control

Set a "Display mode" in the trend companion. The display mode determines which data is
shown in the trend companion.

The contents of the trend companion are shown in columns. The available columns depend on
the connected control. A block is assigned to each column. You define the alignment and
appearance of the column headers using the blocks. By default, the format of the connected
control, for example the time display, is used for the display format.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
192 System Manual, 11/2019, Online help printout

Configuration options in the trend companion
You can configure the following properties in the trend companion in line with your
requirements:

● Configure the view of the trend companion in the Inspector window:

● Select the "Mode" of the trend companion under "Properties > General".

● Configure the display, labeling and sequence of the columns.

Display modes
Three different display modes are available in the trend companion:

● Ruler mode
The ruler window shows the coordinate values of the trends on the ruler or values of a
selected row in the table.

● Statistics area mode
The statistics area window shows the values of the lower limit and upper limit of the trends
between two rulers or the selected area in the table. You can only connect the statistics area
window to the trend control or the process control.

● Statistics mode
The statistics window displays the statistical evaluation of the trends. The statistics include:

– Minimum

– Maximum

– Average

– Standard deviation

– Integral

All windows can also display additional information on the connected trends or columns, such
as time stamps.

3.5.2 Configuring a trend control (RT Uni)

Introduction
For the graphic display of tag values in runtime, add a trend control to a screen. The trend
control allows you to display current and logged values for a specific time window, for example.
For the display of data logs in runtime, you can move the time window to view the logged values.

The list of elements in a group always starts with 0, for example trend [0] is the first trend that
has already been created in the object. For a clearer display of multiple trends, you can
configure different names, line types and colors.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 193

Requirement
● Data log with backup has been configured.

● The HMI tag for temperature measurement has been configured, for example
"MotorTemperature".

● The HMI tag for velocity measurement has been configured, for example "MotorSpeed".

● A screen has been configured.

Configuring the trend area and axes
1. Add the "trend control" object to the screen from the "Toolbox" task card.

2. Go to "Properties" and set the required height, width and position of the object.

3. Open the "Trend areas" group under "Properties".
The index numbers of the trend areas created for the object are displayed.

4. Expand the index number of the first trend area.
The properties of the first trend area are displayed.

Note

To add another trend area, go to "Properties > Trend areas > [0] trend areas > Trends" and
click the selection button in the "Static value" column. In the dialog, click "Add".

5. Define the colors for displaying the trend area and the reference lines.

6. Configure the time axis and value axis settings under "Bottom time axis" and "Left value
axis".

Configuring trends
1. Go to "Trend areas > [0] trend areas > Trends" and click on the selection button in the "Static

value" column.
A dialog opens.

2. Click "Add" in the "Index" column.
This adds another trend. Close the dialog.

3. Expand the index number of the first trend [0]. The trend settings are displayed.

4. Specify the name of the first trend under "Display name", for example "Speed".

5. Select the entry "Online" under "Data source Y > Source".

6. Under "Tag" enter the tag "MotorSpeed".

7. Configure the line color for the trend, for example, blue.

8. Expand the index number of the second trend [1]. The trend settings are displayed.

9. Specify the name of the second trend under "Display name", for example "Temperature".

10.Specify "Online" as the source type under "Data source" and enter the name of the tag
"MotorTemperature".

11.Configure the line color for the trend, for example, red.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
194 System Manual, 11/2019, Online help printout

Result
The trend control is now configured. In runtime, you monitor value changes over time on the
basis of two trends. One trend shows the temperatures measured and the other trend the
velocity.

Configure an additional value display if you want to evaluate the data of the trend control in
runtime. You can also configure the value display as a "Ruler".

See also
Trend control (Page 82)

Configuring trend control for plant objects (Page 1536)

3.5.3 Configuring the function trend control (RT Uni)

Introduction
You use the function trend control to represent the values of a tag as a function of another tag.
This means that you can present temperature trends as a function of the velocity, for example.

You can also compare the trend to a setpoint trend.

Requirement
● Data log with backup has been configured.

● The HMI tag for temperature measurement has been configured, for example
"MotorTemperature".

● The HMI tag for velocity measurement has been configured, for example "MotorSpeed".

● A screen has been configured.

Configuring function trend areas and axes
1. Add the "trend control" object to the screen from the "Toolbox" task card.

2. Go to "Properties" and set the required height, width and position of the object.

3. Open the "Function trend area" group under "Properties".
The index numbers of the function trend areas created for the object are displayed.

4. Expand the index number of the first function trend area.
The properties of the first function trend area are displayed.

Note

To add another function trend area, go to "Properties > Function trend area > [0] function
trend area > Function trends" and click on the selection button in the "Static value" column.
In the dialog, click "Add".

5. Enter a meaningful name for the function trend area, for example, "SpeedToTemperature".

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 195

6. Open the temperature value axis settings under "Left value axis".

7. Define the value range for temperature, for example, by entering a maximum scale value of
350 degrees and a minimum scale value of 0 degrees.

8. Open the velocity value axis settings under "Bottom value axis".

9. Define the value range for speed, for example, by entering a maximum scale value of
1400 rpm and a minimum scale value of 0 rpm.

Note
Available scaling types

The f(x) trend view supports the "Linear" scaling type.

Configuring trends
1. Go to "Function trend area > [0] function trend area > Function trends > [0] function trend".

2. Specify "Online" as the source type under "Data source X", and enter the name of the
process tag "MotorTemperature" under "Tag".

3. Specify "Online" as the source type under "Data source Y", and enter the name of the
process tag "MotorSpeed" under "Tag".

4. Specify the time range of 1 second under "Properties > Function trend area > Function
trends".

Result
The function trend control is now configured. In runtime, you monitor value changes on the
basis of two trends. One trend shows the temperatures and the other trend the speed. In the
function trend control, you can, for example, monitor how the temperature of the motor
increases as the velocity increases.

Configure an additional value display if you want to evaluate the data of the trend control in
runtime. You can also configure the value display as a "Ruler".

See also
Function trend control (Page 97)

3.5.4 Configuring the process control (RT Uni)

Introduction
To display tag values in tables in runtime, add a process control to a screen. The time column
shows the time at which the value was reached. The value columns show the values at a given
time stamp.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
196 System Manual, 11/2019, Online help printout

You can use the process control to display the incoming temperature values of a motor in a
table in runtime, for example.

Requirement
● HMI tag for temperature measurement has been configured, for example

"MotorTemperature"

● Cycle for regular display updates has been configured

● The screen is open

● The Inspector window is open

Configuring the process control
1. Add the required process control to the screen from the "Tools" task card.

2. Enter the label for the process control, for example "MotorTemperatureView", under
"Properties" in the Inspector window.

3. Go to "Properties > Process view > Columns > [0]" and configure the time column with the
time ranges for the table.

4. Configure the "Time range" and "Format" of the time display in the time column, for example
"Time span".

5. Set the start time, the basis and the factor for the time range, for example 10 minutes.

6. If the values in the time column are to be updated automatically, enable "Update".

7. Go to "Properties > Process view > Columns > [1]" and configure the properties for the value
column.

8. Enter the name of the column, for example "Temperature".

9. Configure the type "Online" for current values under "Data source" and enter the tag
"MotorTemperature" under "Tag".

10.Configure the display of content and the headers for the given value column.

11.Configure the toolbar and status bar of the process control.

12.If required, configure the security settings of the process control.

Result
The process control is now configured and displays the temperature of the motor at the
measured time in runtime.

See also
Process control (Page 100)

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 197

3.5.5 Configuring the trend companion (RT Uni)

Introduction
The value table allows you to display statistical data, for example mean values for the trend
view with temperature trends. The calculation of statistical data gives the user access to trends
and value changes over time. As well as calculating statistical data, you can use the value table
as a viewing aid for trend values at a ruler position.

Requirement
● Trend view or f(x) trend view has been configured in the screen

● Cycle for regular display updates has been configured

● The screen is open

● The Inspector window is open

Procedure
1. Add the required value table to the screen from the "Toolbox" task card.

2. Select the relevant control under "Properties > Data source" in the Inspector window to
connect the value table to the selected control.

3. To display the value table below the selected control, select the option "Dock to data source".

4. Select the "Value table mode" of the value table under "Properties", for example "Statistic
result".

5. Configure the appearance of the selected mode under "Properties > Statistic mode
appearance":

– Change the colors, row height and fonts in the value table if required.

– Configure the headers under "Properties > Statistic mode appearance > Header
settings" if required.

6. Configure the value table columns under "Properties > Statistic mode appearance >
Columns":

– Change the display, labels or order of columns if required.

7. Configure the view of the value table in the Inspector window:

– Change the display, labeling and colors of the value table if required, or use the colors
of the control to which the value table is docked.

– Configure the status bar and toolbar of the value table.

8. Configure the toolbar and status bar of the process control.

9. If required, configure the security settings of the process control.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
198 System Manual, 11/2019, Online help printout

Configuring selection
If, for example, a user wants to export values from a row, they must select the row. You specify
the selection range and colors for selection during configuration. You define the settings for
selection for each display mode.

1. In the Inspector window, go to "Properties > Trend ruler appearance" and select the
"Selection mode" for the selection range, for example "Multiple elements".

2. Select the color mode for selection, for example rows.

3. If required, select the "Border color" and "Border width" to be displayed around the selection
area.

4. Choose the colors for selection as required.

Result
The value table is configured. The statistical values calculated are displayed in the value table
in runtime.

See also
Trend companion (Page 93)

3.5.6 Configuring toolbar and status bar (RT Uni)

Introduction
You operate the controls in runtime using the buttons in the toolbar. The status bar displays
status messages from the control. During configuration, set the content of the toolbar and
status bar.

Requirement
● The control is selected in the screen

● The Inspector window is open

Configuring the toolbar
1. In the Inspector window, configure the general properties of the toolbar, such as orientation

and background color or displayed buttons, under "Properties > Toolbar".

2. In the Inspector window, enable the buttons you need in runtime under "Properties >
Toolbar > Elements".

3. If required, configure the button display, for example background color, border and
maximum and minimum size.

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 199

4. If necessary, select the authorization needed to operate the buttons in runtime.

5. If a button is not to be operated in Runtime, deselect "Allow operator control".
You can reactivate a deactivated a button using a script in runtime, for example.

Configuring the status bar
1. In the Inspector window, configure the general properties of the status bar such as

orientation and background color under "Properties > Status bar".

2. In the Inspector window, select the elements you need in runtime such as date and time
under "Properties > Status bar > Elements".

3. You can adjust the display of an element in the status bar under "Properties > Status Bar >
Elements" for the respective element.

3.5.7 Defining the data source (RT Uni)

Introduction
Using the data source, you define the sources from which the values are displayed on the HMI
device in runtime. The following sources are available:

● Current process values from tags

● Archived values from logging tags

To set up data supply for the controls over a tag, enter the name of the tag in the "Static value"
column under "Data source > Tag".

Requirement
● An online tag or logging tag is configured

● Value column or trend has been created

● The Inspector window is open

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
200 System Manual, 11/2019, Online help printout

Displaying current process values
Proceed as follows to display current process values:

1. Click "Properties > Process view > Columns" in the Inspector window to define the data
source for a process control.
The first column is always reserved for the time column. You enter the data source for value
columns [1] to [N].

2. Click "Properties > Trend areas > Trends" in the Inspector window to define the data source
for a trend control.
For the function trend control, click on "Properties > Function trend area > Function trends".

3. Configure the "data source":

– Select the entry "Online" as "Source type".

– When you configure the trend of an function trend control, enter one tag each for "Data
source X" and "Data source Y".

– When you configure the trend of a trend control or a value column, enter the
corresponding tag under "Tag".

– Select the update cycle.

Note

Using UDTs

In the "Static value" column under "Tag" first enter the name of the data type and then the name
of the element separated by a period, for example, "PLCDatatypeName.ElementName".

Displaying values from a log
Proceed as follows to display values from a log:

1. Click "Properties > Process view > Columns" in the Inspector window to define the data
source for a process control.
The first column is always reserved for the time column. You enter the data source for value
columns [1] to [N].

2. Click "Properties > Trend areas > Trends" in the Inspector window to define the data source
for a trend control.
For the function trend control, click on "Properties > Function trend area > Function trends".

3. Configure the "data source":

– Select the entry "Logs" as "Source".

– When you configure the trend of an function trend control, enter one tag each for "Data
source X" and "Data source Y".

– When you configure the trend of a trend control or a value column, enter the
corresponding tag under "Tag".

Configuring tags (RT Uni)
3.5 Displaying tags (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 201

Note

Using logging tags

In the "Static value" column under "Tag" first enter the name of the HMI tag and then the name
of the associated logging tag separated by a period, for example, "HMITag_1:LoggingTag_1".

3.6 Reference (RT Uni)

3.6.1 Quality codes of HMI tags (RT Uni)

Introduction
The "Quality Code" is required to evaluate the status and quality of a tag. The quality of the
entire value transfer and value processing of the respective HMI tag is summarized in the
indicated Quality Code. For example, it is possible to determine from the Quality Code whether
the current value is a start value or substitute value.

The quality codes are prioritized. If several codes occur at the same time, the Quality Code
reflecting the lowest quality is displayed.

Evaluation of Quality Codes
You can evaluate the Quality Code in a number of different ways:

● Evaluation with JScript functions

● Evaluation using the "Quality Code changed" event of an I/O field.

Structure
The Quality Code has the following binary structure:

High byte: Specific information for WinCC Unified Low byte: Quality code according to PROFIBUS
PA or OPC DA

Flags Enhanced substatus Quality Substatus Limits
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit 9 Bit 8 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
202 System Manual, 11/2019, Online help printout

Quality (bit 7 and bit 8)
Quality represents the basic values of the quality levels. Making use of the substatus and limits
gives rise to intermediate values over and above the quality stage concerned.

Bit 8 Bit 7
0 0 Bad - The value is not useful. The reasons are indicated by the sub-status.
0 1 Uncertain - The quality of the value is less than normal, but the value may still be

useful. The reasons are indicated by the sub-status.
1 0 Good (Non-Cascade) - The quality of the value is good. Possible alarm conditions

may be indicated by the sub-status.
1 1 Good (Cascade) - The quality of the value is good and may be used in control.

Flags (bit 12 to bit 15)
Flags contain information on the interpretation of the Quality Code.

Bit 12 Source

quality
0: The data quality has been determined and assigned by external data source.

Bit 13 Source
time

1: The data timestamp has been produced and assigned by external data
source.

Bit 14 Time cor‐
rected

1: The data timestamp applied by external data source has been corrected by
the system. Thus, Bit 13 "Source time" is not set. Time correction happens if the
external timestamp is older than the timestamp of the last known value.

Bit 15 reserved

Sub-status and extended sub-status
The quality alone is not enough. Substatuses divide the individual qualities. The Quality Code
is binary-coded. The value must be converted to hexadecimal format for the analysis of the
Quality Code.

Externally generated quality code of tags
If bit 12 is not set, the Quality Code was generated from an external source in accordance with
PROFIBUS PA. The table begins with the worst Quality Code and ends with the best Quality
Code. The best Quality Code has the lowest priority, while the worst Quality Code has the
highest priority. If several statuses occur for one tag in the process, the poorest code is passed
on.

Code
(hex)

Quality Q Q S S S S L L

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3C Bad Function check - Local override 0 0 1 1 1 1 1 1
0x04 Bad Configuration Error - Set if the value is not useful because

there is some inconsistency regarding the parameterization or
configuration, depending on what a specific manufacturer can
detect.

0 0 0 0 0 1 - -

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 203

Code
(hex)

Quality Q Q S S S S L L

0x1C Bad Out of Service - The value is not reliable because the block is
not being evaluated, and may be under construction by a con‐
figurer. Set if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good

(Non-
Cascade)

Active Update event - Set if the value is good and the block has
an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics available. 0 0 1 0 0 1 - -
0x18 Bad No Communication, with no usable value - Set if there has

never been any communication with this value since it was last
"Out of Service".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value - Set if this value
had been set by communication, which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value is affected by a
device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to be connected

and is not connected.
0 0 0 0 1 0 - -

0x00 Bad non-specific - There is no specific reason why the value is bad.
Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value is written by the

operator while the block is in manual mode.
0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the value lies outside

of the set of values defined for this parameter. The Limits de‐
fine which direction has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters during and after

reset of the device or of a parameter.
0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used instead of the cal‐
culated one. This is used for fail safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this value has stop‐
ped doing so. This is used for fail safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why the value is
uncertain. Used for propagation.

0 1 0 0 0 0 - -

0xE0 Good(Cas
cade)

Initiate Fail Safe (IFS) - The value is from a block that wants its
downstream output block (e.g. AO) to go to Fail Safe.

1 1 0 1 1 0 - -

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
204 System Manual, 11/2019, Online help printout

Code
(hex)

Quality Q Q S S S S L L

0xD8 Good
(Cas‐
cade)

Local Override (LO) - The value is from a block that has been
locked out by a local key switch or is a Complex AO/DO with
interlock logic active. The failure of normal control must be
propagated to a function running in a host system for alarm
and display purposes. This also implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good
(Cas‐
cade)

Do Not Select (DNS) - The value is from a block which should
not be selected, due to conditions in or above the block.

1 1 0 1 0 1 - -

0xCC Good
(Cas‐
cade)

Not Invited (NI) - The value is from a block which does not have
a target mode that would use this input.

1 1 0 0 1 1 - -

0xC8 Good
(Cas‐
cade)

Initialization Request (IR) - The value is an initialization value
for a source (back calculation input parameter), because the
lower loop is broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good
(Cas‐
cade)

Initialization Acknowledge (IA) - The value is an initialized val‐
ue from a source (cascade input, remote-cascade in, and re‐
mote-output in parameters).

1 1 0 0 0 1 - -

0xA0 Good
(Non-
Cascade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good
(Non-
Cascade)

Unacknowledged Critical Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority greater
than or equal to 8.

1 0 0 1 1 0 - -

0x94 Good
(Non-
Cascade)

Unacknowledged Advisory Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority less
than 8.

1 0 0 1 0 1 - -

0x90 Good
(Non-
Cascade)

Unacknowledged Update event - Set if the value is good and
the block has an unacknowledged Update event.

1 0 0 1 0 0 - -

0x8C Good
(Non-
Cascade)

Active Critical Alarm - Set if the value is good and the block
has an active Alarm with a priority greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good
(Non-
Cascade)

Active Advisory Alarm - Set if the value is good and the block
has an active Alarm with a priority less than 8.

1 0 0 0 1 0 - -

0xA8 Good
(Non-
Cascade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good
(Non-
Cascade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good
(Non-
Cascade)

Function check - Local override 1 0 1 1 1 1 - -

0xC0 Good(Cas
cade)

OK - No error or special condition is associated with this value. 1 1 0 0 0 0 - -

0x80 Good
(Non-
Cascade)

OK - No error or special condition is associated with this value. 1 0 0 0 0 0 - -

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 205

Internally generated quality code of tags
If bit 12 is set, the Quality Code was generated from the HMI system. The table begins with the
worst Quality Code and ends with the best Quality Code. The best Quality Code has the lowest
priority, while the worst Quality Code has the highest priority. If several statuses occur for one
tag in the process, the poorest code is passed on.

Code
(Hex)

Quality Q Q S S S S L L

0x70n Bad Disabled 0 0 0 0 - - - -
0x300 Bad Unusable value - A logged value has been identified to be

incorrect, but a respective correction value is not available.
The corresponding sub-status is set to ‘non-specific’.

0 0 0 0 0 0 0 0

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3F Bad Function check - Local override 0 0 1 1 1 1 1 1
0x04 Bad Configuration Error - Set if the value is not useful because

there is some inconsistency regarding the parameterization or
configuration, depending on what a specific manufacturer can
detect.

0 0 0 0 0 1 - -

0x1C Bad Out of Service - The value is not reliable because the block is
not being evaluated, and may be under construction by a con‐
figurer. Set if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good

(Non-
Cascade)

Active Update event - Set if the value is good and the block has
an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics available. 0 0 1 0 0 1 - -
0x18 Bad No Communication, with no usable value - Set if there has

never been any communication with this value since it was last
"Out of Service".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value - Set if this value
had been set by communication, which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value is affected by a
device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to be connected

and is not connected.
0 0 0 0 1 0 - -

0x100 Bad Aggregated value - The value has been calculated out of mul‐
tiple values with less than the re-quired number of good sour‐
ces. This includes data aggregation by means of data com‐
pression algorithms. The corresponding sub-status is set to
‘non-specific’.

0 0 0 0 0 0 0 0

0x00 Bad non-specific - There is no specific reason why the value is bad.
Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x74n Uncertain Disabled - The provider of the value, e.g. logging tag for log‐

ged value, has been disabled and the previous value was
GOOD or UNCERTAIN. In case of GOOD the corresponding
sub- status is set to ‘last usable value’. In case of UNCERTAIN
the corresponding sub-status is taken from the last sub-status.

0 1 0 0 - - - -

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
206 System Manual, 11/2019, Online help printout

Code
(Hex)

Quality Q Q S S S S L L

0x158 Uncertain Aggregated value - The value has been calculated out of mul‐
tiple values with less than the required number of good sour‐
ces to be GOOD as well as less than required number of bad
sources to be BAD. This includes data aggregation by means
of data compression algorithms. The corresponding sub-sta‐
tus is set to ‘sub-normal’.

0 1 0 1 1 0 0 0

0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value is written by the

operator while the block is in manual mode.
0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the value lies outside

of the set of values defined for this parameter. The Limits de‐
fine which direction has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters during and after

reset of the device or of a parameter.
0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used instead of the cal‐
culated one. This is used for fail safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this value has stop‐
ped doing so. This is used for fail safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why the value is
uncertain. Used for propagation.

0 1 0 0 0 0 - -

0x3C0 Good(Cas
cade)

Corrected value - A logged value has been corrected. The
corresponding sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0x2C0 Good(Cas
cade)

Manual input - A logged value has been created manually. The
corresponding sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0x1C0 Good(Cas
cade)

Aggregated value -The value has been calculated out of mul‐
tiple (GOOD) values. This includes data aggregation by
means of data compression algorithms. The corresponding
sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0xE0 Good
(Cas‐
cade)

Initiate Fail Safe (IFS) - The value is from a block that wants its
downstream output block (e.g. AO) to go to Fail Safe.

1 1 1 0 0 0 - -

0xD8 Good
(Cas‐
cade)

Local Override (LO) - The value is from a block that has been
locked out by a local key switch or is a Complex AO/DO with
interlock logic active. The failure of normal control must be
propagated to a function running in a host system for alarm
and display purposes. This also implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good
(Cas‐
cade)

Do Not Select (DNS) - The value is from a block which should
not be selected, due to conditions in or above the block.

1 1 0 1 0 1 - -

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 207

Code
(Hex)

Quality Q Q S S S S L L

0xCC Good
(Cas‐
cade)

Not Invited (NI) - The value is from a block which does not have
a target mode that would use this input.

1 1 0 0 1 1 - -

0xC8 Good
(Cas‐
cade)

Initialization Request (IR) - The value is an initialization value
for a source (back calculation input parameter), because the
lower loop is broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good
(Cas‐
cade)

Initialization Acknowledge (IA) - The value is an initialized val‐
ue from a source (cascade input, remote-cascade in, and re‐
mote-output in parameters).

1 1 0 0 0 1 - -

0x6C0 Good(Cas
cade)

Initial value - The local data source has been initialized with
the configured initial value. The corresponding sub-status is
set to ‘non-specific’.

1 1 0 0 0 0 0 0

0c4C0 Good(Cas
cade)

Last usable value - The local data source has been initialized
with the last usable value, if pre-sent inside a local persisten‐
cy. The corresponding sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0xA0 Good
(Non-
Cascade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good
(Non-
Cascade)

Unacknowledged Critical Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority greater
than or equal to 8.

1 0 0 1 1 0 - -

0x94 Good
(Non-
Cascade)

Unacknowledged Advisory Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority less
than 8.

1 0 0 1 0 1 - -

0x90 Good
(Non-
Cascade)

Unacknowledged Update event - Set if the value is good and
the block has an unacknowledged Update event.

1 0 0 1 0 0 - -

0x8C Good
(Non-
Cascade)

Active Critical Alarm - Set if the value is good and the block
has an active Alarm with a priority greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good
(Non-
Cascade)

Active Advisory Alarm - Set if the value is good and the block
has an active Alarm with a priority less than 8.

1 0 0 0 1 0 - -

0xA8 Good
(Non-
Cascade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good
(Non-
Cascade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good
(Non-
Cascade)

Function check - Local override 1 0 1 1 1 1 - -

0xC0 Good(Cas
cade)

OK - No error or special condition is associated with this value. 1 1 0 0 0 0 - -

0x80 Good
(Non-
Cascade)

OK - No error or special condition is associated with this value. 1 0 0 0 0 0 - -

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
208 System Manual, 11/2019, Online help printout

Limit
The Quality Codes can be further subdivided by limits. Limits are optional.

 Q Q S S S S L L
O.K. - The value is free to move. - - - - - - 0 0
Low limited - The value has acceded its low limits. - - - - - - 0 1
High limited - The value has acceded its high limits. - - - - - - 1 0
Constant (high and low limited) - The value cannot move, no matter what the
process does.

- - - - - - 1 1

Quality Codes in Communication with OPC
When connecting to a OPC UA server, the OPC UA status code is shown in a quality code.

Quality Code in WinCC Status code according to OPC
0x48 0x40
0x4C 0x40
0x5C 0x40
0x60 0x40
0x80...0xD4 0xC0
0xD8 0xC0

3.6.2 Data types (RT Uni)

3.6.2.1 Data types for SIMATIC S7-300/400 (RT Uni)

Overview
The following table shows the data types for SIMATIC S7-300/400 with the corresponding HMI
data types and value ranges in WinCC.

Data type Value range
Bool 0 (FALSE), 1 (TRUE)
Byte 0 ... 255
Char 0 ... 255 (ASCII)
Counter 0 ... 999
Date 1990-01-01 ... 2168-12-31
Date_And_Time 1990‑1‑1-0:0:0.0 ... 2089‑12‑31-23:59:59.999
DInt −2147483648 … +2147483647
DWord 0 .. 4294967295
Int −32768 … 32767
Real ±1.17549E-38 to ±3.40282E+38 and 0.0
S5Time 0 … 2h46m30s0ms

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 209

Data type Value range
String ASCII
Time1 -24d20h31m23s648ms ... +24d20h31m23s647ms

Time_of_Day, TOD 00:00:00 ... 23:59:59.999
Timer -0ms ... 2h46m30s0ms
Word 0 ... 65535

1: If the value is set via the HMI, then the granularity is in 100 nanosecond intervals. In contrast,
the granularity of WinCC Advanced, WinCC Comfort and WinCC Professional is milliseconds.

3.6.2.2 Data types for SIMATIC S7-1500 (RT Uni)

Overview
The following table shows the data types for SIMATIC S7-1500 with the corresponding HMI
data types and value ranges in WinCC.

Data type Value range
Bool 0 (FALSE), 1 (TRUE)
Byte 0 ... 255
Char 0 … 255 (ASCII)
Counter 0 … 65535
Date 1990-01-01 ... 2168-12-31
Date_And_Time, DT 1990‑1‑1-0:0:0.0 ... 2089‑12‑31-23:59:59.999
DInt −2147483648 … +2147483647
DTL 1970-01-01-00:00:00.0 ...

2262-04-11-23:47:16.854775807
DWord 0 ... 4294967295
Int -32768 ... +32767
LDT 1970-01-01-00:00:00.000000000 ...

2263-04-11-23:47:16.854775808
LInt -9223372036854775808 ...

+9223372036854775807
LReal ±1.79769313486231E+308 ...

±2.22507385850720E-308 and 0.0
LTime 106751d23h47m16s854ms775us808ns ...

+106751d23h47m16s854ms775us807ns
LTime_of_Day, LTOD 00:00:00.000000000 ... 23:59:59.999999999
LWord 0 ... 18446744073709551615
Real ±1.17549E-38 ... ±-3.40282E+38 and 0.0
S5Time 0ms ... 2h46m30s0ms
SInt -128 ... +127
String ASCII
Time1 -24d20h31m23s648ms ... +24d20h31m23s647ms
Time_of_Day, TOD 00:00:00 ... 23:59:59.999
Timer -24d20h31m23s648ms ... +24d20h31m23s647ms

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
210 System Manual, 11/2019, Online help printout

Data type Value range
UDInt 0 ... 4294967295
UInt 0 … 65535
ULInt 0 ... 18446744073709551615
USInt 0 ... 255
WChar UNICODE
Word 0 … 65535
WString UNICODE
PLCUDT -

1: If the value is set via the HMI, then the granularity is in 100 nanosecond intervals. In contrast,
the granularity of WinCC Advanced, WinCC Comfort and WinCC Professional is milliseconds.

3.6.2.3 User-defined PLC data types (UDT) (RT Uni)

Overview
You can connect with the HMI tags and DB instances of user-defined PLC data types (UDT).

The PLC data type and the corresponding DB instances are created and updated centrally in
STEP 7. In WinCC, you can use the following sources as PLC tag (DB instances):

● Data block elements that use a UDT as data type

● Instance data blocks of a UDT

The data type is taken from STEP 7 and is not converted into an HMI data type. The access type
is always "Symbolic access".

Elements of a PLC data type
You have access to the following elements in WinCC with a structured PLC data type:

● Elements that have been released for WinCC in STEP 7.

● Elements whose data types are supported in WinCC.

Note
Invalid elements of a PLC data type in WinCC

Invalid elements generate an error in WinCC.

If you disable the "Accessible from HMI" option for the corresponding elements of the
associated PLC data type in STEP 7, these elements are excluded in WinCC.

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 211

Naming conventions
The following characters are invalid in the name of the PLC data type and generate an error in
WinCC:

● Period: "."

● Brackets: "(" and ")"

Properties
The properties of the PLC data type and its elements are adopted in WinCC. Depending on the
data type used, the properties are read-only or can be written to in WinCC.

If you change the connection of the PLC data type in WinCC, all elements of the PLC data type
are deleted and the properties of the newly connected PLC tag are used.

In WinCC, you have access to STEP 7 comments on elements of the PLC data type.

You have limited access to properties in WinCC for the following elements of PLC data types:

● Elements of the data type "Struct"

● PLC data type

● Multidimensional arrays

● Array of complex data types except "DTL"

Mapping of the data type "DTL"
If a PLC data type contains elements of the data type "DTL", these elements are mapped in
WinCC without lower-level elements. The data type "DTL" turns into "DateTime" in WinCC.

Tags with elements of the "DTL" data type
Tags that use the "DTL" data type element by element can only be used as read-only with
symbolic addressing, e.g. with SIMATIC S7 1500. With absolute addressing, write access is
also possible.

Configuring tags (RT Uni)
3.6 Reference (RT Uni)

WinCC Engineering V16 - Runtime Unified
212 System Manual, 11/2019, Online help printout

Configuring alarms (RT Uni) 4
4.1 Basics (RT Uni)

4.1.1 Alarm system (RT Uni)

Introduction
Alarms display events, operating states or faults that occur or predominate in your plant. You
can use alarms for diagnostic purposes for fault rectification, for example, and they help you
rapidly to identify the cause of a fault. You can adjust your processes through targeted
intervention so that compliant products continue to be produced despite the fault, or the
process is stabilized and the fault only causes a minimal loss of production.

WinCC has a whole range of technical tools for implementing an alarm system. You use these
tools to set up an alarm system that meets all requirements under currently applicable national
and international standards and guidelines.

By means of the alarm system, events from the monitoring function in WinCC are displayed in
form of alarms, acknowledged by the operator and logged, if necessary. To do this, alarms must
be configured that are separated into alarm classes.

Alarm system
The alarm system distinguishes between the following alarms:

● User-defined alarms:

– Analog alarms: Show limit violations (value changes), are used for monitoring the plant.

– Discrete alarms: Show status changes, are used for monitoring the plant.

– User-defined controller alarms: are configured in STEP 7, show status values of the
controller, are used to monitor the plant.

● System-defined alarms:

– System events: belong to the HMI device and are used to monitor it.

– System-defined controller alarms: consist of system diagnostic alarms and system
errors (RSE) and are used to monitor the controller.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 213

The detected alarm events are displayed on the HMI device.

Note

Note the following restrictions for controller alarms.
● WinCC only supports controller alarms of a SIMATIC S7-1500 controller.
● WinCC only supports controller alarms that are automatically updated by the central alarm

management in the controller.

Tips for effective procedure

● When you configure an alarm system, you need to take account of the abilities of future users.
● Alarm systems must be designed to use and allow for characteristic aspects of human perception.
● Important alarms must be highlighted so that they are noticed rapidly. The display of important information should be redundant to make

it easier to see.
● Supplementary information about individual alarms ensures that faults are localized and cleared quickly.
● Information should if possible be directed at more than one sense (for example, visible and sound signals). Only alarm systems that meet

these criteria will help the user to monitor and control the plant.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
214 System Manual, 11/2019, Online help printout

See also
Alarms (Page 215)

Alarm states (Page 220)

Alarm classes (Page 221)

Acknowledging alarms (Page 225)

Acknowledgment model (Page 226)

Alarm components and properties (Page 227)

Configuring analog alarms (Page 241)

4.1.2 Alarms (RT Uni)

4.1.2.1 User-defined alarms (RT Uni)

Analog Alarms (RT Uni)

Description
Analog alarms indicate limit violations. You have defined in advance a limit value for the trigger
tag and the trigger mode. An analog alarm is triggered depending on which mode you have
defined, for example, when the value is higher than, lower than or the same as the defined
value.

Example
The speed of a motor must not be too high or too low. You can configure analog alarms to
monitor the speed of the motor. If the high or low limit for the speed of the motor is violated, an
alarm is output on the HMI device containing the following alarm text, for example: "Motor
speed is too low".

See also
Configuring analog alarms (Page 241)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Discrete alarms (Page 216)

User-defined controller alarms (Page 216)

System Alarms (Page 218)

System-defined controller alarms (Page 218)

Alarm system (Page 213)

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 215

Discrete alarms (RT Uni)

Description
Discrete alarms triggered by the PLC indicate status changes in a plant. A discrete alarm is
triggered by a specific value (bit) of a tag.

Example
Imagine that the state of a valve is to be monitored during operation. The two possible valve
states are "opened" and "closed". In this case, a discrete alarm is configured for each valve
state. A discrete alarm containing the following alarm text is output, for example, when the state
of this valve changes: "Valve closed".

See also
Configuring discrete alarms (Page 238)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Analog Alarms (Page 215)

User-defined controller alarms (Page 216)

System Alarms (Page 218)

System-defined controller alarms (Page 218)

Alarm system (Page 213)

User-defined controller alarms (RT Uni)

Example of an alarm
"The temperature in Tank 2 is too high."

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
216 System Manual, 11/2019, Online help printout

Description
A user-defined controller alarm, e.g. a program alarm, created by the control project engineer
in STEP 7. The PLC status values, such as time stamp and process values, are mapped in the
controller alarm. If controller alarms are configured in STEP 7, accept them into the integrated
WinCC operation as soon as a connection is established to the PLC. In STEP 7, the controller
alarm is assigned to an alarm class. You import this alarm class with the controller alarm as a
common alarm class.

Note
Automatic update of new or modified controller alarms on the HMI device

If controller alarms are configured in STEP 7 and an HMI connection to a SIMATIC S7-1500
controller (firmware version 2.0 or higher) is established, controller alarms are sent to the HMI
device. After changes of the controller alarms, the HMI device configuration must no longer be
transferred. The prerequisite is that the option "Central alarm management in the PLC" is
enabled in the properties of the controller. In addition, the option "Automatic update" must be
enabled in the runtime settings of the HMI device under "Alarms > Controller alarms".

Note

WinCC only supports controller alarms of a SIMATIC S7-1500 controller. In addition, WinCC
only supports controller alarms that are automatically updated by the central alarm
management in the controller.

Controller alarms for multiple HMI devices
If a PLC is connected to multiple HMI devices, the project engineer assigns display classes to
the controller alarms in STEP7. The display classes determine the allocation to the HMI device.
You can activate the display classes for your HMI device that are to be displayed on it. In this
case, only the controller alarms from this display class will be displayed on the HMI device. Up
to 17 display classes are possible.

See also
Filtering controller alarms via display classes (Page 249)

Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Configuring automatic update of controller alarms on the HMI device (Page 288)

Analog Alarms (Page 215)

Discrete alarms (Page 216)

System Alarms (Page 218)

System-defined controller alarms (Page 218)

Alarm system (Page 213)

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 217

4.1.2.2 System-defined alarms (RT Uni)

System Alarms (RT Uni)

Example of an alarm
"Memory is full!"

Description
A system event indicates the system status and communication errors between the HMI device
and system. System events are output in runtime in the configured alarm view. System events
are output in the language currently set on your HMI device.

The time format (AM/PM or 24-hour format) is based on the selected language. If no translation
of the alarm texts exists in this language, English is used as replacement and the corresponding
time format is displayed.

See also
Editing system events (Page 248)

Analog Alarms (Page 215)

Discrete alarms (Page 216)

User-defined controller alarms (Page 216)

System-defined controller alarms (Page 218)

Alarm system (Page 213)

System-defined controller alarms (RT Uni)

Example of an alarm
"CPU maintenance required"

Description
System-defined controller alarms are installed with STEP 7 and are only available if WinCC is
operated in the STEP 7 environment.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
218 System Manual, 11/2019, Online help printout

System-defined controller alarms are used to monitor states and events of a controller. System-
defined controller alarms consist of system diagnostic alarms and system errors (RSE)

Note
Automatic update of system diagnostic alarms on the HMI device

If an HMI connection to a SIMATIC S7-1500 controller (firmware version 2.0 or higher) is
established, system diagnostic alarms are sent to the HMI device and automatically updated.
The prerequisite is that the option "Central alarm management in the PLC" is enabled in the
properties of the controller. In addition, the options "Automatic update" and "System
diagnostics" must be enabled in the runtime settings of the HMI device under "Alarms >
Controller alarms".

Note

Note the following restrictions:
● WinCC only supports system diagnostic alarms of a SIMATIC S7-1500 controller.
● WinCC only supports system diagnostic alarms that are automatically updated by the

central alarm management in the controller.

See also
Configuring the display of system diagnostic alarms (Page 262)

Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Configuring automatic update of controller alarms on the HMI device (Page 288)

Analog Alarms (Page 215)

Discrete alarms (Page 216)

User-defined controller alarms (Page 216)

System Alarms (Page 218)

Alarm system (Page 213)

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 219

4.1.3 Alarm states (RT Uni)

Description
Every alarm has an alarm state. The alarm states are made up of the following events:

● Incoming
The condition for triggering an alarm is fulfilled. The alarm is displayed, such as "Boiler
pressure too high".

● Outgoing
The condition for triggering an alarm is no longer fulfilled. The alarm is no longer displayed
as the boiler was vented.

● Acknowledged
The operator has acknowledged the alarm.

Alarms without acknowledgment
The following table shows the alarm states for alarms that do not have to be acknowledged:

Status Description
Incoming The condition for an alarm is fulfilled. This alarm state is only

visible for logged alarms.
Incoming/outgoing The condition for an alarm is fulfilled; the alarm must not be

acknowledged. The condition for an alarm is no longer fulfil‐
led. The alarm is no longer pending.

Alarms with acknowledgment
The following table shows the alarm states for alarms that have to be acknowledged:

Status Description
Incoming The condition for an alarm is fulfilled.
Incoming/acknowledged The condition for an alarm is fulfilled. The operator has acknowl‐

edged the alarm.
Incoming/acknowledged/outgoing The condition for an alarm is fulfilled. The operator has acknowl‐

edged the alarm. The operator removes the cause which has
triggered the event. The alarm is no longer pending.

Incoming/outgoing/acknowledged The condition for an alarm is fulfilled. The operator removes the
cause which has triggered the event. The condition for an alarm
is no longer fulfilled. The operator has acknowledged the alarm
after this time.

Note

The display text for the states of an alarm is language-specific and configuration-specific.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
220 System Manual, 11/2019, Online help printout

Shelving alarms
You shelve an alarm, for example, to prevent an error alarm from impairing the effectivity of your
system.

● Shelved: The alarm was shelved.

● Unshelved: The alarm was unshelved. The alarm is visible again in its last state.

Locked alarms
You suppress the display of specific alarms, for example, to avoid an excessive burden of
information for the plant operator.

● Suppressed manually: The alarm was suppressed manually.

● Suppressed by design: The alarm was suppressed automatically.

See also
Alarm system (Page 213)

Alarm classes (Page 221)

Acknowledging alarms (Page 225)

Acknowledgment model (Page 226)

Alarm components and properties (Page 227)

4.1.4 Alarm classes (RT Uni)

Introduction
Many alarms occur in a plant. These are all of different importance. You can assign the alarms
of your project to alarm classes to clearly show the operator which of the alarms are most
important.

Description
Every alarm must be assigned to an alarm class when you create new alarms. The alarm class
hereby defines the appearance and the acknowledgment model of the alarm (single-mode
acknowledgment, acknowledgment and confirmation, no acknowledgment).

A new alarm class with mandatory acknowledgment is generated in WinCC. Predefined alarm
classes are available for each device.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 221

Examples of how to use alarm classes
● The alarm class of the alarm "Fan 1 speed in upper tolerance range" is "Warning". The alarm

is displayed with a yellow background. The alarm requires acknowledgment.

● The alarm "Speed of fan 2 has exceeded upper warning range" is assigned to the "Alarm"
alarm class. The alarm is displayed with a red background and flashes at high frequency in
runtime. The alarm is displayed until the alarm is gone and the operator has acknowledged
it.

Using alarm classes
Use the following alarm classes to define the state machines and appearance of alarms for your
project:

● Predefined alarm classes
You cannot delete predefined alarm classes and edit them only to a limited extent.
Predefined alarm classes are available under "HMI alarms > Alarm classes".

● Custom alarm classes
You can create new alarm classes under "HMI alarms > Alarm classes", configure how you
want the alarms to be displayed, and define an acknowledgment model for alarms of this
alarm class. The possible number of custom alarm classes depends on which runtime is
used in your project.

● Common alarm classes
Common alarm classes are displayed under "Common data > Alarm classes" in the project
tree and can be used for the alarms of an HMI device. Common alarm classes are used in
STEP 7 for controller alarms. If required, create additional common alarm classes in WinCC.
Common alarm classes are divided into predefined and user-defined common alarm
classes. The predefined common alarm classes are "Acknowledgement" (for alarms with
acknowledgment) and "No Acknowledgement" (for alarms without acknowledgment).

For each alarm class (including predefined alarm classes), you can configure the font color,
background color and flashing for the alarm states "Incoming", "Incoming/outgoing", "Incoming/
acknowledged", "Incoming/outgoing/acknowledged":

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
222 System Manual, 11/2019, Online help printout

Predefined alarm classes
The following predefined alarm classes are available under "Alarm classes" in the "HMI alarms":

● "Critical"
Alarms in this class must always be acknowledged. The alarm class "Critical" is designed to
show critical faults in the plant, for example, "Motor temperature too high".

● "System notification"
The operator does not acknowledge alarms from this alarm class.

● "System alarm without clear event"
Alarms of this class have no "Outgoing" state and must be acknowledged.

● "System warning without clear event"
Alarms of this class have no "Outgoing" state and must be acknowledged.

● "System alarm"
Alarms in this class must be acknowledged.

● "System warning"
Alarms in this class must be acknowledged.

● "Information"
Alarms in this class contain general information on your system, have no state and cannot
be acknowledged.

● "Notification"
The alarm class "Notification" alarm class is designed to show irregular states and routines
in the process. The operator does not acknowledge alarms from this alarm class.

● "System information"
Alarms in this class have no state and cannot be acknowledged.

● "Warning with reset"
Alarms in this class usually indicate states of a plant such as "Motor switched on". Alarms
in this alarm class must be acknowledged and confirmed.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 223

● "Warning"
Alarms in this class usually indicate states of a plant such as "Motor switched on". Alarms
in this class must be acknowledged.

● "Alarm with reset"
Alarms in this class must be acknowledged and confirmed. A reset is also required for
alarms of this class. The locked alarm is unlocked during the reset.

● "Critical with reset"
Alarms in this class must be acknowledged and confirmed. A reset is also required for
alarms of this class. The locked alarm is unlocked during the reset. The alarm class "Critical
with reset" is designed to show critical faults in the plant, for example, "Motor temperature
too high".

● "Operator input information"
Alarms in this class cannot be acknowledged. The alarm class "Operator input information"
is designed to show the reports that are relevant for an audit.

● "Operator input request"
Alarms in this class must be acknowledged.

● "Alarm"
Alarms in this class must always be acknowledged. The alarm class "Alarm" is designed to
show critical or dangerous states or limit violations in the process.

● "Acknowledgement"
Alarms in this class must be acknowledged. The alarm class "Acknowledgement" is linked
to the predefined common alarm class "Acknowledgement".

● "No Acknowledgement"
Alarms in this class do not require acknowledgment. The alarm class "No
Acknowledgement" is linked to the predefined common alarm class "No Acknowledgement".

Note

The alarm classes whose names contain "System" are designed to show the states of the
device and the controllers, for example, to provide information on operating errors or faults in
communication.

Note

The predefined alarm classes are write-protected and cannot be deleted. You can, however,
change the preset background and foreground colors and font colors if necessary. If required,
you can also change the name of the predefined alarm classes "Acknowledgement" and "No
Acknowledgement". The name of the linked predefined common alarm classes
"Acknowledgement" and "No Acknowledgement" is not changed. You cannot change the name
of the linked predefined common alarm classes, not even under "Common data > Alarm
classes".

Custom alarm classes
The properties of this alarm class are defined in the configuration.

For alarms with priority "0", the priority of the alarm class applies. The priority of the alarm when
displayed in Runtime takes precedence over the priority of the alarm class.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
224 System Manual, 11/2019, Online help printout

See also
Creating alarm classes (Page 231)

Using common alarm classes (Page 233)

Alarm system (Page 213)

Acknowledging alarms (Page 225)

Alarm states (Page 220)

Acknowledgment model (Page 226)

Alarm components and properties (Page 227)

4.1.5 Acknowledging alarms (RT Uni)

Introduction
To make sure that an alarm was noticed by the plant operator, configure this alarm so that it is
displayed until acknowledged by the operator. Alarms that indicate critical or hazardous states
in the process have to be acknowledged.

The acknowledgment of an alarm is an event that is logged and reported. Acknowledging an
alarm in the "Incoming" state changes the alarm state from "Incoming" to "Acknowledged".
When the operator acknowledges an alarm, they confirm that they have processed the state
that triggered the alarm.

The acknowledgment is not logged for the following state transitions: "Incoming", "Outgoing",
"Acknowledged".

Acknowledging an alarm
The operator acknowledges in runtime an alarm via the alarm view buttons.

See also
Alarm system (Page 213)

Configuring alarm acknowledgment (Page 250)

Acknowledgment model (Page 226)

Alarm classes (Page 221)

Alarm states (Page 220)

Alarm components and properties (Page 227)

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 225

4.1.6 Acknowledgment model (RT Uni)

Overview
The acknowledgment model and the state machine for predefined alarm classes have already
been set. You can only set the acknowledgment model and the state machine for user-defined
alarm classes. All alarms included in this alarm class are then acknowledged according to this
acknowledgment model and the state machine.

The following state machines are available:

● Alarm with single-mode acknowledgment
This alarm must be acknowledged as soon as the event that triggers the alarm occurs. The
alarm remains pending until it is acknowledged.

● Alarm with optional single-mode acknowledgment
This alarm must not necessarily be acknowledged as soon as the event that triggers the
alarm occurs. The alarm disappears when the event that triggered the alarm is no longer
present.

● Alarm with acknowledgment and confirmation
The alarm must be acknowledged as soon as the event that triggers the alarm has occurred
or the alarm is reset. The alarm also requires a confirmation when the event that triggered
the alarm is no longer present. The alarm remains pending until it was acknowledged and
confirmed.

● Alarm without acknowledgment
This alarm comes and goes without having to be acknowledged. There is no visible
response from the system.

● Alarm without "outgoing" status with acknowledgment
This alarm is displayed in the alarm view until it is acknowledged. It then disappears from the
alarm view.

● Alarm without "outgoing" status without acknowledgment
This alarm is displayed, and goes out when the event that triggered the alarm is no longer
present. The alarm is not added to the alarm view.

● Alarm without status
This alarm only has the temporary status "Incoming" and can be seen in the log.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
226 System Manual, 11/2019, Online help printout

Acknowledging and confirming alarms
● Group acknowledgment of alarms in the alarm view

The alarm view has a "Group acknowledgment" button. This button triggers the
acknowledgment of all visible alarms that require acknowledgment and are pending in the
alarm view.

● Single acknowledgment of alarms in the alarm view
The alarm view has a "Single acknowledgment" button. This button triggers the
acknowledgment of individual alarms selected in the alarm view.

● Single confirmation of alarms with acknowledgment and confirmation in the alarm view.
The alarm view has a "Single confirm" button. The alarm with the state machine "Alarm with
acknowledgment and confirmation" is individually confirmed with this button after it has
been acknowledged with group acknowledgment or single acknowledgment beforehand
and is outgoing.

Note

If the "Show recent" button is pressed, the most recent alarm is always shown first. Group
acknowledgment is only executed for the visible alarms.

See also
Alarm system (Page 213)

Configuring alarm acknowledgment (Page 250)

Alarm components and properties (Page 227)

Acknowledging alarms (Page 225)

Alarm states (Page 220)

Alarm classes (Page 221)

Alarm control (Page 76)

4.1.7 Alarm components and properties (RT Uni)

Overview
The following table shows the basic components of alarms that you can configure in WinCC:

Alarm
class

Alarm
number

Time
of day

Date State ma‐
chine

Alarm text Info text Trigger tag Limit

Warn‐
ing

1 11:09:
14

06.08.
2017

Alarm with
single-
mode ac‐
knowledg‐
ment

Maximum speed
reached

This alarm is ... speed_1 27

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 227

Alarm class
The alarm class of an alarm determines whether the alarm has to be acknowledged.

The alarm class defines the following for an alarm:

● State machine/acknowledgment model

● Appearance in runtime (e.g. color)

● Priority

Alarm number
An alarm is identified by an alarm number (ID). The alarm number is assigned by the system
for internally managing an alarm. You can change the alarm number to a sequential alarm
number, if necessary, to identify alarms associated in your project.

An alarm number must only be used once on a device.

Note

Discrete alarms and analog alarms can receive an identical alarm number from the system. The
alarm number can be customized on request.

Note

When adapting alarm numbers, observe the inter-project uniqueness of the alarm number.

The system event number overrides a custom alarm number. If using the system event number
for a custom alarm, change the custom alarm number accordingly.

Time and date
Every alarm has a time stamp that shows the time and date at which the alarm was triggered.

State machine
An alarm has the state machine or the acknowledgment model of the alarm class.

The state machine is how an alarm is displayed in various states and processed from by the
system.

Alarm states
An alarm always has a specific alarm state in runtime. The operator analyzes the process
execution based on the alarm states.

Alarm text
The alarm text describes the cause of the alarm.

The alarm text can contain output fields for current values. The values you can insert depend
on the runtime in use. The value is retained at the time at which the alarm status changes.

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
228 System Manual, 11/2019, Online help printout

Info text
You can configure a separate infotext for each alarm; the operator can display this infotext in
runtime.

Trigger tag
A tag is assigned to each alarm as trigger. The alarm is raised when this trigger tag meets the
defined condition, e.g. when its state changes or it exceeds a limit.

Limit
Analog alarms indicate limit violations. Depending on the configuration, WinCC outputs the
analog alarm as soon as the trigger tag exceeds or undershoots the limit value.

Computer
Operator input alarms have the "Computer" column in the alarm lists. The computer name is
displayed for local alarms and the IP address for alarms from the web client.

Users
The user acknowledges the alarm. If an empty user name is transferred to an alarm, the alarm
displays no user name.

See also
Alarm system (Page 213)

Acknowledgment model (Page 226)

Alarm states (Page 220)

Alarm classes (Page 221)

Acknowledging alarms (Page 225)

Configuring alarms (RT Uni)
4.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 229

4.2 Configuring alarms (RT Uni)

4.2.1 Workflow for configuring alarms (RT Uni)

Steps to configure alarms
You configure alarms in the following stages:

1. Set alarm classes or configure your own alarm classes and assign them to alarms
You use the alarm class to define how an alarm is to be displayed in runtime and to define
the state machines for it.

2. Create trigger tags in the "HMI tags" editor

– Configure the tags for your project (bit string for discrete alarms and trigger tags for
analog alarms)

– You create range values for the tags.

3. Creating tags in the "HMI alarms " editor

– Create custom alarms and assign the tag to be monitored, alarm classes, and other
properties to them.

4. Output of configured alarms
To output configured alarms, configure an alarm view in the "Screens" editor.

5. Creating an alarm log
To log alarms, create an alarm log in the "Logs" editor.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
230 System Manual, 11/2019, Online help printout

Additional configuration tasks
Additional tasks could be necessary for configuring alarms, depending on the requirements of
your project:

● Editing system events
If necessary, you edit system events under "Languages & Resources > Project texts". In the
"Category" column you can recognize a system event by the name "HMI system event".

● Activating controller alarms
For integrated operation of a project in STEP 7, specify the controller alarms to be displayed
on your HMI device in the alarm settings.

Note

WinCC only supports controller alarms of a SIMATIC S7-1500 controller. In addition, WinCC
only supports controller alarms that are automatically updated by the central alarm
management in the controller.

See also
Creating alarm classes (Page 231)

Using common alarm classes (Page 233)

Configuring discrete alarms (Page 238)

Configuring analog alarms (Page 241)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Configuring multilingual alarm texts (Page 247)

Editing system events (Page 248)

Configuring alarm acknowledgment (Page 250)

Filtering controller alarms via display classes (Page 249)

Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Configuring automatic update of controller alarms on the HMI device (Page 288)

Configuring the display of system diagnostic alarms (Page 262)

4.2.2 Creating alarm classes (RT Uni)

Introduction
Create alarm classes to define the type of acknowledgment, the display of the alarm in runtime
for an alarm. You assign the individual alarms to the alarm classes.

Create alarm classes in the "Alarm classes" tab of the "HMI alarms" editor. Some default alarm
classes are already created for every project. You can create additional custom alarm classes.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 231

System alarm classes are write-protected and cannot be deleted. You can, however, change
the preset background and foreground colors and font colors if necessary. All system alarm
classes have the word "System" in their name and are to be used for system-defined alarms.

Requirement
● The "HMI alarms" editor is open.

● The Inspector window is open.

Procedure
To create an alarm class, proceed as follows:

1. Click the "Alarm classes" tab.
A table of the pre-defined alarm classes is shown below:

2. Double-click "<Add>" in the table.
A new alarm class is created. Each new alarm class is automatically assigned a static ID.
The properties of the new alarm class are shown in the Inspector window.

3. Configure the alarm class under "Properties > General" in the Inspector window:

– Enter a name for the alarm class.

– Set the priority of the alarm class.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
232 System Manual, 11/2019, Online help printout

4. Define the state machine for the alarm class under "Properties > Acknowledgment" in the
Inspector window.

5. You can also change the default background color as well as the text color and the settings
for flashing under "Properties > Colors" in the Inspector window.
These settings define how alarms from this alarm class are displayed in runtime.

Note

For alarm colors to be displayed in Runtime, the "Use alarm colors" option must be activated
in the properties of the alarm view in the Inspector window. This option is enabled by default.

See also
Alarm classes (Page 221)

Using common alarm classes (Page 233)

Workflow for configuring alarms (Page 230)

Configuring alarm acknowledgment (Page 250)

Configuring discrete alarms (Page 238)

Configuring analog alarms (Page 241)

4.2.3 Using common alarm classes (RT Uni)

Introduction
Common alarm classes are displayed under "Common data > Alarm classes" in the project tree
and can be used for the alarms of an HMI device. Common alarm classes are used in STEP 7
for controller alarms. If required, create additional common alarm classes in WinCC. Common
alarm classes are divided into predefined and user-defined common alarm classes. The
predefined common alarm classes are "Acknowledgement" (for alarms with acknowledgment)
and "No Acknowledgement" (for alarms without acknowledgment).

When you create an HMI device, the system creates an alarm class for each existing common
alarm class under "HMI alarms > Alarm classes" which is linked to the common alarm class. If
you have created an HMI device and create a common alarm class, the system creates an
alarm class for the created common alarm class under "HMI alarms > Alarm classes" which is
linked to the common alarm class. If you change all properties for a created common alarm
class, the system changes the properties "State machine" and "Priority" of the linked alarm
class according to your changes to the "Acknowledgment" and "Priority" properties of the
common alarm class. However, your changes to the "Name" and "Display name" properties of

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 233

the common alarm class have no effect on the properties of the linked alarm class. When you
delete a common alarm class, the linked alarm class is also deleted.

Note

By the "Common alarm class" property of an alarm class, you can see whether the alarm class
is linked with a common alarm class and, if so, with which common alarm class. To see the
property in the "HMI alarms" editor in the "Alarm classes" tab, activate there the "Common
alarm class" column using the shortcut menu of the column headers. To see the property in the
Inspector window, select an alarm class under "HMI alarms > Alarm classes" and click
"General" in the Inspector window.

Requirements
● You have created a project.

Creating common alarm class
To create a common alarm class, proceed as follows:

1. Double-click "Common data > Alarm classes" in the project tree.
The "Alarm classes" editor opens in the working area.

2. To create a common alarm class, double-click in the first empty line of the table editor.

3. Specify the name, display name and priority of the common alarm class and activate the
mandatory acknowledgment, if required.
A common alarm class is created. The system also creates an alarm class under "HMI
alarms > Alarm classes", which is linked to the common alarm class. The linked alarm class
gets from the system the same name and priority as the common alarm class. If you have
enabled the mandatory acknowledgment for the common alarm class, the linked alarm
class gets the state machine "Alarm with single-mode acknowledgment" from the system,
otherwise the state machine "Alarm without acknowledgment". The defined display name of
the common alarm class has no effect on the properties of the linked alarm class.

4. If required, change the name of the alarm class that is linked to the common alarm class
under "HMI alarms > Alarm classes".
If you change the name of the linked alarm class, the common alarm class name is not
changed by the system.

Assign alarms to a common alarm class
Proceed as follows to assign an analog or discrete alarm to a common alarm class:

1. In the "HMI alarms" editor, select the alarm that you want to assign to the common alarm
class.

2. Click "General" in the Inspector window.

3. Click "Common data > Alarm classes" in the project tree. Alternatively, click "HMI Alarms"
in the project tree.
In the first case, the common alarm class is selected in the detail view. In the second case,
the detail view shows the alarm class, which is linked to the common alarm class.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
234 System Manual, 11/2019, Online help printout

4. Select the common alarm class or alternatively the linked alarm class in the detail view.

5. Drag the common alarm class or alternatively the linked alarm class to the "Alarm class" field
or "Alarm class" column in the working area of the Inspector window of the alarm.
In both cases, the alarm is assigned to the alarm class which is linked to the common alarm
class.

Changing a common alarm class
To change a common alarm class, proceed as follows:

1. Double-click "Common data > Alarm classes" in the project tree.
The "Alarm classes" editor opens in the working area.

2. If necessary, change the name of the created common alarm class.
The changed name of the common alarm class has no effect on the name of the alarm class
which is linked to the common alarm class.

3. If necessary, change the display name of the common alarm class.
The changed display name of the common alarm class has no effect on the properties of the
linked alarm class.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 235

4. If required, activate or deactivate the mandatory acknowledgment of the common alarm
class.
If you enable the mandatory acknowledgment, the system changes the state machine of the
linked alarm class to "Alarm with single-mode acknowledgment". If you disable the
mandatory acknowledgment, the system changes the state machine of the linked alarm
class to "Alarm without acknowledgment".

5. If necessary, change the priority of the common alarm class.
The system changes the priority of the linked alarm class according to your change to the
priority of the common alarm class.

Note

You can only change the display names for a predefined common alarm class. The changed
display name of a predefined common alarm class has no effect on the properties of the alarm
class which is linked to the predefined common alarm class.

Deleting a common alarm class
To delete a common alarm class, proceed as follows:

1. Double-click "Common data > Alarm classes" in the project tree.
The "Alarm classes" editor opens in the working area.

2. Select the created common alarm class that you want to delete.

3. Select the "Delete" entry from the shortcut menu.
The system deletes the common alarm class and the alarm class linked with the common
alarm class.

4. If an analog or discrete alarm has been assigned to the deleted linked alarm class, assign
another alarm class to the alarm. Otherwise a compile error will be generated.

Note

You cannot delete predefined common alarm classes and the alarm classes that are linked with
them.

See also
Alarm classes (Page 221)

Creating alarm classes (Page 231)

Workflow for configuring alarms (Page 230)

Configuring discrete alarms (Page 238)

Configuring analog alarms (Page 241)

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
236 System Manual, 11/2019, Online help printout

4.2.4 Configuring state texts of alarms (RT Uni)

Introduction
The texts for the states of alarms in runtime are displayed in the alarm view in the "Status Text"
column. You specify the state texts of alarms in the runtime settings.

Note

If no alarm state texts are defined, an error is generated during compiling.

Requirement
● The alarm view has been configured.

Procedure
To configure the state texts of alarms, follow these steps:

1. Open the "Runtime settings" of the HMI device.

2. Specify the state texts of alarms in runtime under "Alarms > State texts":

Field Description
Normal Text for alarms in "Normal" state. This state can only have alarms that are

for information purposes only.
Incoming Text for incoming alarms when changing to the operating state to be

reported
Incoming/outgoing Text for incoming and outgoing alarm
Incoming/acknowl‐
edged

Text for incoming and acknowledged alarm

Incoming/acknowl‐
edged/outgoing

Text for incoming, acknowledged and outgoing alarm

Incoming/outgoing/
acknowledged

Text for incoming, outgoing and acknowledged alarm

Remote Text for alarms in "Remote" state. Only controller alarms can have this
state. The state text is only displayed in the alarm log. If the HMI connec‐
tion between HMI device and controller is disconnected and then re-es‐
tablished, the status text is displayed.

3. To define the state texts in several languages, activate at least one additional language
under "Languages & Resources > Project languages".

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 237

4. Specify the state texts in the other languages under "Languages & Resources > Project
texts".

Note

The state texts have the entry "Alarm text" in the "Category" column. For the state texts, the
texts displayed in the "Reference" column also end as follows:
● "…\NormalText"
● "…\ComingText"
● "…\ComingGoingText"
● "…\ComingAcknowledgedText"
● "…\ComingAcknowledgedGoingText"
● "…\ComingGoingAcknowledgedText"
● "…\RemovedText"

5. Select the alarm view in the "Screens" editor.

6. To display the column "Status text" in the Alarm view, select the property "Visibility" in the
Inspector window under "Properties > Alarm view > Columns > [46] Status text alarm
column".

See also
Configuring an alarm control (Page 253)

4.2.5 Configuring discrete alarms (RT Uni)

Introduction
Discrete alarms triggered by the PLC indicate status changes in a plant. A discrete alarm is
triggered by a specific value (bit) of a tag.

Imagine, for example, that the state of a valve is to be monitored during operation. The two
possible valve states are "opened" and "closed". In this case, a discrete alarm is configured for
each valve state. A discrete alarm containing the following alarm text, for example, is output
when the state of this valve changes: "Valve closed".

Note

By default, each new discrete alarm is assigned the alarm class "Alarm". You can then alter the
alarm class as required.

Requirement
● The "HMI alarms" editor is open.

● The Inspector window is open.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
238 System Manual, 11/2019, Online help printout

Procedure
To configure a discrete alarm, proceed as follows:

1. Click the "Discrete alarms" tab.

2. To create a new discrete alarm, double-click on "<Add>" in the table.
A new discrete alarm is created.

3. Assign a name for the discrete alarm.

Note

The name of a discrete alarm can contain up to 128 characters.

4. To configure the alarm, select "Properties > General" in the Inspector window:

– Edit the name of the alarm as required.

– Select the alarm class.

– Configure the priority of the alarm (a value of between "0" and "16").

Note

You can use the priority to sort or filter the alarms in the alarm view. With sorting by priority,
you can ensure that the most important alarm (high priority) is shown in the display range in
a single-line alarm view.

If you filter the alarm view by priority "16", only the alarms with priority "16" will appear.

For alarms with priority "0", the priority of the alarm class applies.

The priority of the alarm when displayed in Runtime takes precedence over the priority of the
alarm class.

5. Optional: Configure an additional info text in the Inspector window under "Properties > Info
text", which operators can display in Runtime via "Info text configuration".
To insert a line break in the info text, press Shift+ENTER.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 239

6. Select "Properties > Trigger" in the Inspector window to select the tag and the bit that
triggers the alarm.
Note the following information:

– A tag is monitored using only one alarm type. You should therefore create either analog
alarms or discrete alarms for a tag.

– Only use a trigger tag bit for one alarm.

– Use one of the following data types: "Bool", "Byte", "Word", "LWord" or "DWord".

– Do not use trigger tags for anything else.

– The available area for the bit of the trigger tag depends on the trigger tag data type.

– If the object does not yet exist in the selection list, create it directly in the object list and
change its properties later.

Note

The Engineering System ensure that you use the trigger bit only once.

7. In the Inspector window under "Properties > Trigger > Settings > Mode", specify whether the
alarm is triggered at a rising or falling edge.

8. Specify alarm texts under "Properties > Alarm texts" in the Inspector window:

– Specify an alarm text under "Alarm text".

– Specify additional alarm texts in the fields for additional texts.

– If necessary, insert parameter output fields in the alarm texts using the "Insert parameter
field" shortcut menu command.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
240 System Manual, 11/2019, Online help printout

Tips for effective procedure

● Large machines and plants have a large number of alarm sources that can trigger various different types of alarms. It makes sense to
structure the alarm system so that the user can keep track of this wide range. One suitable method available here is alarm prioritization.
The criteria for assigning the priority value and/or the alarm class are importance and urgency. The priority of the alarm can also be based
on the potential impact (system downtime, loss of production, production delay, etc.). If multiple alarms are output, the system can suggest
the order in which they should be handled on the basis of priorities.

● You create discrete alarms together with the trigger tags and edit them in the "HMI tags" editor. You create tags in the usual way. Then
click <Add> in the table on the "Discrete alarms" tab at the bottom of the work area. A new discrete alarm is created for the tag. If you have
selected the wrong data type, the tag will be highlighted in the discrete alarm. If you delete, move or copy objects in the "HMI tags" editor,
these changes also take effect in the "HMI alarms" editor. The configured discrete alarms are created in the "HMI tags" editor and
displayed in the "HMI alarms" and "HMI tags" editors.

● Supplementary information about individual alarms ensures that faults are localized and cleared quickly.

See also
Discrete alarms (Page 216)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Workflow for configuring alarms (Page 230)

Configuring alarm acknowledgment (Page 250)

Creating alarm classes (Page 231)

Using common alarm classes (Page 233)

Configuring multilingual alarm texts (Page 247)

Editing system events (Page 248)

Configuring analog alarms (Page 241)

Creating internal tags (Page 154)

4.2.6 Configuring analog alarms (RT Uni)

Introduction
You configure analog alarms to display limit violations. You have defined in advance a limit
value for the trigger tag and the trigger mode. An analog alarm is triggered depending on which
mode you have defined, for example, when the value is higher than, lower than or the same as
the defined value.

If the speed of a motor drops below a certain value, for example, an analog alarm is triggered.
This alarm could contain the following text: "Motor speed is too low".

Note

By default, each new analog alarm is assigned the alarm class "Alarm". You can then alter the
alarm class as required.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 241

Requirement
● The "HMI alarms" editor is open.

● The Inspector window is open.

Procedure
To configure an analog alarm, proceed as follows:

1. Click the "Analog Alarms" tab.

2. To create a new analog alarm, double-click in the table on "<Add>".
A new analog alarm is created.

3. To configure the alarm, select "Properties > General" in the Inspector window:

– Edit the name of the alarm as required.

– Select the alarm class.

– Configure the priority of the alarm (a value of between "0" and "16").

Note

You can use the priority to sort or filter the alarms in the alarm view. With sorting by priority,
you can ensure that the most important alarm (high priority) is shown in the display range in
a single-line alarm view.

If you filter the alarm view by priority "16", only the alarms with priority "16" will appear.

For alarms with priority "0", the priority of the alarm class applies.

The priority of the alarm when displayed in Runtime takes precedence over the priority of the
alarm class.

4. Optional: Configure an additional info text in the Inspector window under "Properties > Info
text", which operators can display in Runtime via "Info text configuration".
To insert a line break in the info text, press Shift+ENTER.

5. In the Inspector window, select the tag that triggers the alarm under "Properties > Trigger".
Do not use trigger tags for anything else.
Use one of the following data types: "Int", "Real", "LReal", "SInt", "USInt", "UInt", "UDInt" and
"ULInt".

6. Specify alarm texts under "Properties > Alarm texts" in the Inspector window:

– Specify an alarm text under "Alarm text".

– Specify additional alarm texts in the fields for additional texts.

– If necessary, insert parameter output fields in the alarm texts using the "Insert parameter
field" shortcut menu command.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
242 System Manual, 11/2019, Online help printout

7. Select the analog alarm to which you want to assign the limits.

8. Enter a limit value in the "Value" field under "Properties > Trigger" in the Inspector window.

9. Select the trigger mode in the "Mode" field:

– "Less": The alarm is triggered if the limit is undershot.

– "Greater": The alarm is triggered if the limit is exceeded.

– "Equal": The alarm is triggered when the limit is reached.

– "Not equal": The alarm is triggered if the limit is not reached.

– "Less or equal": The alarm is triggered if the limit is undershot or reached.

– "Greater or equal": The alarm is triggered if the limit is exceeded or reached.

10.You can create additional limits for the alarm, if necessary. Note the following information:

– A tag is monitored using only one alarm type. You should therefore create either analog
alarms or discrete alarms for a tag.

– If the object included in the selection does not yet exist, create it in the object list and
change its properties later.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 243

Tips for effective procedure

● Large machines and plants have a large number of alarm sources that can trigger various different types of alarms. It makes sense to
structure the alarm system so that the user can keep track of this wide range. One suitable method available here is alarm prioritization.
The criteria for assigning the priority value and/or the alarm class are importance and urgency. The priority of the alarm can also be based
on the potential impact (system downtime, loss of production, production delay, etc.). If multiple alarms are output, the system can suggest
the order in which they should be handled on the basis of priorities.

● You create analog alarms together with the trigger tags and edit them in the "HMI tags" editor. You create tags in the usual way and
configure the range values of the tags. Then click <Add> in the table on the "Analog alarms" tab at the bottom of the work area. A new
analog alarm is created for the tag. If you have selected the wrong data type, the tag will be highlighted in the analog alarm. If you delete,
move or copy objects in the "HMI tags" editor, these changes also take effect in the "HMI alarms" editor. The configured analog alarms
are created in the "HMI tags" editor and displayed in the "HMI alarms" and "HMI tags" editors.

● Supplementary information about individual alarms ensures that faults are localized and cleared quickly.

See also
Analog Alarms (Page 215)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Workflow for configuring alarms (Page 230)

Configuring alarm acknowledgment (Page 250)

Creating alarm classes (Page 231)

Using common alarm classes (Page 233)

Configuring discrete alarms (Page 238)

Configuring multilingual alarm texts (Page 247)

Editing system events (Page 248)

Creating internal tags (Page 154)

4.2.7 Configuring optional parameters for discrete alarms and analog alarms (RT Uni)

Setting the alarm context
In a large plant system, it makes sense to save information about the alarm origin such as the
physical, geographical or logical grouping of plant units that is defined by the site. This helps
users in identifying the causes of the alarm and the source of the fault.

You configure the information on alarm sources in the "Origin" field of the "Alarm context" area.

The "Area" field is a static field and contains information about the device.

Creating info texts for alarms
To configure an infotext for the alarm and thus support users, follow these steps:

1. Select a discrete alarm or an analog alarm.

2. Select "Properties > Infotext" in the Inspector window and enter the required text.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
244 System Manual, 11/2019, Online help printout

3. To insert a line break in the info text, press "Shift+Enter" at the corresponding text location.

4. To create multi-lingual info texts, enter the respective texts in the predefined project
languages in the Inspector window and, if necessary, in the reference language.

Enabling parameters for a discrete or analog alarm
To output process values in an output field in the alarm text, assign tags to the parameter
blocks. Proceed as follows:

1. Select the alarm.

2. In the Inspector window, click "Properties > Alarm parameters".

3. Select a tag for the alarm parameter.

4. You can enter multiple alarm parameters if required.
Insert the activated process values as a selection box in an alarm text.

Note

You can configure up to 10 tags as alarm parameters for discrete alarms and analog alarms.

All available data types are supported.

See also
Configuring analog alarms (Page 241)

Configuring discrete alarms (Page 238)

Workflow for configuring alarms (Page 230)

Configuring multilingual alarm texts (Page 247)

Editing system events (Page 248)

Configuring alarm acknowledgment (Page 250)

Translating texts directly (Page 763)

Exporting project texts (Page 765)

Analog Alarms (Page 215)

Discrete alarms (Page 216)

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 245

4.2.8 Parameter output in a discrete or analog alarm (RT Uni)

Introduction
To display alarm parameters, insert an appropriate output field in a discrete or analog alarm.
You can select the parameters configured in "Properties > Properties > Alarm parameters" for
use as alarm parameters.

Requirement
● The "HMI alarms" editor is open.

● The discrete alarm or analog alarm is selected.

Procedure
To output a parameter in the alarm text, follow these steps:

1. Place the cursor at the required position in the alarm text.

2. To output an alarm parameter, select "Insert parameter field" from the shortcut menu.
A dialog box opens.

3. Select the desired parameter.

4. Moreover, you can specify the following data for alarm parameters:

– The tag that provides the parameter values.
The tag configured for the parameter under "Properties > Properties > Alarm
parameters" is entered by default. If you select a different tag, WinCC updates the
parameter configuration in "Properties > Properties > Alarm parameters" accordingly.

– Display type, text list, length, number of decimal places and alignment of the output field

– To display leading zeros in the output field, enable "Leading zeros".

5. Confirm the dialog to save your entries.

4.2.9 Configuring alarm texts (RT Uni)

Introduction
For an alarm, you can configure up to ten alarm texts: one alarm text and up to nine additional
texts. If required, you can insert output fields for displaying alarm parameters in each alarm text.
Each alarm text contains up to 512 characters.

Requirement
● An alarm has been created.

● The alarm control has been configured.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
246 System Manual, 11/2019, Online help printout

Procedure
To configure alarm texts, follow these steps:

1. In the "HMI alarms" editor, select the alarm.

2. Enter an alarm text under "Properties > Properties > Alarm texts > Settings > Alarm text" in
the Inspector window.

Note

Use the scroll buttons to view text that is not fully visible in the text box. The additional
text lines are displayed.

3. If necessary, insert parameter output fields in the alarm text via the "Insert parameter field"
shortcut menu command.

4. Enter additional alarm texts in the fields for additional texts under "Properties > Properties
> Alarm texts" in the Inspector window.

5. If necessary, insert parameter output fields in the other alarm texts using the "Insert
parameter field" shortcut menu command.

6. Select the alarm view in the "Screens" editor.

7. To display the alarm texts in Runtime, enable the required columns of the columns
numbered 10 to 19 in the Inspector window under "Properties > Properties > Alarm view >
Columns".

4.2.10 Configuring multilingual alarm texts (RT Uni)

Requirements
● The "HMI alarms" editor is open.

● An alarm has been created.

Procedure
1. Select one or more alarms for which you want to configure multilingual alarm texts.

2. You can view the alarm texts already configured in the set project languages under
"Properties > Texts".

3. If available, enter the alarm texts in the required project languages.
The alarm texts will then be displayed in the set runtime language in runtime.

Note

All alarm texts are managed together with other project texts under "Languages & Resources
> Project texts".

If you cannot configure the project texts in multiple languages yourself, export them to an Excel
file and have them translated. You can then import the texts to your project.

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 247

See also
Basics of project texts (Page 762)

Workflow for configuring alarms (Page 230)

Configuring discrete alarms (Page 238)

Configuring analog alarms (Page 241)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Working with multiple languages (Page 761)

Importing project texts (Page 767)

Translating texts directly (Page 763)

Selecting the reference language and editing language (Page 759)

4.2.11 Editing system events (RT Uni)

Basics
A system event indicates the system status and communication errors between the HMI device
and system. System events are output in runtime in the configured alarm view. System events
are output in the language currently set on your HMI device.

The time format (AM/PM or 24-hour format) is based on the selected language. If no translation
of the alarm texts exists in this language, English is used as replacement and the corresponding
time format is displayed.

Example of an alarm:

"Memory is full!"

Editing system events
If necessary, you edit system events under "Languages & Resources > Project texts". In the
"Category" column you can recognize a system event by the name "HMI system event". You
can export the system events together with the other texts under "Project texts" and have them
translated.

System event parameters
System events may contain encrypted parameters. The parameters are of relevance when
troubleshooting because they provide a reference to the source code of the runtime software.
These parameters are output after the "Error code: text"

See also
Workflow for configuring alarms (Page 230)

Configuring discrete alarms (Page 238)

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
248 System Manual, 11/2019, Online help printout

Configuring analog alarms (Page 241)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

System Alarms (Page 218)

4.2.12 Filtering controller alarms via display classes (RT Uni)

Introduction
Controller alarms are configured in STEP 7. Controller alarms are available in WinCC running
in a STEP 7 environment.

If a PLC is connected to multiple HMI devices, the project engineer assigns display classes to
the controller alarms in STEP7. The display classes determine the allocation to the HMI device.
You can activate the display classes for your HMI device that are to be displayed on it. In this
case, only the controller alarms from this display class will be displayed on the HMI device. Up
to 17 display classes are possible.

Note

WinCC only supports controller alarms of a SIMATIC S7-1500 controller. In addition, WinCC
only supports controller alarms that are automatically updated by the central alarm
management in the controller.

Requirement
● The connection was established to the PLC.

● Alarms were configured in STEP 7.

Filtering controller alarms via display classes
To filter controller alarms by display classes, proceed as follows:

1. Click "Runtime settings > Alarms" in the project tree under your HMI device.
One or several connections to a PLC are shown in "Contoller alarms".

2. Select the display classes whose controller alarms you want to display for the connection.

See also
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Configuring automatic update of controller alarms on the HMI device (Page 288)

Workflow for configuring alarms (Page 230)

User-defined controller alarms (Page 216)

Alarm system (Page 213)

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 249

4.2.13 Configuring alarm acknowledgment (RT Uni)

Introduction
The alarm classes define how the alarms from an alarm class are to be acknowledged. When
you assign an alarm to an alarm class, you define the state machine and the acknowledgment
model for that alarm.

Requirements
● The "HMI alarms" editor is open.

● The required alarm class has been created.

● The required alarm has been created.

Procedure
To configure the acknowledgement of an alarm, follow these steps:

1. In the "HMI alarms" editor, click the "Alarm class" tab and select the alarm class.

2. You select the desired state machine under "Properties > General > Acknowledgment" in
the Inspector window.

Note

The buttons relevant for acknowledgment, "Group acknowledgment", "Single
acknowledgment" and "Single confirm", are activated in the alarm view by default and can be
operated in runtime.

See also
Acknowledgment model (Page 226)

Acknowledging alarms (Page 225)

Acknowledging alarms (Page 277)

Configuring alarms (RT Uni)
4.2 Configuring alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
250 System Manual, 11/2019, Online help printout

Workflow for configuring alarms (Page 230)

Creating alarm classes (Page 231)

Configuring discrete alarms (Page 238)

Configuring analog alarms (Page 241)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

4.3 Exporting and importing alarms (RT Uni)

4.3.1 Exporting alarms (RT Uni)

Introduction
WinCC makes an export function available for alarms.

Requirements
● The WinCC project for export is open.

● Alarms have been created in the project.

● The "HMI alarms" editor is open.

Exporting alarms
To export alarms from a WinCC project, follow the steps below:

1. Click the button in the "Discrete alarms" or "Analog alarms" tab.
The "Export HMI alarms" dialog box opens.

2. Click "..." and specify the file in which data is saved.

3. Specify whether you want to export "Discrete alarms" and/or "Analog alarms".

4. Click "Export".
The export starts. When the export is complete, a message on completion of the export is
displayed.

5. Confirm the message on completion of the export with "OK".

Result
The exported data has been written to an xlsx file. The xlsx file has been stored in the specified
folder.

If you have only exported discrete alarms, the xlsx file has the worksheet "DiscreteAlarms". If
you have only exported analog alarms, the xlsx file has the worksheets "AnalogAlarms" and
"Limits". If you have exported discrete alarms and analog alarms, the xlsx file has the
worksheets 'DiscreteAlarms", "AnalogAlarms" and "Limits".

Configuring alarms (RT Uni)
4.3 Exporting and importing alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 251

Each alarm is in a separate row in the xlsx file.

Note

The list entries with the "FieldInfo" designation specify whether the alarm text contains dynamic
parameters. The settings are separated by a semicolon ";".

4.3.2 Importing alarms (RT Uni)

Introduction
WinCC makes an import function available for alarms. Alarms are identified by their alarm ID.
An existing alarm is overwritten by the data from the import file if the alarm ID already exists in
the project on import. A new alarm is created in the project if the alarm does not yet exist in the
project on import.

Requirements
● An xlsx file with alarms has been created.

● The xlsx file has the same structure as an xlsx file that is created when alarms are exported.

● The IDs and names that were assigned for messages in the xlsx file are unique throughout
the project.

● The WinCC project for import is open.

● The "HMI alarms" editor is open.

Importing alarms
To import alarms into a WinCC project, follow the steps below:

1. Click the button in the "Discrete alarms" or "Analog alarms" tab.
The "Import HMI alarms" dialog box opens.

2. Click "..." and select the file that you want to import.

3. Click "Import".
The import starts. An xml log file is created on import. When the import is complete, a
message on completion of the import is displayed.

Note

To open the created xml log file, click the link "Click here to view the log file". It is advisable
to open the xml log file, especially if the import was completed with warnings.

4. Confirm the message on completion of the import with "OK".

Configuring alarms (RT Uni)
4.3 Exporting and importing alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
252 System Manual, 11/2019, Online help printout

4.4 Configuring an alarm control (RT Uni)

4.4.1 Configuring an alarm control (RT Uni)

Introduction
The alarm view is configured for a screen. Current or logged alarms are displayed in the alarm
view in runtime. More than one alarm can be displayed simultaneously, depending on the
configured size. Configure the criteria for alarm filtering.

You can also configure multiple alarm views with different contents and in different screens.

Requirement
● A screen is open.

● The "Toolbox" task card is open.

Procedure
1. Insert an "Alarm view" object from the "Tools" task card into the screen.

2. Go to "Properties" and set the required height, width and position of the alarm view.

3. Under "Properties > Alarm view" you define the layout and color composition of the alarm
view as well as the design of the header and the contents of the table grid.

4. Select the property "Show recent" to display the latest alarm that is selected in the alarm
view.
The visible area of the alarm view moves, if necessary.

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 253

5. Under "Alarm source" you specify which alarms the alarm view displays in runtime by
default.
Depending on your task or the requirements in your company, you can select from the
following display options:

– "Not configured": The alarm view does not show any alarms.

– "Pending alarms": The alarm view shows the currently pending alarms.

– "Logged alarms": The alarm view shows the logged alarms.

– "Logged alarms updated": The alarm view shows the logged alarms that are updated at
specified intervals.

– "Alarm definition": The alarm view shows all alarms configured in the engineering
system, regardless of whether or not they have occurred.

Depending on your selection, the view in the alarm view already changes in the engineering
system. The buttons relevant for the settings are shown as being active, while buttons that
are not relevant are grayed out. These settings are applied for runtime.

6. Define which alarms are displayed in runtime by default in the alarm lists for pending alarms
and for defined alarms.

– In the selection list under "General > Active alarms", select which alarms are displayed
as pending alarms.

– In the selection list under "General > Displayed alarms", select which alarms are
displayed as defined alarms.

Depending on your task or the requirements in your company, you select one or more
display options depending on the status of the alarms:

– "None": The alarm view shows all alarms.

– "Not suppressed": The alarm view only shows the non-suppressed alarms.

– "Locked": The alarm view only shows the locked alarms.

– "Suppressed by design": The alarm view only shows the alarms suppressed by design.

– "Shelved": The alarm view only shows the shelved alarms.

You selection is displayed by default in the alarm view when you start runtime.

Note

If you do not make a selection, the alarm view shows all alarms.

Note

You can change the display at any time in runtime even if you have selected a different
display option in the engineering system under "Alarm source" or "Active alarms".

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
254 System Manual, 11/2019, Online help printout

7. If necessary, select the authorization needed to operate the alarm view in runtime.

8. Under time zone you set the desired time zone by entering a decimal value for the time zone.

– "0" and positive numerical values: The values correspond to the index values of the
Microsoft time zones.

– "-1": The local time zone of the device

Note

In runtime you also have the option of setting the time zone via a selection list.

Result
Alarms of various alarm classes are output in the alarm view during runtime. To change the
view in runtime, click the configured buttons on the alarm view toolbar.

See also
Configuring toolbar and status bar (Page 255)

Configuring filters in the alarm view (Page 258)

Configuring alarm export (Page 260)

Configuring the printing of alarms (Page 261)

Show logged alarms (Page 261)

Defining the output format (Page 41)

Lists of the alarm view (Page 273)

Configuring columns and sorting (Page 257)

Alarm control (Page 76)

Configuring an alarm control for plant objects (Page 1534)

Configuring state texts of alarms (Page 237)

4.4.2 Configuring toolbar and status bar (RT Uni)

Introduction
You operate the alarm view in runtime using the buttons in the toolbar. The status bar displays
status messages from the alarm view. During configuration, set the content of the toolbar and
status bar.

The following buttons are visible in the alarm view by default:

● Show active alarms

● Show logged alarms

● Show and update logged alarms

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 255

● First line

● Previous line

● Next line

● Last line

● Group acknowledgment

● Single acknowledgment

● Single confirm

● Selection display

● Sorting setup

You must select the "Visibility" property for all other buttons.

Requirement
● The alarm view is selected in the screen.

● The Inspector window is open.

Configuring the toolbar
1. In the Inspector window, configure the general properties of the toolbar, such as alignment

and background color, under "Properties > Toolbar".

2. In the Inspector window, enable the buttons you need in runtime, e.g. "Export" or "Print",
under "Properties > Toolbar > Elements".

3. If required, configure the button display, for example background color, border and
maximum and minimum size.

4. If needed, you can define a tooltip for the buttons.

5. If needed, you can define a "hotkey" for the buttons.
To use the hotkeys, also select "Properties > Toolbar > Use hotkeys".

6. If a button is not to be operated in Runtime, deselect "Allow operator control".
You can reactivate a deactivated a button using a script in runtime, for example.

Note

The order and functionality of the buttons are defined in the system and cannot be changed.

Configuring the status bar
1. In the Inspector window, configure the general properties of the status bar such as the font

or the background color under "Properties > Status bar".

2. In the Inspector window, select the elements you need in runtime such as date, time,
connection status, etc. under "Properties > Status bar > Elements".

3. To adjust the size of an element in the status bar, select "User-defined".

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
256 System Manual, 11/2019, Online help printout

4. Enter the width and height in pixels.

5. To set the order of the elements, select the element in the list and move it to the desired
position.

See also
Configuring an alarm control (Page 253)

Configuring columns and sorting (Page 257)

Configuring filters in the alarm view (Page 258)

Configuring alarm export (Page 260)

Configuring the printing of alarms (Page 261)

Show logged alarms (Page 261)

4.4.3 Configuring columns and sorting (RT Uni)

Introduction
You configure the order in which the columns of the alarm view are displayed in runtime.

Requirement
● The alarm control is selected in the screen.

● The Inspector window is open.

Configuring columns
1. Click "Properties > Alarm view > Columns" in the Inspector window.

2. Enable the "Visibility" property for the relevant columns.

3. Under "Alarm text block" select the content that is to be displayed in the column, e.g. "Alarm
class".

4. Under "Alarm column [n] > Header > Text", enter the desired column name that is to be
displayed in the alarm view.

Note

For the column names to be configured as multilingual, you must enter the name of the
column under "Alarm column [n] > Header > Text".

You will then see the configured text in the Inspector window under "Texts" and can store
additional languages.

If you only enter the name under "Alarm column [n] > Name", multilingual configuration is not
possible.

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 257

Configuring the sorting
To sort alarms in the alarm view by column, follow these steps:

1. Select "Properties > Alarm view" > Allow sorting" so that sorting is generally possible in the
alarm view in runtime.

2. Under "Properties > Alarm view > Columns" open the alarm column by which you want to
initially sort the alarms, e.g. the "Priority" column.

3. Select the sorting order "1".

4. Select the desired sorting direction, e.g. "Ascending".

– The number "1" with the arrow pointing upwards for ascending sort order is displayed in
runtime in the column with sorting order "1".

– If the sorting order "Ascending" is enabled in the alarm view, each click in the column
header toggles the sorting between the ascending and descending mode.

5. To allow sorting for this column, enable "Alarm column [n] > Allow sorting".

Note

You can configure any sorting order.

If the "Show recent" property was selected under "Properties", the latest alarm is always
shown first.

See also
Configuring an alarm control (Page 253)

Configuring toolbar and status bar (Page 255)

Configuring filters in the alarm view (Page 258)

Configuring alarm export (Page 260)

Configuring the printing of alarms (Page 261)

Show logged alarms (Page 261)

4.4.4 Configuring filters in the alarm view (RT Uni)

Introduction
You can filter the display of alarms in the alarm control. You configure a static value, a tag or
a script for the filter. You can configure this function in the alarm control in the "Screens" editor.
To filter the alarms in Runtime, click "Selection display" in Runtime.

You can filter by all parameters, such as ID, name, alarm class, priority, etc.

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
258 System Manual, 11/2019, Online help printout

Requirement
● The alarm control is selected in the screen.

● The Inspector window is open.

Procedure
1. In the Inspector window under "Properties > Filter", click on the "..." button in the "Static

value" column.
The "Alarm filter configuration" dialog box opens.

2. Create a filter. To create a filter that filters for alarms with the alarm class "Alarm" and with
a priority of less than or equal to 5, for example, execute the following steps:

– In the "Criterion" column, double-click "<Add>".

– In the "Criterion" column, open the selection list and select the entry "Alarm class".

– In the "Condition" column, open the selection list and select the entry "Equal to".

– Enter the value "Alarm" in the field of the "Operand" column.

– In the next line, double-click "<Add>" in the "Criterion" column.

– In the "Criterion" column, open the selection list and select the entry "Priority".

– In the "Condition" column, open the selection list and select the entry "Less than or equal
to".

– Enter the value "5" in the field of the "Operand" column.

– Click the "OK" button.

3. To operate the filter in runtime, enable the "Visibility" property under "Properties > Toolbar
> Elements > [26] Control bar button Selection display".

Tips for effective procedure

You can also create filter criteria directly in runtime and use them as filters.

Filter by time
When filtering by time, the start and stop values are not adjusted automatically when the time
base of the alarm control is changed.

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 259

Example

At a PC location with time zone "UTC + 1h", the alarm control has the "Local time zone" time
base. If you filter for the time 10:00 to 11:00 and then change the time base to "UTC", you need
to change the start value and stop value of the filter to 9:00 and 10:00 to display the same
alarms as before.

See also
Filtering alarms in runtime (Page 275)

Configuring an alarm control (Page 253)

Configuring toolbar and status bar (Page 255)

Configuring columns and sorting (Page 257)

Configuring alarm export (Page 260)

Configuring the printing of alarms (Page 261)

Show logged alarms (Page 261)

Alarm control (Page 76)

4.4.5 Configuring alarm export (RT Uni)

Introduction
To export alarms to a "*.csv" file in Runtime, click on the "Export" button in the alarm view. You
configure the "Export" button in the alarm view in the "Screens" editor.

Requirement
● The screen with the configured alarm view is open.

● The Inspector window is open.

Procedure
To configure the export of alarms, proceed as follows:

1. Select the alarm view and enable the "Visibility" property in the Inspector window under
"Properties > Toolbar > Elements > Export button [29]".

You define the export settings such as the file name, the scope of the export and the format in
runtime in the "Export data" dialog.

See also
Configuring an alarm control (Page 253)

Configuring toolbar and status bar (Page 255)

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
260 System Manual, 11/2019, Online help printout

Configuring columns and sorting (Page 257)

Configuring filters in the alarm view (Page 258)

Configuring the printing of alarms (Page 261)

Alarm control (Page 76)

4.4.6 Configuring the printing of alarms (RT Uni)

Introduction
Click "Print" in the alarm view to print alarms in Runtime. You configure the "Print" button in the
alarm view in the "Screens" editor.

Requirement
● The screen with the configured alarm view is open.

● The Inspector window is open.

Procedure
To configure the printing of alarms, follow these steps:

1. Select the alarm view and enable the "Visibility" property in the Inspector window under
"Properties > Toolbar > Elements > Print button [28]".

See also
Configuring an alarm control (Page 253)

Configuring toolbar and status bar (Page 255)

Configuring columns and sorting (Page 257)

Configuring filters in the alarm view (Page 258)

Configuring alarm export (Page 260)

Show logged alarms (Page 261)

Alarm control (Page 76)

4.4.7 Show logged alarms (RT Uni)

Overview
When an alarm log is created, an alarm view also shows logged alarms in runtime.

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 261

The buttons relevant for logging, "Show logged alarms" and "Show and update logged alarms",
are activated in the alarm view by default and can be operated in Runtime.

You show logged alarms in runtime using these buttons.

See also
Creating an alarm log (Page 267)

Basics of alarm logging (Page 264)

Displaying logged alarms in runtime (Page 276)

Configuring an alarm control (Page 253)

Configuring toolbar and status bar (Page 255)

Configuring columns and sorting (Page 257)

Configuring filters in the alarm view (Page 258)

Configuring the printing of alarms (Page 261)

Configuring the display of security events (Page 286)

Alarm control (Page 76)

4.4.8 Configuring the display of system diagnostic alarms (RT Uni)

Introduction
System diagnostic alarms are installed with STEP 7 and are used for monitoring states and
events of a controller. To display system diagnostic alarms in an alarm view in runtime,
configure first in STEP 7 and then in WinCC.

Note

WinCC only supports system diagnostic alarms of a SIMATIC S7-1500 controller. In addition,
WinCC only supports system diagnostic alarms that are updated by the central alarm
management in the controller.

Requirement
● There is an HMI connection between the HMI Device and a SIMATIC S7-1500 controller (as

of firmware version 2.0).

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
262 System Manual, 11/2019, Online help printout

Configuring the display of system diagnostic alarms in STEP 7
To configure the display of system diagnostic alarms in runtime in STEP 7, proceed as follows:

1. Open the "Device configuration" of the controller in the project tree.

2. In the "Device view" tab, select the CPU on the rack.

3. Select "Properties > General > System diagnostics" in the Inspector window.
You will see that the option "Select system diagnostics for this device" is selected and
cannot be cleared. Because the system diagnostics of the controller is always enabled.

4. Activate the option "Central alarm management in the PLC" in the Inspector window under
"Properties > General > PLC alarms".
The automatic update of system diagnostic alarms on the HMI device is enabled in the
controller.

5. Open the "Common data" folder in the project tree and double-click "System diagnostic
settings".
The system diagnostic settings are opened. You can see the predefined categories of the
system diagnostic alarms in the table under "Category":

– "Error"

– "Maintenance demanded"

– "Maintenance required"

– "About"

6. In the table under "Category", select the alarm categories that are to be displayed in the
alarm view in runtime.

7. In the table under "Alarm class", assign common alarm classes to the alarm classes.

8. Right-click the controller in the project tree and select "Compile > Hardware (rebuild all)" in
the shortcut menu.

Configuring the display of system diagnostic alarms in WinCC
To configure the display of system diagnostic alarms in WinCC in runtime, proceed as follows:

1. Open the "Runtime settings" of the HMI device in the project tree.

2. Select the option "Automatic update" under "Alarms > Controller alarms".
The automatic update of system diagnostic alarms on the HMI device is enabled in the HMI
device.

3. Select the option "System diagnostics" under "Alarms > Controller alarms".
The display of system diagnostic alarms is enabled in runtime.

4. Configure an alarm view.

Result
The alarm view displays of the system diagnostic alarms of the controller in runtime.

Configuring alarms (RT Uni)
4.4 Configuring an alarm control (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 263

See also
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Configuring automatic update of controller alarms on the HMI device (Page 288)

System-defined controller alarms (Page 218)

Workflow for configuring alarms (Page 230)

4.5 Logging alarms (RT Uni)

4.5.1 Basics of alarm logging (RT Uni)

Introduction
An alarm log is used to log alarms that occur in the monitored process. You can use alarm
logging to analyze error states and to document the process. When you analyze the logged
alarms, you can extract important business and technical information regarding the operational
state of the plant.

Alarms of connected and appropriately configured PLCs are also logged and made available
in all configured languages.

Operating principle
Alarm logs are created by the system in runtime. For example, when a fault or a limit violation
occurs, the corresponding alarm you configured in the "HMI alarms" editor is output in runtime.
Each alarm event is logged, e.g., the transition of the alarm from "incoming" to "acknowledged"
status.

The logged alarms are stored in a circular log that consists of multiple single segments. The
size of all segments and of an individual segment is defined under "Alarm log" in the log
settings.

Each logged alarm is assigned to an alarm class. Alarm classes can be prioritized and
configured in different ways to ensure clarity even with large amounts of data.

Configuration
You configure alarm logging in the "Logs" editor. You define the logging cycles. The logs are
assigned to the alarm classes under "HMI alarms".

Content of the alarm log
The alarm logs are used to store all alarm data, including configuration data. You can read all
properties of an alarm from the logs, e.g. alarm class, time stamp and alarm texts.

Configuring alarms (RT Uni)
4.5 Logging alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
264 System Manual, 11/2019, Online help printout

The possible number of logged alarms depends on the server used.

Note

The time stamp of a logged alarm is always specified in standard UTC format (Universal Time
Coordinated).

As alarm configuration is language-specific, the logs contain a configuration data table for each
language configured.

Storage media and location
Log data are stored in a database. You can further process the saved data in other programs
for analysis purposes, for example.

Hard disk drives or USB sticks, for example, are suitable storage media.

Displaying logged data
You display the logged data on the device. To do so, you configure a corresponding alarm view
that displays the log data. You show the logged data in runtime by using the "Show logged
alarms" button.

See also
Show logged alarms (Page 261)

Defining log size, segmentation and backup (Page 265)

Creating an alarm log (Page 267)

4.5.2 Defining log size, segmentation and backup (RT Uni)

Introduction
For the log, you define the time period in which the data is written to a given log, and the
maximum size of the log file.

Each log consists of a configurable number of segments. You define a size in megabytes, the
start time and a time period (for example one day) for the segments.

Note

Make sure that the log size does not exceed the free memory space available. The system does
not validate the selected settings. A high number of linked log segments can lead to prolonged
waiting periods in the system when starting and ending runtime.

Configuring alarms (RT Uni)
4.5 Logging alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 265

Segments
In a segmented log, multiple log segments of the same size are created, and filled in
succession. When all logs are completely full, the oldest log is overwritten.

You can configure the following properties for the log segments:

● "Segment time period" defines the maximum period for one log segment, for example one
day. When the log segment reaches the specified time, the current segment is closed and
a new segment is created and filled with data.

● "Maximum segment size (MB)" defines the maximum size of a log segment in megabytes.
When the log segment reaches the specified size, the current segment is closed and a new
segment is created and filled with data.

● "Segment start time " and "Segment time period" define when to switch to the next log
segment. The log segments are written to the log from the start time. The segment changes
at the end of the configured time period, for example 8 hours. A new segment is created if
the configured segment size is exceeded. The next log segment change then takes place
at the end of the configured time period.

Response to segment change
The individual segments are filled one after the other in runtime. Once a segment is totally full,
the next segment is created and filled. You can also configure the segment change at specific
times. If you define a time for the segment change, the next log segment is filled when the time
is reached.

The process values are written continuously to the first segment.

When the configured size of the segment is reached or the time period is exceeded, the system
switches to the next segment.

When all segments are full, the oldest segment is deleted and a new segment is created.

To avoid losing process data as a result of overwriting, you can export the data to a backup.

Configuring alarms (RT Uni)
4.5 Logging alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
266 System Manual, 11/2019, Online help printout

Example
The following information has been configured:

Property Value
Log time period 1 week
Maximum log size (MB) 700 MB
Segment time period 1 day
Maximum segment size (MB) 100 MB
Segment start time Friday, November 23, 2017, 18:00

With the configuration suggested in the table, the started segment will be changed for the first
time at 18:00 on November 23, 2017. The next time-controlled segment change will take place
cyclically after periods of one day from the configured time.

Note

If you change the segmentation settings and run "Download to device", a new segment will be
created.

The segment will also change if the configured size of 100 MB is exceeded in the course of one
day. The oldest single segment will be deleted if the maximum log size of 700 MB is exceeded.

Backup
You can export process values from the log database as a backup. All process values
contained in a log segment are exported. A log segment is always exported upon segment
change, when it is full and a new segment is started. A log segment is also exported when the
time set for a segment change is reached and a new segment is started.

See also
Basics of alarm logging (Page 264)

Creating an alarm log (Page 267)

4.5.3 Creating an alarm log (RT Uni)

Introduction
The configuration of an alarm log consists of the following steps:

● Create an alarm log

● Configure an alarm log, for example, select the storage location

● Select alarms for logging

Configuring alarms (RT Uni)
4.5 Logging alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 267

Requirement
● A project is open.

● The Inspector window is open.

Procedure
To create an alarm log, follow these steps:

1. Double-click on the "Logs" entry in the project tree.
The "Logs" editor opens.

2. Open the "Alarm logs" tab and double-click "Add" in the "Name" column of the "Alarm logs"
editor.
A new alarm log is created.

3. In the "Storage path" field specify the storage path for the alarm log.

Note

Do not change the storage path for the log after the first transfer to the device. Subsequent
changes will result in errors during logging.

Configuring alarms (RT Uni)
4.5 Logging alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
268 System Manual, 11/2019, Online help printout

4. Define the maximum time period for logging in the "Log time period" field, for example 7
days.
If you specify a value of "0" for the logging time period, the log will be written continuously.
As soon as the maximum size is reached, the oldest segment is deleted from the log and a
new segment is written.

5. Define the maximum size of the log file in megabytes in the "Maximum log size (MB)" field.

6. Define the time period and the start time as well as the maximum size of for the single
segment in the "Segment" area.

Note

If you change the log size or the time period in runtime, the previous segment is closed and
a new segment with the new settings will be created.

7. Set whether data is to be backed up and specify the path for the backup file under "Backup
> Backup mode".

Note

We recommend creating backups of your log segments to ensure complete documentation
of your process.

The oldest single segment will be deleted if the maximum log size of 700 MB is exceeded.
To prevent the loss of logged data, enable backup mode.

If you subsequently change the primary path, the new backup file will only be written to the
new storage path after loading. The previous backup file will remain in the previous storage
path.

Tips for effective procedure

You configure the log properties directly in the table of the "Alarm logs" editor. To view hidden columns, activate the column titles using the
shortcut menu.

Result
The alarm log is created.

See also
Show logged alarms (Page 261)

Basics of alarm logging (Page 264)

Defining log size, segmentation and backup (Page 265)

Configuring the display of security events (Page 286)

Configuring alarms (RT Uni)
4.5 Logging alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 269

4.5.4 Assign alarm class (RT Uni)

Introduction

Requirement

Procedure

Result

4.6 Displaying and using alarms (RT Uni)

4.6.1 Displaying alarms in runtime (RT Uni)

Alarms
Alarms indicate events and states on the HMI device which have occurred in the system, in the
process or on the HMI device itself. A status is reported when it is received.

An alarm could trigger one of the following alarm events:

● Incoming

● Outgoing

● Acknowledge

The configuration engineer defines which alarms must be acknowledged by the operator.

An alarm may, for example, contain the following information:

● Date

● Time

● Alarm text

● Area (fault location)

● Status

● Alarm class

● Alarm number

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
270 System Manual, 11/2019, Online help printout

Alarm classes
Alarms are assigned to various alarm classes. The alarm class defines how an alarm is
displayed. The alarm class specifies if and how the operator has to acknowledge alarms of this
alarm class. For more information on alarm classes, go to "Alarm classes".

Alarm log
Alarm events are stored in an alarm log, provided this log file is configured. The capacity of the
log file is limited by the storage medium and system limits.

Alarm control
The alarm view shows selected alarms or events from the alarm buffer or alarm log. Whether
alarm events have to be acknowledged or not is specified in your configuration. You can
configure the order in which the alarms are displayed. At the first position, the current, or the
oldest alarm will be displayed.

See also
Printing alarms in runtime (Page 284)

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Shelving alarms (Page 280)

Lock alarms (Page 282)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 271

4.6.2 Operating an alarm view (RT Uni)

Introduction
The "Alarm view" object displays alarms that occur during the process in a plant. You also use
the alarm view to visualize alarms in list format. WinCC offers various views, such as "Current
alarms" or "Logged alarms" views.

A shelved alarm is no longer displayed in the alarm view. The alarm is still available in the
system and is logged.

If the shelving has been canceled, the alarm is again visible in its last state.

An alarm whose display has been suppressed is suppressed at the source. This alarm is not
logged.

If the suppression has been canceled again, it is checked by the system and, if the cause still
exits, displayed again.

Requirement
● The objects are enabled for operation.

● The operator authorization is assigned.

Operation using the mouse
1. Click on the alarm to be edited.

2. Click on the operator control whose function you wish to use.

See also
Printing alarms in runtime (Page 284)

Displaying alarms in runtime (Page 270)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Shelving alarms (Page 280)

Lock alarms (Page 282)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
272 System Manual, 11/2019, Online help printout

4.6.3 Lists of the alarm view (RT Uni)

Introduction
The alarm view displays specific lists to provide a better overview of the active alarms. These
lists filter, and sort alarms by certain properties.

Lists in the alarm view
You can display different lists in the alarm control. To display the alarm lists in the alarm view
and switch the alarm view in runtime, click the associated button in the alarm view toolbar.

 List Description
Show active alarms Shows the pending alarms.
Show logged alarms Shows the logged alarms.

The display is not updated immediately when new incoming
alarms occur.

 Show and update logged
alarms

Shows the logged alarms.
The display is updated immediately when new incoming
alarms occur.

Show defined alarms Shows the alarms configured in the engineering system.

See also
Configuring an alarm control (Page 253)

Displaying alarms in runtime (Page 270)

Operating an alarm view (Page 272)

Sorting alarms in runtime (Page 274)

Printing alarms in runtime (Page 284)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Shelving alarms (Page 280)

Lock alarms (Page 282)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 273

4.6.4 Sorting alarms in runtime (RT Uni)

Introduction
In runtime, you can sort the alarms in the alarm view by column header.

Examples for sorting alarms:

● In descending order by date, time, and alarm number. The most recent alarm is displayed
at the top.

● By priority
As a result, in a single-line alarm view, only the top-priority alarm appears in the alarm
window. A lower-priority alarm will not be displayed, even if it is more recent. The alarms are
displayed in chronological order.

● By their "state"
For an ascending sort order, the following order is used:

– Incoming

– Incoming/acknowledged

– Incoming/acknowledged/outgoing

– Incoming/outgoing/acknowledged

– Shelved

– Suppressed

When the alarm view is sorted by columns, an arrow and a number are shown on the right in
the column header. The arrow indicates the sort order (ascending or descending). The number
beside the arrow indicates the sort order of the column headers.

Requirement
● "Allow sorting" is enabled in the alarm view for the respective columns.

Procedure
To sort alarms in the alarm view by column, follow these steps:

1. In the alarm view, click the column header in the respective column.
The alarms are sorted accordingly.

See also
Displaying alarms in runtime (Page 270)

Lists of the alarm view (Page 273)

Filtering alarms in runtime (Page 275)

Printing alarms in runtime (Page 284)

Operating an alarm view (Page 272)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
274 System Manual, 11/2019, Online help printout

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Shelving alarms (Page 280)

Lock alarms (Page 282)

4.6.5 Filtering alarms in runtime (RT Uni)

Introduction
In runtime, you can set specific criteria that define the alarms to be displayed in the alarm view.
In the example below, only alarms that contain the alarm text "Motor on" are displayed.

Requirement
The "Selection display" button is configured in the alarm view.

Procedure
To filter alarms in the alarm view, proceed as follows:

1. Click "Selection display" in Runtime.
The "Selection" dialog opens.

2. Under "Criterion" select the criterion "Alarm text".

3. Enter the alarm text "Motor on" in the "Settings" column.
The alarm view only shows those alarms that contain the words "Motor on" in their alarm text.

Note

If necessary, define additional filter criteria by selecting the required condition in the "AND/OR"
column and the respective criterion in the "Criterion" column.

See also
Configuring filters in the alarm view (Page 258)

Displaying alarms in runtime (Page 270)

Sorting alarms in runtime (Page 274)

Displaying logged alarms in runtime (Page 276)

Printing alarms in runtime (Page 284)

Operating an alarm view (Page 272)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 275

Lists of the alarm view (Page 273)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Shelving alarms (Page 280)

Lock alarms (Page 282)

Alarm control (Page 76)

4.6.6 Displaying logged alarms in runtime (RT Uni)

Introduction
In runtime, the alarm view displays alarms from the log, in addition to the current alarms.

Requirements
● All the archived data that you intend to display in runtime must be stored locally on the

archive server. The alarm log does not allow access to backup files held elsewhere, such as
on another computer in the network.

● The buttons "Show logged alarms" and "Show and update logged alarms" are configured in
the alarm view.

Procedure
To show logged alarms in runtime, follow these steps:

1. In the alarm view, click "Show logged alarms" to display logged alarms. Only logged alarms
are displayed.

2. In the alarm view, click "Show and update logged alarms" to display logged and recent
alarms. Any new incoming alarms will be updated immediately in the view.

See also
Show logged alarms (Page 261)

Displaying alarms in runtime (Page 270)

Filtering alarms in runtime (Page 275)

Acknowledging alarms (Page 277)

Printing alarms in runtime (Page 284)

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
276 System Manual, 11/2019, Online help printout

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Shelving alarms (Page 280)

Lock alarms (Page 282)

Configuring the display of security events (Page 286)

Alarm control (Page 76)

4.6.7 Acknowledging alarms (RT Uni)

Introduction
You can acknowledge alarms in runtime according to your project configuration settings. You
can acknowledge alarms as follows:

● In the alarm view with the buttons "Single acknowledgment", "Group acknowledgment" and
for alarms with acknowledgment and confirmation also with the "Single confirm" button.

If an operator authorization is configured for the operator controls, the alarms can only be
acknowledged by authorized users.

The number of alarms to be acknowledged is indicated by a counter at the "Single
acknowledgment" button or, if the alarm view was configured accordingly in engineering, by the
status bar.

Acknowledgment variants
You acknowledge individual alarms or multiple alarms together in runtime. The following
options are possible:

● Single acknowledgment
Acknowledgment of an alarm using the "Single acknowledgment" button

● Group acknowledgment
Acknowledgment of all pending, visible alarms that require acknowledgment in the alarm
view using the "Group acknowledgment" button in the alarm view.

● Acknowledgment and confirmation
When an alarm requires acknowledgment and confirmation, you acknowledge that the
alarm is incoming or outgoing. Once the alarm has gone out, you reset the alarm with the
"Single confirm" button of the alarm view.

Requirement
An alarm is displayed on the HMI device.

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 277

Procedure
To acknowledge an alarm, follow these steps:

1. Click the "Show current" button in the alarm view.

2. Select the alarm.

3. Click "Single acknowledgment" in the alarm view.

Result
The alarm status is set to "Acknowledged". If the trigger condition for an alarm no longer
applies, the alarm state is also set to "outgoing" and no longer displayed on the device.

See also
Displaying alarms in runtime (Page 270)

Printing alarms in runtime (Page 284)

Configuring alarm acknowledgment (Page 250)

Displaying logged alarms in runtime (Page 276)

Group acknowledgement of alarms (Page 278)

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Lock alarms (Page 282)

Shelving alarms (Page 280)

Exporting alarms (Page 279)

Alarm control (Page 76)

4.6.8 Group acknowledgement of alarms (RT Uni)

Introduction
The acknowledgement of all pending, visible alarms in the alarm window that need to be
acknowledged is known as a group acknowledgement.

Requirement
There are several alarms that require acknowledgement in the alarm view.

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
278 System Manual, 11/2019, Online help printout

Procedure
For group acknowledgement of alarms, follow these steps:

1. Read the alarm texts of the pending alarms and perform corrective actions, if necessary.

2. Click the "Group acknowledgment" button in the alarm view.

Result
All pending alarms with the following properties have been acknowledged:

● Requires acknowledgement

● Visible

See also
Printing alarms in runtime (Page 284)

Displaying alarms in runtime (Page 270)

Acknowledging alarms (Page 277)

Exporting alarms (Page 279)

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Shelving alarms (Page 280)

Lock alarms (Page 282)

Alarm control (Page 76)

4.6.9 Exporting alarms (RT Uni)

Introduction
In runtime you export the data directly from the alarm view, for example, for further processing
or analysis.

Requirement
An alarm view with the "Export" button is displayed on the device.

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 279

Procedure
To export data from the alarm view, follow these steps:

1. Click the "Export" button in the alarm view.

2. Under "File name" specify the file name of the export file.

3. Under "Scope of data export" specify which data is to be exported from the alarm view.

4. Under "Format" select the format of the export file.

5. Confirm with "OK".
The export file appears in the browser download and can be downloaded.

See also
Displaying alarms in runtime (Page 270)

Group acknowledgement of alarms (Page 278)

Shelving alarms (Page 280)

Printing alarms in runtime (Page 284)

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Lock alarms (Page 282)

Alarm control (Page 76)

4.6.10 Shelving alarms (RT Uni)

Introduction
You shelve an alarm, for example, to prevent an error alarm from impairing the effectivity of your
system.

Shelving can be canceled at any time. To do so, you use the buttons "Shelve alarm" and
"Unshelve alarm" in runtime.

If an operator authorization is configured for these control elements, the alarms can only be
shelved by authorized users.

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
280 System Manual, 11/2019, Online help printout

Requirement
● The "Visibility" and "Allow operator control" settings have been activated for the following

buttons in the engineering system:

– "Shelve alarm"

– "Unshelve alarm"

– "Show defined alarms"

● To unshelve:
The "Show defined alarms" alarm list is configured in such a way that shelved alarms are
displayed.
Alternatively: If the "Visibility" and "Allow operator control" settings are enabled for the
"Disabled alarms setup" button, you can change the alarm list configuration in Runtime with
this button.

● The "Show defined alarms" alarm list is configured in such a way that shelved alarms are
displayed.

● An alarm is displayed on the HMI device.

Procedure
To shelve an alarm, follow these steps:

1. Select the alarm list "Show defined alarms" in the alarm view.

2. Select the alarm.

3. Click the "Shelve alarm" button.

The alarm is shelved. It depends on the alarm list settings whether the alarm is visible in the
alarm lists for active alarms and for defined alarms.

Shelved alarms are still available and logged in the system.

Displaying shelved alarms
To display the currently shelved alarms, follow these steps:

1. Select the alarm list "Show defined alarms" in the alarm view.

2. Click the "Disabled alarms setup" button.

3. Activate the option for shelved alarms.

Unshelving an alarm
To unshelve an alarm, follow these steps:

1. Select the alarm list "Show defined alarms" in the alarm view.

2. Select the alarm.

3. Click "Unshelve alarm".

If the shelving has been canceled, the alarm is again visible in its last state.

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 281

See also
Displaying alarms in runtime (Page 270)

Exporting alarms (Page 279)

Lock alarms (Page 282)

Printing alarms in runtime (Page 284)

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Alarm control (Page 76)

4.6.11 Lock alarms (RT Uni)

Introduction
You can lock alarms to avoid an excessive burden of information for the plant operator. The
operator will find it easier to concentrate on the important alarms if only selected alarms are
shown.

You can unlock the locked alarms at any time. To do so, you use the buttons "Lock alarm" and
"Unlock alarm" in runtime.

Locked alarms are automatically visible again when Runtime restarts.

Requirement
● The "Visibility" and "Allow operator control" settings have been activated for the following

buttons in the engineering system:

– "Lock alarm"

– "Unlock alarm"

– "Show defined alarms"

● To unlock:
The "Show defined alarms" alarm list is configured in such a way that locked alarms are
displayed.
Alternatively: If the "Visibility" and "Allow operator control" settings are enabled for the
"Disabled alarms setup" button, you can change the alarm list configuration in Runtime with
this button.

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
282 System Manual, 11/2019, Online help printout

● The user is authorized to lock and unlock alarms.

Note

The "Lock alarms" and "Unlock alarms" authorizations must be configured directly one
under the other. This is necessary because the authorization level used automatically for the
"Unlock alarms" authorization is directly below the "Lock alarms" authorization.

● An alarm is displayed on the HMI device.

Procedure
To lock an alarm, follow these steps:

1. Select the alarm list "Show defined alarms" in the alarm view.

2. Select the alarm.

3. Click the "Lock alarm" button.
The alarm is removed from the alarm list.

The alarm is locked. It depends on the alarm list settings whether the alarm is visible in the
alarm lists for active alarms and for defined alarms.

Displaying locked alarms
1. Select the alarm list "Show defined alarms" in the alarm view.

2. Click the "Disabled alarms setup" button.

3. Activate the option for locked alarms.

Unlocking messages
1. Select the alarm list "Show defined alarms" in the alarm view.

2. Select the alarm.

3. Click the "Unlock alarm" button.

Properties of locked alarms
The following applies to locked alarms:

● A locked alarm is not logged.

● If a locked alarm is unlocked again, it is checked by the system and, if the cause still exists,
displayed again.

See also
Displaying alarms in runtime (Page 270)

Shelving alarms (Page 280)

Printing alarms in runtime (Page 284)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 283

Operating an alarm view (Page 272)

Lists of the alarm view (Page 273)

Sorting alarms in runtime (Page 274)

Filtering alarms in runtime (Page 275)

Displaying logged alarms in runtime (Page 276)

Acknowledging alarms (Page 277)

Group acknowledgement of alarms (Page 278)

Exporting alarms (Page 279)

Alarm control (Page 76)

4.6.12 Printing alarms in runtime (RT Uni)

Introduction
In runtime you print the data directly from the alarm view, for example, for further logging or
analysis.

Requirement
● Several alarms are displayed on the device.

● A printer is configured.

Procedure
1. Filter the alarm view using the alarm view controls, if necessary.

2. Click the "Print" button in the alarm view.
Depending on the browser settings, the print preview appears in a new browser tab.

3. Click "Print".

Result
The alarms displayed in the alarm window are output on the printer.

See also
Displaying alarms in runtime (Page 270)

Acknowledging alarms (Page 277)

Operating an alarm view (Page 272)

Group acknowledgement of alarms (Page 278)

Lock alarms (Page 282)

Configuring alarms (RT Uni)
4.6 Displaying and using alarms (RT Uni)

WinCC Engineering V16 - Runtime Unified
284 System Manual, 11/2019, Online help printout

Shelving alarms (Page 280)

Exporting alarms (Page 279)

Displaying logged alarms in runtime (Page 276)

Filtering alarms in runtime (Page 275)

Sorting alarms in runtime (Page 274)

Lists of the alarm view (Page 273)

Alarm control (Page 76)

4.7 Display security events (RT Uni)

4.7.1 Display security events on the HMI device (RT Uni)

Introduction
In addition to the existing alarms in WinCC, you can also view security events on the HMI
device.

Security events are, for example, an attack on a device over the network or a change of the
protection level for communication between the controller and the HMI device.

Security events are detected by the controller and passed on to the HMI device. Security events
are displayed in the alarm log on the HMI device.

It is not necessary to configure or activate the security event functionality within the controller.
Security events are automatically detected by the controller.

Configuring the display of security events
The following steps are necessary to display security events on the HMI Device:

● Selection of controller alarms

● Creation of an alarm log for controller alarms

You can find more detailed information on configuration here: Configuring the display of
security events (Page 286)

Notes
● WinCC only supports security events of a SIMATIC S7-1500 controller.

● WinCC only supports security events that are automatically updated by the central alarm
management in the controller.

● Security events always use the "System information" alarm class.

Configuring alarms (RT Uni)
4.7 Display security events (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 285

See also
Configuring the display of security events (Page 286)

Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Logging alarms (Page 264)

Alarm system (Page 213)

Alarms (Page 215)

4.7.2 Configuring the display of security events (RT Uni)

Requirement
● There is an HMI connection between the HMI Device and a SIMATIC S7-1500 controller (as

of firmware version 2.0).

● The option "Central alarm management in the PLC" is selected (the automatic update of
security events on the HMI device is enabled in the controller).

Procedure
1. Open the "Runtime settings" of the HMI device.

2. Select the option "Automatic update" under "Alarms > Controller alarms".
The automatic update of security events on the HMI device is enabled in the HMI device.

3. Select the option "Security events" under "Alarms > Controller alarms".
The display by security events in runtime is enabled.

Note

The "Security events" option is cleared by default and must be selected for each HMI
connection.

4. Create a new alarm log in the "Log" editor under "Alarm logs".

5. Open an HMI screen.

6. Create an alarm view.

Result
The security events are displayed in the alarm log in runtime.

See also
Display security events on the HMI device (Page 285)

Configuring automatic update of controller alarms on the HMI device (Page 288)

Creating an alarm log (Page 267)

Configuring alarms (RT Uni)
4.7 Display security events (RT Uni)

WinCC Engineering V16 - Runtime Unified
286 System Manual, 11/2019, Online help printout

Show logged alarms (Page 261)

Displaying logged alarms in runtime (Page 276)

4.8 Sending complete alarm from the controller to the HMI device (RT Uni)

4.8.1 Sending and automatically updating complete alarm from the controller to the HMI
device (RT Uni)

Basics
In addition to alarms in WinCC, you can configure controller alarms in STEP 7 and display them
on your HMI device.

When controller alarms are configured in STEP 7, an HMI connection to a SIMATIC S7-1500
controller is established and controller alarms are currently pending, the controller alarms are
automatically sent to the HMI devices and updated in case of alarm changes (e.g. change to
alarm text). This will save you time because you do not have to load configuration changes of
the alarms to the HMI device separately. The HMI device does not need to exit Runtime
operation when the alarms are changed.

The following controller alarms can be sent to the HMI device:

● Program alarms

● ProDiag alarms

● GRAPH alarms

● System diagnostic alarms

The controller alarms can be sent completely to the HMI device if corresponding settings are
configured in the controller and on the HMI device. On the HMI Device, the option "Automatic
update" under "Runtime settings > Alarms > Controller alarms" must be selected for the
respective connection. You can find additional information on the settings at Configuring
automatic update of controller alarms on the HMI device (Page 288).

Device dependency
If the controller and the HMI device are configured accordingly, the controller alarms from the
following controller are sent automatically and completely to the HMI device when they occur:

● SIMATIC S7-1500 (firmware version 2.0 and higher)

Language settings
For alarms to be displayed in the correct language on the HMI device, the same three
languages or fewer must be configured for the alarms in the controller and on the HMI device.
You may have to coordinate the language selection with the configuration engineer.

Configuring alarms (RT Uni)
4.8 Sending complete alarm from the controller to the HMI device (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 287

If different languages are configured on the HMI device and in the controller, the HMI device in
operation shows the text "###Text missing###" instead of the controller alarms.

Notes
● If the "Only information" option was activated for a program alarm in STEP 7, the program

alarm uses the "Information" alarm class.

● Controller alarms that are automatically updated by the central alarm management in the
controller cannot be shelved or manually suppressed.

See also
Filtering controller alarms via display classes (Page 249)

Configuring automatic update of controller alarms on the HMI device (Page 288)

Configuring the display of system diagnostic alarms (Page 262)

Display security events on the HMI device (Page 285)

User-defined controller alarms (Page 216)

System-defined controller alarms (Page 218)

Workflow for configuring alarms (Page 230)

4.8.2 Configuring automatic update of controller alarms on the HMI device (RT Uni)

Introduction
The "Automatic update" option is selected by default for a connection between a SIMATIC
S7-1500 controller (firmware version 2.0 or higher) and an HMI device.

Requirement
● There is an HMI connection between the HMI Device and a SIMATIC S7-1500 controller (as

of firmware version 2.0).

● The option "Central alarm management in the PLC" is selected in the properties of the
controller (the automatic update of controller alarms on the HMI device is enabled in the
controller).

● Controller alarms were configured in STEP 7.

● An alarm view is configured on the HMI device.

● The same three languages (or fewer) are configured in the controller and on the HMI device
for alarms.

Configuring alarms (RT Uni)
4.8 Sending complete alarm from the controller to the HMI device (RT Uni)

WinCC Engineering V16 - Runtime Unified
288 System Manual, 11/2019, Online help printout

Procedure
1. Open the "Runtime settings" of the HMI device.

One or more connections to controllers are displayed under "Alarms > Controller alarms".

2. Activate the "Automatic update" option for the respective connection for which you want to
display the controller alarms.
The "Automatic update" option must be selected separately for each connection.

Note

If the languages configured for the controller differ from those for the HMI device, the alarms
cannot be displayed in runtime. Instead, the alarm "##Text missing##" is displayed.

Result
In runtime, the controller alarms are displayed in the alarm view.

See also
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 287)

Filtering controller alarms via display classes (Page 249)

Configuring the display of system diagnostic alarms (Page 262)

Configuring the display of security events (Page 286)

User-defined controller alarms (Page 216)

System-defined controller alarms (Page 218)

Workflow for configuring alarms (Page 230)

Configuring alarms (RT Uni)
4.8 Sending complete alarm from the controller to the HMI device (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 289

Configuring alarms (RT Uni)
4.8 Sending complete alarm from the controller to the HMI device (RT Uni)

WinCC Engineering V16 - Runtime Unified
290 System Manual, 11/2019, Online help printout

Archiving data (RT Uni) 5
5.1 Log basics (RT Uni)

Introduction
WinCC provides the following types of log for logging process data for HMI Runtime:

● Data logs

● Alarm logs

A data log is used to log process data from an industrial plant.

An alarm log is used to log alarms that occur in the monitored process.

Principle
The two types of log both have roughly the same structure and largely work in the same way.
They are very clear and easy to configure. With both types of log you define the same properties
for the log. The same logging methods are also available for both types of log.

The following logging methods are available:

● Circular log
If a circular log is totally full, the oldest entries are overwritten.

● Segmented circular log
In a segmented circular log, multiple single logs of the same size are filled in succession.
When all log segments are filled, the oldest log segment is overwritten.

● Log with level-dependent system alarm
A system alarm is triggered when a defined level is reached.

● Log with level-dependent triggering of an event
The "Overflow" event is triggered when the log is completely full. The "Overflow" event
triggers a system function.

Database types
The following table shows which database types are supported by the various HMI devices:

HMI device Supported database type Supported database language
Unified RT system File-based logging SQLite (default)

Database logging Microsoft SQL (option)
Unified Comfort Panel File-based logging SQLite
PC systems File-based logging SQLite

Database logging Microsoft SQL

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 291

Note
Microsoft SQL on Unified RT systems
● Unified RT systems use SQLite as the default database type. To use Microsoft SQL, the

system provides an installation option with a setup package. Please note that after installing
Microsoft SQL, SQLite logging will no longer be possible.

● Existing SQLite files remain, but are not available via HMI RT.

Note
Database for simulation

If you are using Microsoft SQL on the RT system, Microsoft SQL is also automatically used for
simulation. The configuration of the storage location is ignored during simulation; a relative path
is always used in the project folder instead of the set storage location.

5.2 Properties of logs (RT Uni)

Introduction
You define the properties of a data log in the "Data logs" editor.

You define the properties of an alarm log in the "Alarm logs" editor.

The properties of the data log and alarm log are configured in the same way. You configure the
properties either directly in the table of the respective editor or in the log properties of the
Inspector window.

General properties

Name
You can assign any name to the log. The name must contain at least one letter or one number.
You can create multiple logs, but the names must be unique.

Storage location
The storage location determines where the log is stored. For the specification, "Storage
medium" and "Storage directory" are specified. Which storage locations are available depends
on the HMI device.

Archiving data (RT Uni)
5.2 Properties of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
292 System Manual, 11/2019, Online help printout

Size
The size of a log depends on the type of log and the selected settings.

● Size of a data log
The size of a data log is calculated as follows:
The number of items * the length of each tag value to be logged.
In the Properties window, the maximum size that the log accepts for retention of the
currently selected number of data records is displayed in the input field "Number of data
records". The maximum log size is limited by the volume of the storage medium.

● Size of an alarm log
The size of an alarm log is calculated from the number of data records and the approximate
size of an entry. The size of an entry depends on whether the alarm text and the associated
tag values are to be logged as well.

Restart characteristics
● Under Restart characteristics you can specify that the logging starts when Runtime starts.

The activation takes place via the check box in "Enable logging at runtime start".
You can also control the behavior when runtime starts:

– "Reset log": If you want to overwrite existing logged data with the new data.

– "Continue log": If you want to receive data that has already been logged. This setting
adds the data to be logged to an existing log.

Note

You can use system functions to control the restarting of a log in Runtime.

Automatic log entries
In Runtime, the following log entries are created as standard:

Entry File format Log type Meaning
RT_DIS Any Data log Indicates that the connection to the log was

interrupted at this point in time.
(A bold line is shown in the trend view for this
time period.)

RT_OFF Any Data log Indicates that Runtime was shut down at this
point in time.
(No line is shown in the trend view for this time
period.)

RT_ERR Any Data log
Alarm log
AuditTrail1

Indicates in the destination log that a copy op‐
eration was not successful or was interrupted.
(The log copy was not fully created.)

$RT_COUNT *.CSV
*. TXT

Data log
Alarm log
AuditTrail1

This entry was created at the end of the log and
serves to increase the system performance
when Runtime starts.

1 The "AuditTrail" logging method is not available for all HMI devices.

Archiving data (RT Uni)
5.2 Properties of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 293

Security-related properties
Logs are protected in various ways:

● Protection against loss of data

● Protection against manipulation

Protection against loss of data
Even after an interruption of the power supply, all data is available unchanged.

In the event of an unintentional interruption of the power supply, the runtime is suddenly and
unexpectedly switched off. In such a case, the data already logged is backed up and is
available unchanged and completely after the power supply has been restored and the system
has been rebooted. Logging can be continued with the same database.

Protection against manipulation
Logs can contain sensitive and confidential content such as performance parameters or
product data that must be protected from unintentional or unauthorized modification.

Both the tag logs and the alarm logs can be protected using standard tools in the Windows
security settings. On Microsoft SQL servers, you protect the log databases by using the
Windows group "Simatic HMI" (read/write) and "Simatic HMI Viewer" (read). Only members of
these groups have direct access to the databases.

Note

The manipulation protection is currently only valid for WinCC Unified PC systems. For Unified
Comfort Panel, this feature will be made available shortly.

5.3 Working with logs (RT Uni)

Delete log contents
The contents of an alarm log or tag log can be deleted using a system function. The log itself
remains; only the alarm or log data saved in it is deleted. This may be useful after a test phase
is over, for example, if existing logs are to be emptied. You can find detailed information on
using system functions in the sectionSystem functions (Page 308).

Editing log contents
Existing contents of a log can be commented, corrected or expanded in the alarm control in
Runtime. You can find more information on alarm views in the section Alarm control (Page 76).

Archiving data (RT Uni)
5.3 Working with logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
294 System Manual, 11/2019, Online help printout

Exporting logs
To ensure data processing by the most widely used data processing programs, logs can be
exported to the following formats:

● CSV

● TXT

● XML

Export logs by clicking the "Export log" icon in the alarm display. A filter allows the exact
specification of the content to be exported.

Logging mode
You have the option to select one of three "logging modes" for logging tags. This can happen
in two ways:

● In the "Logging tags" tab, select a mode by opening the drop-down menu in the "Logging
mode" column.

● In the Inspector window, go to "Properties > General" and open the drop-down menu under
"Logging mode" to select a mode.

The following options are available to you as logging modes:

● Cyclic: Logging takes place according to the set cycle.

● On demand: Logging is triggered by a state change of a preconfigured trigger tag.

● On change: Logging only takes place if there is a value change in the tags to be logged.

Archiving data (RT Uni)
5.3 Working with logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 295

Logging in different languages
You can create logs in different languages. In the "Runtime settings", select the desired
languages in the "Activate" column under "Language and Font". You can add more languages
by selecting the desired languages in "Languages and Resources". Alarm texts are then
created, saved and displayed in the selected languages.

① Activation of the available languages
② Selection of the languages which are to be available

5.4 Storage locations of logs (RT Uni)

Storage location of a log
When you configure a log in WinCC, the available storage locations depend on the HMI device
you are using.

HMI devices Supported logs Supported storage
locations

Supported stor‐
age locationsAlarms Tags Audit Trail

Basic Panels1 No No No - -
Basic Panels
2nd Generation2

Yes Yes No a TXT file (Unicode) USB memory (at
USB port)

Comfort Panels3 Yes Yes Yes a CSV file (ASCII)
RDB file
a TXT file (Unicode)

Storage card (SD)
Storage card
(USB)
Network drive

Archiving data (RT Uni)
5.4 Storage locations of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
296 System Manual, 11/2019, Online help printout

HMI devices Supported logs Supported storage
locations

Supported stor‐
age locationsAlarms Tags Audit Trail

Mobile Panels4 Yes Yes Yes a CSV file (ASCII)
RDB file
a TXT file (Unicode)

Storage card
(MMC)
Storage card
(USB)
Network drive

Mobile Panels
2nd Generation5

Yes Yes Yes a CSV file (ASCII)
RDB file
a TXT file (Unicode)

Storage card (SD)
USB memory (at
USB port)
Network drive

PC systems
with Runtime
Advanced

Yes Yes Yes a CSV file (ASCII)
Database
RDB file
a TXT file (Unicode)

Local file system
Network drive

1 KP 300, KP 400, KTP 1000, TP 1500
2 KTP 400, KTP 700, KTP 900, KTP 1200
3 All HMI devices from the device list
4 Mobile Panel 277 only
5 KTP 400F Mobile, KTP 700 Mobile, KTP 900 Mobile - including fail-safe versions

Note
Logging on network drives

Do not log alarms, tags and Audit Trail directly on a network drive. Power supply can be
interrupted at any time. This means there is no guarantee for a reliable operation of logs and
audit trails.

Save the logs on your local hard drive or a local storage card. Use the system function
"ArchiveLogFile" to save the logs long-term on a network drive. This step ensures reliable
operation.

Syntax examples for storage locations
Storage card storage location:

● <\Storage Card MMC\My_Archives\TagLogs>: Saves the archive on the MMC storage card
to the subdirectory "My_Archives\TagLogs".

Local file system storage location:

● <C:\My_File_Folder\My_Archives\Machine_1>: Saves the log on the local hard disk drive C:
in the subdirectory "My_File_Folder\My_Archives\Machine_1"

Network drive storage location:

● <\\ArchiveServer\My_File_Folder\My_Archives\Machine_1>: Saves the archive on the
"ArchiveServer" server to the subdirectory "My_File_Folder\My_Archives\Machine_1".

Archiving data (RT Uni)
5.4 Storage locations of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 297

Naming conventions
The log names must be unambiguous in a project. The name of a log must always be unique,
regardless of whether different storage locations are selected for the log.

Note

The characters which can be used in the name of the data source depend on the storage
location.

The \ / * ? : " < > | characters are not allowed at the following locations:
● File - RDB
● File - CSV (ASCII)
● File - TXT (Unicode)

If the "Database" storage location is used, the following characters may be used: a-z A-Z 0-9
_ @ # $

The characters _ @ # $ cannot be used as the first character of a name.

Note
Only applies to Basic Panels 2nd Generation

Unicode characters are not supported for the log names and the log paths.

File - CSV (ASCII)
Data is saved to a CSV file in standard ASCII format.

If you want to read or evaluate logged data without using WinCC Runtime, use the "CSV file"
storage location.

Note

Double quotation marks or multiple characters are not permitted as list separators for the "CSV
file" storage location. You can find the settings for list separators under "Start > Settings >
Control Panel > Regional and Language Options".

Note
Logging tags of the "BOOL" data type

Boolean values are logged as digits:
● 0 (False) corresponds to the log entry 0
● 1 (True) corresponds to the log entry -1

File - TXT (Unicode)
Data is stored in Unicode.

Archiving data (RT Uni)
5.4 Storage locations of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
298 System Manual, 11/2019, Online help printout

This file format supports all characters that can be used in WinCC and WinCC Runtime. For
editing, you will need software that can save files in Unicode, such as Notepad.

Note

Use "File - TXT (Unicode)" as the storage location to log Asian languages.

File - RDB
Data is saved with quick access in a proprietary database.

If you require maximum read performance in runtime, use the "RDB file" storage location.

Database
Data is saved to a database which is set up for ODBC access by the PC administrator.

Log with checksum (Audit Trail)
The following files are generated under special circumstances:

*.keep

1. If a log is started without checksum and will be continued with a checksum.

2. If you update WinCC with a service pack or a new version and the Audit Trail or the log is
continued with the checksum.

The content of the keep file will remain the same when compared with the original csv file or txt
file.

*.bak

If WinCC Runtime has determined a serious, irregular problem in the file.

Archiving data (RT Uni)
5.4 Storage locations of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 299

Archiving data (RT Uni)
5.4 Storage locations of logs (RT Uni)

WinCC Engineering V16 - Runtime Unified
300 System Manual, 11/2019, Online help printout

Using system functions (RT Uni) 6
6.1 Working with function lists (RT Uni)

6.1.1 Basics of the function list (RT Uni)

Introduction
A function list performs one or more functions when the configured event occurs.

The following are available:

● System functions

● Functions which you configure in global modules

Principle
The function list is configured for an event of the following objects:

● Screen

● Screen object

● Task

You can configure exactly one function list for each event. Which events are available depends
on the selected object. Events occur only when the project is in Runtime.

Events include:

● Execution of a task

● Pressing of a button

The function list is opened in the Inspector window under "Properties > Events" as soon as an
object has been selected.

Layout

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 301

The function list is divided into two columns. In the "Name" column you see the names of the
functions and the corresponding parameters.

In the Values column you assign values to the parameters. You use different parameter types
depending on the parameter.

The following buttons are located above the function list:

● "Move function up"

● "Move function down"

● "Convert function list to script"

● "Delete function list"

If the function list cannot be edited, the buttons are locked. This is the case, for example, with
reference projects.

See also
Editing a function list (Page 305)

System functions (Page 308)

"Scripts" editor (Page 361)

6.1.2 Input support (RT Uni)
The function list supports you in:

● Function input

● Input of parameter values

● Troubleshooting

Function input
You have several options for entering a function in the function list:

● Enter the complete or partial name of the function.
Autocomplete is supported.

● Select the "<Add function>" field and open the selection menu.
The available functions are sorted by category.

● Select the "<Add function>" field and select the list icon.
The available functions are displayed in alphabetical order.

The system functions provided in the function list differ depending on the object selected. For
example, system functions of the "Screen" category are only available for screens and screen
items.

Using system functions (RT Uni)
6.1 Working with function lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
302 System Manual, 11/2019, Online help printout

Input of parameter values
The parameters required in functions are displayed in the function list and differ depending on
the function selected.

You assign a value to each parameter.

Parameter type
The parameter type determines which values the parameter can accept.

The parameter type is either fixed by default or you can choose between several types.

Which parameter types are available depends on the respective parameter.

The following parameter types are implemented in the function list:

● Integer

● Double

● Bool

● String

● Color

● HMI tag: Specify a configured HMI tag. Autocomplete is supported.

● Screen item: Specify a configured screen item in the current screen. Autocomplete is
supported.

● Selection: Sets the current screen as value. If this type is selected, the value cannot be
edited.

Note

HMI tags and screen items can be renamed without updating the function list. Objects of the
WinCC Unified object model are referenced in the function list.

Optional parameters
Optional parameters are marked with "(optional)".

Parameters of functions that you have configured in global modules are always optional.

Troubleshooting

Error while configuring
The project data is tested in the background during the configuration.

To inform you of errors, missing or incorrect entries in the function list are highlighted in red:

● At least one function is not completely supplied with parameters.

● At least one function is contained which is not supported by the selected HMI device, for
example, by changing the device type.

Using system functions (RT Uni)
6.1 Working with function lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 303

Note

Missing screen items and HMI tags can be created later. Objects of the WinCC Unified object
model are referenced in the function list.

Errors during compiling and loading
Alarms during the compiling and loading of a project are displayed in the Inspector window in
the "Info > Compile" tab.

The function list supports you by displaying missing or incorrect entries directly for editing:

● To go directly to the function list, select the green arrow .

See also
"Scripts" editor (Page 361)

System functions (Page 308)

6.1.3 Configuring a function list (RT Uni)

Note
Restriction of "activated" and "deactivated" events

If the focus is on the affected screen item, scripts are executed at the "activated" and
"deactivated" events.

Requirement
One of the following objects is configured:

● Screen

● Screen item

● Task

Procedure
1. Select the object.

2. Go to "Properties > Events" in the Inspector window.
The function list opens.

3. Select an event.

4. Select "<Add function>" in the function list.

5. Enter the function.
If the desired function has parameters, the parameters are displayed.

Using system functions (RT Uni)
6.1 Working with function lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
304 System Manual, 11/2019, Online help printout

6. Define the parameter values.

7. To add more functions, repeat steps 4.) to 6.).

8. Save the project.

Result
● The function list is configured.

● In addition, to the configured event, the status of the function list is displayed in the Inspector
window.

● The function list is executed from top to bottom when the configured event occurs in runtime.

6.1.4 Editing a function list (RT Uni)

Requirement
● The function list is open.

● At least one function is configured at an event.

Changing the order of functions
The function list is executed from top to bottom.

You move a function within the function list as follows:

1. Select the name of the function or an associated parameter.

2. Select the "Move function up" or "Move function down" button.
If the function is already at the first or last position in the list, pressing the button has no effect.

Replacing a function
● To replace a function, enter the name of another function in the input field.

All parameter settings of the replaced function are deleted.

Converting a function list to a local script
● To convert the function list to a local script, use the "Convert function list to script" button.

The "Scripts" editor opens.

The function list can be converted to a local script even if the parameter specifications are
incorrect or incomplete. The parameter specifications must be adjusted accordingly in the
script.

Note

This action can only be revoked using the "Undo" button.

Using system functions (RT Uni)
6.1 Working with function lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 305

Deleting functions
● To delete the entire function list of an event, select the "Delete function list" button.

To delete a single function, follow these steps:

1. Select the name of the function.

2. Press .

See also
"Scripts" editor (Page 361)

6.1.5 Using a screen item to specify the value of a parameter (RT Uni)

Introduction
For some parameters, you can assign "Screen item" as parameter type.

For example, enter the "Value" parameter of the "IncreaseTag" function via the I/O field in
Runtime.

Note

The assigned screen item must have the property "Process value".

Possible screen items are, for example:
● I/O field
● Bar
● Slider
● Radio button

The value entered in the screen item must correspond to the data type expected by the system
function.

If the data types do not match, convert the value using an additional tag.

Requirement
● A screen is configured.

● A suitable screen item (e.g. I/O field) is configured.

● A suitable system function (e.g. "IncreaseTag") is created in the function list.

Using system functions (RT Uni)
6.1 Working with function lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
306 System Manual, 11/2019, Online help printout

Procedure
To assign a parameter to a screen item and convert the value entered in the screen item,
proceed as follows:

1. Assign the desired screen item to the parameter.

2. Select the screen item.

3. Go to "Properties > General > Process value" in the Inspector window.

4. Select "Tag" in the "Dynamization" column.
The tag selection range is displayed.

5. Select the selection button .

6. Select the "Add" button.

7. Assign a meaningful name.

8. Specify the required tag data type.
The "Value" parameter, for example, requires a numeric data type.

6.1.6 Adapt the function list to changed scripts (RT Uni)
You use functions that you have defined for global modules in the function list. These functions
and associated parameters are referenced.

If you edit used functions after creating the function list, you must manually transfer some
changes to the function list:

● Adding of a parameter

● Deleting of a parameter

● Deleting of a function

Note

If you rename functions or parameters, these changes are automatically transferred to the
function list.

Requirement
● A function is defined in a global module.

● The function is used in a function list.

Using system functions (RT Uni)
6.1 Working with function lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 307

Procedure
1. Make at least one of the following changes to the function:

– Add a parameter

– Delete a parameter

– Delete a function

2. Go to the relevant function in the function list.

3. Double-click to apply the change marked in red.

See also
"Scripts" editor (Page 361)

6.2 System functions (RT Uni)

6.2.1 ChangeConnection (RT Uni)

Description
Changes the connection parameters of an HMI connection. The following parameters can be
changed: the IP address, slot and rack. Since the function is executed synchronously, the
return value returns an error code that provides immediate information about the cause of the
error. The error code can only be read if the function is called via a script.

Note
Change of function parameters after a function call

With the execution of the function you change the function parameters. The new connection
may not be active yet at this point.

Note
Usage on devices of the S7 Plus PLC family

For devices of the S7 Plus PLC family (PLCs 15xx and 12xx) it is not possible to change the slot
or the rack. The system function cannot be executed if parameters for slot or rack are not set.

Use in the function list
ChangeConnection (Connection name, IP V4 address, Slot (optional), Rack (optional))

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
308 System Manual, 11/2019, Online help printout

The "SwapConnection" system function has the following parameters:

Parameter Description
Connection name Indicates the name of the connection.
IP V4 address Specifies the IPv4 address. Example: 192.169.153.45
Slot (optional) Specifies the slot number. Permitted values from 1 to 32.
Rack (optional) Specifies the rack number. Permitted values from 0 to 7.

Use in scripts
HMIRuntime.Tags.SysFct.changeConnection (connectionName, address,
slot (optional), rack (optional))
The system function "changeConnection" has the following parameters:

Parameter Type Description
connectionName HMIConnection (String) Indicates the name of the connection.
address STRING Specifies the IPv4 address. Example: 192.169.153.45
slot (optional) USINT Specifies the slot number. Permitted values from 1 to 32.
rack (optional) USINT Specifies the rack number. Permitted values from 0 to 7.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.2 ChangeScreen (RT Uni)

Description
Performs a screen change to the specified screen windows or base screen.

Note

The function list is updated when the screen changes. The functions after "ChangeScreen" are
therefore not executed.

Always execute "ChangeScreen" as the last function.

Use in the function list
ChangeScreen (Screen name, Screen window path)

The system function "ChangeScreen" has the following parameters:

Parameter Description
Screen name Name of the screen to which you change.
Screen window path Path of the screen window or base screen that is displayed after the change

has been completed.
You can find additional information at "Addressing screen windows".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 309

Use in scripts
HMIRuntime.UI.SysFct.ChangeScreen (screenName, screenWindowPath)
The system function "ChangeScreen" has the following parameters:

Parameters Type Description
screenName HMIScreen (String) Name of the screen to which you change.
screenWindowPath HMIScreenWindow (String) Path of the screen window or base screen that is displayed

after the change has been completed. You can find additional
information at "Addressing screen windows".

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.3 ClearAlarmLog (RT Uni)

Description
Deletes all recordings from the specified alarm log.

Note
No backup!

Note that no automatic backup is performed before execution of the function!

Use in the function list
ClearAlarmLog (Log name)

The system function "ClearAlarmLog" has the following parameters:

Parameter Description
Log name Name of the alarm log from which the entries are deleted.

Use in scripts
HMIRuntime.UI.SysFct.ClearAlarmLog (logName)
The system function "ClearAlarmLog" has the following parameters:

Parameter Type Description
logName STRING Name of the alarm log from which the entries are deleted.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
310 System Manual, 11/2019, Online help printout

6.2.4 ClearTagLog (RT Uni)

Description
Deletes all data records in the specified data log.

Note
No backup!

Note that no automatic backup is performed before execution of the function!

Use in the function list
ClearLog (Log name)

The system function "ClearTagLog" has the following parameters:

Parameter Description
Log name Name of the data log from which all entries are deleted.

Use in scripts
HMIRuntime.Logging.SysFct.ClearTagLog(logName)
The system function "ClearTagLog" has the following parameters:

Parameter Type Description
logName STRING Name of the data log from which all entries are deleted.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.5 ClosePopup (RT Uni)

Description
Closes a popup window dynamically during runtime.

Use in the function list
ClosePopup (popup window path)

The system function "ClosePopup" has the following parameters:

Parameter Description
Popup window path Specifies the path to the popup window to be closed.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 311

Use in scripts
HMIRuntime.Tags.SysFct.ClosePopup (popupWindowpath)
The system function "ClosePopup" has the following parameters:

Parameter Type Description
popupWindowPath HMIPopupScreenWindow

(string)
Specifies the path to the popup window to be closed.

Can be used if the configured device supports user functions. For additional information, refer
to "Device dependency".

6.2.6 CreateScreenshot (RT Uni)

Description
Creates and saves a screenshot. The .jpg and .jpeg image formats are supported. If images
already exist in the specified file path, they will be overwritten. If the specified file path cannot
be accessed, an error message is displayed.

Note

The system function "CreateScreenshot" is only available for WinCC Unified Comfort Panel. If
you configure it in the engineering system for WinCC Unified SCADA, this does not have an
effect in Runtime. For this reason, a warning is displayed when the software is compiled for
WinCC Unified SCADA.

Use in the function list
CreateScreenshot (path of storage medium)

The system function "CreateScreenshot" has the following parameters:

Parameter Description
Storage medium path Path name of the screenshot.

Use in user functions
HMIRuntime.UI.SysFct.CreateScreenshot(storagePath)
The system function "CreateScreenshot" has the following parameters:

Parameter Type Description
storagePath STRING (constant, string tag) Path name of the screenshot.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
312 System Manual, 11/2019, Online help printout

6.2.7 CreateSystemInformation (RT Uni)

Description
Creates an alarm of the class "SystemInformation" in the alarm log.

The alarm class "SystemInformation" has the status "Raise only" and is therefore only
displayed in the archive list and not in the online list of alarm monitoring.

Use in the function list
GenerateSystemInformation (alarm text, area (optional), Parameter value 1 (optional),
Parameter value 2 (optional), Parameter value 3 (optional), Parameter value 4 (optional),
Parameter value 5 (optional), Parameter value 6 (optional), Parameter value 7 (optional),
Parameter value 8 (optional))

The system function "CreateSystemInformation" has the following parameters:

Parameters Description
Alarm text Specifies the alarm text.
Area (optional) Specifies the scope of the alarm.
Parameter value 1 (op‐
tional)

Value of the first alarm parameter.

Parameter value 2 (op‐
tional)

Value of the second alarm parameter.

Parameter value 3 (op‐
tional)

Value of the third alarm parameter.

Parameter value 4 (op‐
tional)

Value of the fourth alarm parameter.

Parameter value 5 (op‐
tional)

Value of the fifth alarm parameter.

Parameter value 6 (op‐
tional)

Value of the sixth alarm parameter.

Parameter value 7 (op‐
tional)

Value of the seventh alarm parameter.

Parameter value 8 (op‐
tional)

Value of the eighth alarm parameter.

Use in scripts
HMIRuntime.Resources.SysFct.CreateSystemInformation(alarmText,
area, alarmParameterValue1, alarmParameterValue2,
alarmParameterValue3, alarmParameterValue4, alarmParameterValue5,
alarmParameterValue6, alarmParameterValue7, alarmParameterValue8)
The system function "CreateSystemInformation" has the following parameters:

Parameter Type Description
alarmText STRING Specifies the alarm text.
area (optional) STRING Specifies the scope of the alarm.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 313

Parameter Type Description
alarmParameterValue1
(optional)

SCALAR (Variant) Value of the first alarm parameter.

alarmParameterValue2
(optional)

SCALAR (Variant) Value of the second alarm parameter.

alarmParameterValue3
(optional)

SCALAR (Variant) Value of the third alarm parameter.

alarmParameterValue4
(optional)

SCALAR (Variant) Value of the fourth alarm parameter.

alarmParameterValue5
(optional)

SCALAR (Variant) Value of the fifth alarm parameter.

alarmParameterValue6
(optional)

SCALAR (Variant) Value of the sixth alarm parameter.

alarmParameterValue7
(optional)

SCALAR (Variant) Value of the seventh alarm parameter.

alarmParameterValue8
(optional)

SCALAR (Variant) Value of the eighth alarm parameter.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.8 DecreaseTag (RT Uni)

Description
Subtracts the given value from the tag value: X = X - a

If you configure the system function for events of an alarm without the tag being used in the
current screen, it is not ensured that the actual tag value is being used in the PLC.

For the system function to be executed, the value of the tags must be current and valid, which
means the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Use in the function list
DecreaseTag (Tag, Value)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
314 System Manual, 11/2019, Online help printout

The system function "DecreaseTag" has the following parameters:

Parameter Description
Tag Tag from which the specified value is subtracted.
Value Value to be subtracted.

Use in scripts
HMIRuntime.Tags.SysFct.DecreaseTag (tag, value)
The system function "DecreaseTag" has the following parameters:

Parameter Type Description
tag HMITag (String) Tag from which the specified value is subtracted.
value VARIANT (Float) Value to be subtracted.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Converting a value
The system function uses the same tag as input and output values. If you are using this system
function to convert a value, follow these steps:

Note
1. Create an auxiliary tag.
2. Assign the tag value to the auxiliary tag with the "SetTagValue" system function.

6.2.9 EjectStorageMedium (RT Uni)

Description
Ejects an inserted storage medium. The function checks whether the storage medium is
currently being accessed. If no current read or write process is taking place, the storage
medium can be removed without data loss.

Use in the function list
EjectStorageMedium (storage device)

The system function "EjectStorageMedium" has the following parameters:

Parameter Description
Memory device System variable name of the storage medium with path specification (e.g. /

USB storage card)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 315

Use in scripts
HMIRuntime.Device.SysFct.EjectStorageMedium(storageTag)
The system function "EjectStorageMedium" has the following parameters:

Parameter Type Description
storageTag STRING (constant, string tag) System variable name of the storage medium with path spec‐

ification (e.g. /USB storage card)

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.10 ExecuteReport (RT Uni)

Description
Executes a report automatically and independently of the general report cycle. The execution
can be triggered through a specific event, for example, change of a tag value, occurrence of a
specific message or exceeding a tag limiting value.

Use in the function list
ExecuteReport (name report order)

The system function "ExecuteReport" has the following parameters:

Parameter Description
Name report order Specifies the name of the report to be executed.

Use in scripts
HMIRuntime.Tags.SysFct.ExecuteReport (reportTaskName)
The system function "ExecuteReport" has the following parameters:

Parameter Type Description
reportTaskName STRING Specifies the name of the report to be executed.

Can be used if the configured device supports user functions. For additional information, refer
to "Device dependency".

6.2.11 ExportParameterSets (RT Uni)

Description
Allows the export of a parameter set to a file.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
316 System Manual, 11/2019, Online help printout

Use in the function list
ExportParameterSets (parameter set type ID, parameter set ID, file name, overwrite, output
status, processing status (optional), generate checksum)

The system function "ExportParameterSets" has the following parameters:

Parameters Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set. The following cases are

differentiated:
● If the parameter set ID is set to 0, all parameter sets available in the

memory are exported.
● If the specified name or the ID does not exist in the imported file, the

execution is cancelled.
● If the specified name or the ID does not exist in the imported file, this

specific parameter set is imported.
In the following cases the import is aborted and an alarm appears:
● No parameter set available
● Name or ID does not exist in the import file

File name Specifies the file path of the file to be imported.
In the following cases the execution is canceled and an alarm is generated:
● Invalid file path
● Error during file access

Overwrite Specifies whether the existing file is overwritten:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
An alarm is generated and displayed if an error occurs during file access. This
can occur, for example, when the existing file cannot be overwritten even
though overwriting is allowed.

Output status Specifies the output status:
True = Alarms are output.
False = Alarms are not output.

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function just executed
4 = Function successfully executed
12 = Function was cancelled

Generate checksum Specifies whether a checksum is generated for the parameter set to be ex‐
ported:
True = Checksum is generated.
False = Checksum is not generated.

Use in scripts
HMIRuntime.Tags.SysFct.exportParameterSets (parameterSetTypeID,
parameterSetID, fileName, overwrite, outputStatus, processingStatus
(optional), generateChecksum)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 317

The system function "ExportParameterSets" has the following parameters:

Parameter Type Description
parameterSetTypeID STRING (constant, string tag)

UDINT (constant, Int tag)
Specifies the name or the ID of the parameter set type. If the
name or ID of the type does not exist, execution is terminated.

parameterSetID STRING (constant, string tag)
UDINT (constant, Int tag)

Specifies the name or the ID of the parameter set. The fol‐
lowing cases are differentiated:
● If the parameter set ID is set to 0, all parameter sets avail‐

able in the memory are exported.
● If the specified name or the ID does not exist in the im‐

ported file, the execution is cancelled.
● If the specified name or the ID does not exist in the im‐

ported file, this specific parameter set is imported.
In the following cases the import is aborted and an alarm ap‐
pears:
● No parameter set available
● Name or ID does not exist in the import file

fileName STRING (constant, string tag) Specifies the file path of the file to be imported.
In the following cases the execution is canceled and an alarm
is generated:
● Invalid file path
● Error during file access

overwrite USINT (constant, Int tag) Specifies whether the existing file is overwritten:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
An alarm is generated and displayed if an error occurs during
file access. This can occur, for example, when the existing file
cannot be overwritten even though overwriting is allowed.

outputStatus BOOL (constant, Bool tag) Specifies the output status:
True = Alarms are output.
False = Alarms are not output.

processingStatus
(optional)

Day Indicates the execution status of a function:
2 = Function just executed
4 = Function successfully executed
12 = Function was cancelled

generateChecksum BOOL Specifies whether a checksum is generated for the parameter
set to be exported:
True = Checksum is generated.
False = Checksum is not generated.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
318 System Manual, 11/2019, Online help printout

6.2.12 GetBrightness (RT Uni)

Description
Reads out the brightness value.

Note

The system function "GetBrightness" is only available for WinCC Unified Comfort Panel and is
not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the function
is nevertheless used through manual entry or through a device replacement in SCADA.

Use in the function list
GetBrightness (Value)

The system function "GetBrightness" has the following parameters:

Parameter Description
Value The tag to which the brightness value is written.

Use in scripts
HMIRuntime.Device.SysFct.GetBrightness (value)
The system function "GetBrightness" has the following parameters:

Parameter Type Description
value SetCommand (scalar tag) The tag to which the brightness value is written.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.13 GetDHCPState (RT Uni)

Description
Reads out the DHCP setting of the network adapter.

Note

The system function "GetDHCPState" is only available for WinCC Unified Comfort Panel and
is not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the
function is nevertheless used through manual entry or through a device replacement in SCADA.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 319

Use in the function list
GetDHCPState (Adapter name, Status, IPV6 (optional))

The system function "GetDHCPState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

State Tag to which the status is written:
0 = DHCP is disabled.
1 = DHCP is enabled.

IP V6 (optional) Tag to which the IPv6 address is written.

Use in scripts
HMIRuntime.Device.SysFct.GetDHCPState(adapterName, mode, IP V6
(optional))
The system function "GetDHCPState" has the following parameters:

Parameter Type Description
adapterName STRING (constant, string tag) Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

mode SetCommand (scalar tag) Tag to which the status is written:
0 = DHCP is disabled.
1 = DHCP is enabled.

IP V6 (optional) STRING (string tag) Tag to which the IPv6 address is written.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
320 System Manual, 11/2019, Online help printout

6.2.14 GetIPV4Address (RT Uni)

Description
Reads out the IPv4 settings of the network adapter.

Note

The system function "GetIPV4Address" is only available for WinCC Unified Comfort Panel and
is not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the
function is nevertheless used through manual entry or through a device replacement in SCADA.

Use in the function list
GetIPV4Address (Adapter name, IP address, Subnet mask, Default gateway (optional), DNS
server 1 (optional), DNS server 2 (optional))

The system function "GetIPV4Address" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

IP address Tag to which the IP address is written.
Subnet mask Tag to which the subnet mask of the IPv4 address is written.
Default gateway (op‐
tional)

Tag to which the IP address of the default gateway is written.

DNS server 1 (optional) Tag to which the IP address of DNS server 1 is written.
DNS server 2 (optional) Tag to which the IP address of DNS server 2 is written.

Use in scripts
HMIRuntime.Device.SysFct.GetIPV4Address(adapterName, ipAddress,
subnetMask, defaultGatewayIP, dnsIP1, dnsIP2)
The system function "GetIPV4Address" has the following parameters:

Parameter Type Description
adapterName STRING (constant, string tag) Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

ipAddress STRING (string tag) Tag to which the IP address is written.
subnetMask STRING (string tag) Tag to which the subnet mask of the IPv4 address is written.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 321

Parameter Type Description
defaultGatewayIP (op‐
tional)

STRING (string tag) Tag to which the IP address of the default gateway is written.

dnsIP1 (optional) STRING (string tag) Tag to which the IP address of DNS server 1 is written.
dnsIP2 (optional) STRING (string tag) Tag to which the IP address of DNS server 2 is written.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.15 GetNetworkInterfaceState (RT Uni)

Description
Reads out the status of the network adapter.

Note

The system function "GetNetworkInterfaceStatus" is only available for WinCC Unified Comfort
Panel and is not displayed on WinCC Unified SCADA. The system outputs a compiler warning
if the function is nevertheless used through manual entry or through a device replacement in
SCADA.

Use in the function list
GetNetworkInterfaceStatus (Adapter name, Status)

The system function "GetNetworkInterfaceState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

State Tag to which the state of the network adapter is written:
0 = Network adapter is disabled.
1 = Network adapter is enabled.

Use in scripts
HMIRuntime.Device.SysFct.GetNetworkInterfaceState(adapterName,
state, systemName)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
322 System Manual, 11/2019, Online help printout

The system function "GetNetworkInterfaceState" has the following parameters:

Parameter Type Description
adapterName STRING (constant, string tag) Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

state SetCommand (scalar tag) Tag to which the state of the network adapter is written:
0 = Network adapter is disabled.
1 = Network adapter is enabled.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.16 GetSmartServerState (RT Uni)

Description
Returns the activation state of the Smart server.

Use in the function list
GetSmartServerState (Status)

The system function "GetSmartServerState" has the following parameters:

Parameter Description
Status Tag to which the activation status of the Smart Server is written:

True = Smart Server is activated.
False = Smart Server is deactivated.

Use in scripts
HMIRuntime.Device.SysFct.GetSmartServerState(state)
The system function "GetSmartServerState" has the following parameters:

Parameter Type Description
state SetCommand (scalar tag) Tag to which the activation status of the Smart Server is writ‐

ten:
True = Smart Server is activated.
False = Smart Server is deactivated.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 323

6.2.17 ImportParameterSets (RT Uni)

Description
Imports existing and exported parameter set data.

Use in the function list
ImportParameterSets (file name, parameter set ID, overwrite, output status, processing status
(optional), check checksum)

The system function "ImportParameterSets" has the following parameters:

Parameters Description
File name Specifies the file path of the file to be imported.

In the following cases the execution is canceled and an alarm is generated:
● Invalid file path
● Error during file access

Parameter set ID Specifies the name or the ID of the parameter set. The following cases are
differentiated:
● If the parameter set ID is set to 0, all parameter sets are imported from the

file.
● If the name or the ID does not exist in the imported file, the execution is

cancelled.
● If the specified name or the ID does not exist in the imported file, only this

specific parameter set is imported.
In the following cases the import is aborted and an alarm appears:
● Invalid file head.
● No parameter set available.
● Parameter set name or parameter set ID does not exist in the file.

Overwrite Specifies whether the values in the memory are overwritten with the values
from the import file:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
If the name / ID of the specified parameter set exists, the values in the mem‐
ory are overwritten with the parameter set values from the import file if over‐
writing is allowed. If it may not be overwritten, the data in the memory is not
renewed.

Output status Specifies the output status:
True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed (if
configured).

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
324 System Manual, 11/2019, Online help printout

Parameters Description
Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was cancelled.

Check checksum Specifies whether the checksum of the import file is verified:
True = Checksum is generated.
False = Checksum is not generated.

Use in scripts
ImportParameterSets (fileName, parameterSetID, overwrite,
outputStatus, processingStatus (optional), verifyChecksum)
The system function "ImportParameterSets" has the following parameters:

Parameter Type Description
fileName STRING (constant, string tag) Specifies the file path of the file to be imported.

In the following cases the execution is canceled and an alarm
is generated:
● Invalid file path
● Error during file access

parameterSetID STRING (constant, string tag)
UDINT (constant, Int tag)

Specifies the name or the ID of the parameter set. The fol‐
lowing cases are differentiated:
● If the parameter set ID is set to 0, all parameter sets are

imported from the file.
● If the name or the ID does not exist in the imported file, the

execution is cancelled.
● If the specified name or the ID does not exist in the im‐

ported file, only this specific parameter set is imported.
In the following cases the import is aborted and an alarm ap‐
pears:
● Invalid file head.
● No parameter set available.
● Parameter set name or parameter set ID does not exist in

the file.
overwrite USINT (constant, Int tag) Specifies whether the values in the memory are overwritten

with the values from the import file:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
If the name / ID of the specified parameter set exists, the
values in the memory are overwritten with the parameter set
values from the import file if overwriting is allowed. If it may not
be overwritten, the data in the memory is not renewed.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 325

Parameter Type Description
outputStatus BOOL (constant, Bool tag) Specifies the output status:

True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and
displayed (if configured).

processingStatus
(optional)

Day Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was cancelled.

verifyChecksum BOOL (constant, Bool tag) Specifies whether the checksum of the import file is verified:
True = Checksum is generated.
False = Checksum is not generated.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.18 IncreaseTag (RT Uni)

Description
Adds the specified value to the tag value: X = X + a

If you configure the system function for events of an alarm without the tag being used in the
current screen, it is not ensured that the actual tag value is being used in the PLC.

For the system function to be executed, the value of the tags must be current and valid, which
means the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tag is "Cyclic continuous" and

● the tag is used by an object, e.g. an I/O field.

Use in the function list
IncreaseTag (Tag, Value)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
326 System Manual, 11/2019, Online help printout

The system function "IncreaseTag" has the following parameters:

Parameter Description
Tag Tag to which the specified value is added.
Value Value to be added.

Use in scripts
HMIRuntime.Tags.SysFct.IncreaseTag (tag, value)
The system function "IncreaseTag" has the following parameters:

Parameter Type Description
tag HMITag (String) Tag to which the specified value is added.
value Variant (Float) Value to be added.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Converting a value
The system function uses the same tag as input and output values. If you are using this system
function to convert a value, follow these steps:

Note
1. Create an auxiliary tag.
2. Assign the tag value to the auxiliary tag with the "SetTagValue" system function.

6.2.19 InvertBitInTag (RT Uni)

Description
Inverts the bit with the specified number in the tag:

● If the bit in the tag has the value of 1 (TRUE), it will be set to 0 (FALSE).

● If the bit in the tag has the value of 0 (FALSE), it will be set to 1 (TRUE).

After changing the given bit, the system function transfers the entire tag back to the PLC. It is
not checked whether other bits in the tags have changed in the meantime.

While the function is running, the operator and controller have only read access to the specified
tag until it is transferred to the controller again.

For the system function to be executed, the value of the tags must be current and valid, which
means the quality code must correspond to Good (cascade).

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 327

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Use in the function list
InvertBitInTag (Tag, Value)

The system function "InvertBitInTag" has the following parameters:

Parameter Description
Tag The tag in which the specified bit is inverted.
Value The number of the bit that is inverted.

When this system function is used in a user function, the bits in the given tag
will be counted from right to left independent of the controller that is used.
Numbering starts with 0.

Use in scripts
HMIRuntime.Tags.SysFct.InvertBitInTag (tag, value)
The system function "InvertBitInTag" has the following parameters:

Parameters Type Description
tag HMITag (String) The tag in which the specified bit is inverted.
value USINT The number of the bit that is inverted.

When this system function is used in a user function, the bits
in the given tag will be counted from right to left independent
of the controller that is used. Numbering starts with 0.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.20 LoadAndWriteParameterSet (RT Uni)

Description
Loads the parameter set values from the memory and writes them to the PLC.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
328 System Manual, 11/2019, Online help printout

Use in the function list
LoadAndWriteParameterSet (parameter set type ID, parameter set ID, output status,
processing status (optional))

The system function "LoadAndWriteParameterSet" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set. If the name or ID of the

parameter set does not exist, execution is terminated.
Output status Specifies the output status:

True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed (if
configured).

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 - Function was cancelled.

Use in scripts
LoadAndWriteParameterSet (parameterSetTypeID, parameterSetID,
outputStatus, processingStatus (optional))
The system function "LoadAndWriteParameterSet" has the following parameters:

Parameter Type Description
parameterSetTypeID STRING (constant, string tag)

UDINT (constant, Int tag)
Specifies the name or the ID of the parameter set type. If the
name or ID of the parameter set type does not exist, execution
is terminated.

parameterSetID STRING (constant, string tag)
UDINT (constant, Int tag)

Specifies the name or the ID of the parameter set. If the name
or ID of the parameter set does not exist, execution is termi‐
nated.

outputStatus BOOL (constant, Bool tag) Specifies the output status:
True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and
displayed (if configured).

processingStatus
(optional)

Day Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 - Function was cancelled.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 329

6.2.21 Logoff (RT Uni)

Description
Logs off the current user on the HMI device.

Use in the function list
Logoff()

The system function "Logoff" has no parameters.

Use in scripts
HMIRuntime.Device.SysFct.Logoff()
The system function "Logoff" has no parameters.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.22 LookupText (RT Uni)

Description
Identifies a list entry from a text list. The result depends on the value of the list entry and on the
selected runtime language. The result is saved to a tag of data type "String".

Use in the function list
CallText (output text, index, LCID, text list name)

The system function "LookUpText" has the following parameters:

Parameter Description
Output text The tag to which the result is written.
Index The tag that defines the value of the list entry.
LCID LCID of the language set on the HMI device. Specify the language ID, e.g.

0x0007 for German - Standard, 0x0409 for English - USA.
You can find an overview of all languages under: "https://msdn.micro‐
soft.com/en-us/library/cc233982.aspx".

Text list name Defines the text list. The list entry is read from the text list.

Use in scripts
HMIRuntime.Resources.SysFct.LookUpText(outputText, index, lcid,
textListName)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
330 System Manual, 11/2019, Online help printout

The system function "LookUpText" has the following parameters:

Parameters Type Description
outputText HMISetValueCommandBase

(Object)
The tag to which the result is written.

index Variant (UInt32) The tag that defines the value of the list entry.
lcid HMILCID (UInt32) LCID of the language set on the HMI device. Specify the lan‐

guage ID, e.g. 0x0007 for German - Standard, 0x0409 for
English - USA.
You can find an overview of all languages under: "https://
msdn.microsoft.com/en-us/library/cc233982.aspx".

textListName HMIResourcedList (String) Defines the text list. The list entry is read from the text list.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.23 OpenFileBrowser (RT Uni)

Description
Opens the file explorer of the device.

Use in the function list
OpenFileBrowser

The system function "OpenFileBrowser" has the following parameters:

Parameter Description
Tag Tag to which the specified value is assigned.
Value Value assigned to the specified tag.
Parameter (optional) That is an example.

Use in scripts
HMIRuntime.UI.SysFct.OpenFileBrowser()
The system function "OpenFileBrowser" has the following parameters:

Parameter Type Description
tag HMITag (String) Tag to which the specified value is assigned.
value Variant Value assigned to the specified tag.
Parameter (optional) XX That is an example.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 331

6.2.24 OpenScreenInPopup (RT Uni)

Description
Opens a popup window dynamically during runtime.

Use in the function list
OpenScreenInPopup (Popup window name, Screen name, Toggle Open, Header, Left, Top,
Hide close button, Parent screen path (optional))

The system function "OpenScreenInPopup" has the following parameters:

Parameter Description
Popup window name Name of the popup window. The name must be unique within the Paren‐

tScreen area and is required for closing the popup window.
Screen name Name of the screen that is to be loaded into the popup window.
Toggle open True = If the window is opened during the system call, it is closed.

False = If the window is opened during the system call, it remains open.
Header Specifies the window title of the popup window.
Left Specifies the window position as offset from the left-hand margin.
Top Specifies the window position as offset from the top margin.
Hide close button True = The close button is not displayed.

False = The close button is displayed.
Parent screen path (op‐
tional)

Path of the parent HMI screen. If this value remains empty, the popup window
is global.

Use in scripts
HMIRuntime.Tags.SysFct.OpenScreenInPopup (popupWindowName,
screenName, toggleOpen, Caption, Left, Top, hideCloseButton,
parentScreenPath (optional))
The system function "OpenScreenInPopup" has the following parameters:

Parameter Type Description
popupWindowName HMIPopupScreenWindow

(string)
Name of the popup window. The name must be unique within
the ParentScreen area and is required for closing the popup
window.

screenName HMIScreen (string) Name of the screen that is to be loaded into the popup win‐
dow.

toggleOpen Bool True = If the window is opened during the system call, it is
closed.
False = If the window is opened during the system call, it
remains open.

Caption String Specifies the window title of the popup window.
Left Int32 Specifies the window position as offset from the left-hand

margin.
Top Int32 Specifies the window position as offset from the top margin.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
332 System Manual, 11/2019, Online help printout

Parameter Type Description
hideCloseButton Bool True = The close button is not displayed.

False = The close button is displayed.
parentScreenPath (optional) HMIScreen (string) Path of the parent HMI screen. If this value remains empty,

the popup window is global.

Can be used if the configured device supports user functions. For additional information, refer
to "Device dependency".

6.2.25 ReadAndSaveParameterSet (RT Uni)

Description
Reads a parameter set from the PLC and writes the parameter set to the local memory.

Use in the function list
ReadAndWriteParameterSet (parameter set type ID, parameter set ID, overwrite, output
status, processing status (optional))

The system function "ReadAndWriteParameterSet" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set. If the name or ID of the

parameter set does not exist, a new parameter set is created.
If the name or the ID of the specified parameter set exists, the values in the
PLC are overwritten with the parameter set values in the memory if hmiO‐
verwrite.Enabled is set. If hmiOverwrite.Disabled is set, the data in the mem‐
ory are not replaced.

Overwrite Specifies whether the values in the memory are overwritten with the values
from the import file:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
The following cases are differentiated:
● If the name / ID of the specified parameter set exists, the values in the PLC

are overwritten with the parameter set values in the memory if overwriting
is allowed.

● If overwriting is not allowed, the data in the memory is not replaced. The
process tag is updated to the state of the system function, if configured
accordingly.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 333

Parameter Description
Output status Specifies the output status:

True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed (if
configured).

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function was successfully executed.
12 = Function cancelled.

Use in scripts
ReadAndSaveParameterSet (parameterSetTypeID, parameterSetID, overwrite, outputStatus,
processingStatus (optional))

The system function "ReadAndSaveParameterSet" has the following parameters:

Parameters Type Description
parameterSetTypeID STRING (constant, string tag)

UDINT (constant, Int tag)
Specifies the name or the ID of the parameter set type. If the
name or ID of the parameter set type does not exist, execution
is terminated.

parameterSetID STRING (constant, string tag)
UDINT (constant, Int tag)

Specifies the name or the ID of the parameter set. If the name
or ID of the parameter set does not exist, a new parameter set
is created.
If the name or the ID of the specified parameter set exists, the
values in the PLC are overwritten with the parameter set val‐
ues in the memory if hmiOverwrite.Enabled is set. If hmiO‐
verwrite.Disabled is set, the data in the memory are not re‐
placed.

overwrite USINT (constant, Int tag) Specifies whether the values in the memory are overwritten
with the values from the import file:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
The following cases are differentiated:
● If the name / ID of the specified parameter set exists, the

values in the PLC are overwritten with the parameter set
values in the memory if overwriting is allowed.

● If overwriting is not allowed, the data in the memory is not
replaced. The process tag is updated to the state of the
system function, if configured accordingly.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
334 System Manual, 11/2019, Online help printout

Parameters Type Description
outputStatus BOOL (constant, Bool tag) Specifies the output status:

True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and
displayed (if configured).

processingStatus
(optional)

Day Indicates the execution status of a function:
2 = Function is being executed.
4 = Function was successfully executed.
12 = Function cancelled.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.26 ResetBitInTag (RT Uni)

Description
Sets the bit with the specified number to 0 (FALSE) in the tag.

After changing the given bit, the system function transfers the entire tag back to the PLC. It is
not checked whether other bits in the tags have changed in the meantime. Operator and PLC
have read-only access to the indicated tag until it is transferred back to the PLC.

For the system function to be executed, the value of the tags must be current and valid, which
means the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Use in the function list
ResetBitInTag (Tag, Value)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 335

The system function "ResetBitInTag" has the following parameters:

Parameter Description
Tag Tag in which a bit is set to 0 (FALSE).
Value The number of the bit that is set to 0 (FALSE).

When this system function is used in a user function, the bits in the given tag
will be counted from right to left independent of the controller that is used.
Numbering starts with 0.

Use in scripts
HMIRuntime.Tags.SysFct.ResetBitInTag (tag, value)
The system function "ResetBitInTag" has the following parameters:

Parameters Type Description
tag HMITag (String) Tag in which a bit is set to 0 (FALSE).
value Variant (USINT) The number of the bit that is set to 0 (FALSE).

When this system function is used in a user function, the bits
in the given tag will be counted from right to left independent
of the controller that is used. Numbering starts with 0.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.27 SetBitInTag (RT Uni)

Description
Sets the bit with the specified number to 1 (TRUE) in the tag.

After changing the given bit, the system function transfers the entire tag back to the PLC. It is
not checked whether other bits in the tags have changed in the meantime. Operator and PLC
have read-only access to the indicated tag until it is transferred back to the PLC.

For the system function to be executed, the value of the tags must be current and valid, which
means the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
336 System Manual, 11/2019, Online help printout

Use in the function list
SetBitInTag (Tag, Value)

The "SetBitInTag" system function has the following parameters:

Parameter Description
Tag The tag in which a bit is set to 1 (TRUE).
Value The number of the bit that is set to 1 (TRUE).

When this system function is used in a user function, the bits in the given tag
will be counted from right to left independent of the controller that is used.
Numbering starts with 0.

Use in scripts
HMIRuntime.Tags.SysFct.SetBitInTag (tag, value)
The system function "SetBitInTag" has the following parameters:

Parameters Type Description
tag HMITag (String) The tag in which a bit is set to 1 (TRUE).
value Variant (USINT) The number of the bit that is set to 1 (TRUE).

When this system function is used in a user function, the bits
in the given tag will be counted from right to left independent
of the controller that is used. The numbering starts with 0.d.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.28 SetBrightness (RT Uni)

Description
Assigns a new value to the brightness of the display.

The value for the system function "SetBrightness" can be set between 0% and 100%. The set
value is transferred to the HMI device. The brightness settings on the HMI device can be viewed
and edited in "Start Center > Settings > Display". The HMI devices support a brightness setting
between 10% and 100%.

If the system function "SetBrightness" is assigned a value of 0%, the display of the HMI device
is switched off by default in Runtime. If the operator touches the display, the display switches
to the previous brightness setting.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 337

If the system function "SetBrightness" is assigned a value between 1% and 10% and the
operator opens the display settings in the Start Center, brightness is reset to 10%.

Note

The system function "SetBrightness" is only available for WinCC Unified Comfort Panel and is
not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the function
is nevertheless used through manual entry or through a device replacement in SCADA.

Note

The configuration that is set in the Control Panel / Start Center will be reestablished when you
restart the HMI device.

Use in the function list
SetBrightness (value)

The system function "SetBrightness" has the following parameters:

Parameter Description
Value The new value for the brightness of the display.

Use in scripts
HMIRuntime.Device.SysFct.SetBrightness (value)
The system function "SetBrightness" has the following parameters:

Parameter Type Description
value USINT (constant, scalar tag) The new value for the brightness of the display.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.29 SetConnectionMode (RT Uni)

Description
The specified connection is established or disconnected.

Use in the function list
SetConnectionMode (Connection name, Activated)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
338 System Manual, 11/2019, Online help printout

The system function "SetConnectionMode" has the following parameters:

Parameter Description
Connection name The PLC to which the HMI device is connected. You specify the name of the

PLC in the connection editor.
Enabled 0 = Offline: Connection is terminated.

1 = Online: Connection is established.

Use in scripts
HMIRuntime.Connections.SysFct.SetConnectionMode (connectionName,
enableState)
The system function "SetConnectionMode" has the following parameters:

Parameter Type Description
connectionName STRING The PLC to which the HMI device is connected. You specify

the name of the PLC in the connection editor.
enableState BOOL 1 = Online: Connection is terminated.

0 = Offline: Connection is established.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.30 SetDHCPState (RT Uni)

Description
Changes the DHCP setting of the network adapter.

Note

The system function "SetDHCPStatus" is only available for WinCC Unified Comfort Panel and
is not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the
function is nevertheless used through manual entry or through a device replacement in SCADA.

Use in the function list
SetDHCPState (Adapter name, Enabled, IP V6 (optional))

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 339

The system function "SetDHCPState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

Enabled Defines the DHCP setting of the network adapter:
0 = DHCP is disabled.
1 = DHCP is enabled.

IP V6 (optional) Tag to which the IPv6 address is written.

Use in scripts
HMIRuntime.Device.SysFct.SetDHCPState(adapterName, mode, IP V6
(optional))
The system function "SetDHCPState" has the following parameters:

Parameter Type Description
adapterName STRING (constant, string

tag)
Specifies the name of the network adapter.
The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

mode BOOL (constant, scalar tag) Defines the DHCP setting of the network adapter:
0 = DHCP is disabled.
1 = DHCP is enabled.

IP V6 (optional) STRING (string tag) Tag to which the IPv6 address is written.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.31 SetIPV4Address (RT Uni)

Description
Changes the IPv4 settings of the network adapter.

Note

The system function "SetIPV4Address" is only available for WinCC Unified Comfort Panel and
is not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the
function is nevertheless used through manual entry or through a device replacement in SCADA.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
340 System Manual, 11/2019, Online help printout

Use in the function list
SetIPV4Address (Name adapter, IP address, Subnet mask, Standard gateway (optional), DNS
Server 1 (optional), DNS Server 2 (optional))

The system function "SetIPV4Address" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

IP address Specifies the IP address.
Subnet mask Subnet mask of the IPv4 network.
Default gateway (op‐
tional)

IP address of the default gateway.

DNS server 1 (optional) IP address of DNS server 1.
DNS server 2 (optional) IP address of DNS server 2.

Use in scripts
HMIRuntime.Device.SysFct.SetIPV4Address(adapterName, ipAddress,
subnetMask, defaultGatewayIP, dnsIP1, dnsIP2)
The system function "SetIPV4Address" has the following parameters:

Parameter Type Description
adapterName STRING (constant, string tag) Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

ipAddress STRING (constant, string tag) Specifies the IP address.
subnetMask STRING (constant, string tag) Subnet mask of the IPv4 network.
defaultGatewayIP (op‐
tional)

STRING (constant, string tag) IP address of the default gateway.

dnsIP1 (optional) STRING (constant, string tag
or empty)

IP address of DNS server 1.

dnsIP2 (optional) STRING (constant, string tag
or empty)

IP address of DNS server 2.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 341

6.2.32 SetLanguage (RT Uni)

Description
Toggles the language on the HMI device. All configured texts and system events are displayed
on the HMI device in the newly set language.

Use in the function list
SetLanguage (LCID)

The system function "SetLanguage" has the following parameters:

Parameter Description
LCID LCID of the language set on the HMI device. Specify the language ID, e.g.

0x0007 for German - Standard, 0x0409 for English - USA.
You can find an overview of all languages under: "https://msdn.micro‐
soft.com/en-us/library/cc233982.aspx".

Use in scripts
HMIRuntime.UI.SysFct.SetLanguage(lcid)
The system function "SetLanguage" has the following parameters:

Parameters Type Description
lcid HMILCID (UInt32) LCID of the language set on the HMI device. Specify the lan‐

guage ID, e.g. 0x0007 for German - Standard, 0x0409 for
English - USA.
You can find an overview of all languages under: "https://
msdn.microsoft.com/en-us/library/cc233982.aspx".

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.33 SetNetworkInterfaceState (RT Uni)

Description
Changes the state of the network adapter.

Note

The system function "SetNetworkInterfaceStatus" is only available for WinCC Unified Comfort
Panel and is not displayed on WinCC Unified SCADA. The system outputs a compiler warning
if the function is nevertheless used through manual entry or through a device replacement in
SCADA.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
342 System Manual, 11/2019, Online help printout

Use in the function list
SetNetworkInterfaceState (Adapter name, Enabled)

The system function "SetNetworkInterfaceState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

Enabled Specifies the state of the network adapter:
0 = Network adapter is disabled.
1 = Network adapter is enabled.

Use in scripts
HMIRuntime.Device.SysFct.SetNetworkInterfaceState(adapterName,
state)
The system function "SetNetworkInterfaceState" has the following parameters:

Parameter Type Description
adapterName STRING (constant, string tag) Specifies the name of the network adapter.

The following entries are possible:
● X1 = Static network adapter name 1
● X2 = Static network adapter name 2
● Manual input

state BOOL (constant, scalar tag) Specifies the status of the network adapter:
0 = Network adapter is disabled.
1 = Network adapter is enabled.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.34 SetPropertyValue (RT Uni)

Description
Assigns a new value to the specified property of the screen item.

Note

Depending on the type of the object property, you can use this system function to assign strings
and numbers.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 343

Use in the function list
SetPropertyValue (Screen item path, Screen item property name, Value)

The system function "SetPropertyValue" has the following parameters:

Parameter Description
Screen item path Path of the screen item whose property is changed.
Screen item property
name

Property name that will be changed.
The property name can be copied with selected screen item to the Inspector
window under "Properties > Properties":
1. Right-click the name of the property.
2. Select "Copy property name".

Value The value assigned to the property.

Use in scripts
HMIRuntime.UI.SysFct.SetPropertyValue (screenItemPath,
screenItemPropertyName, value)
The system function "SetPropertyValue" has the following parameters:

Parameters Type Description
screenItemPath HMIScreenItemBase (String) Path of the screen item whose property is changed.
screenItemPropertyNam
e

STRING Name of the property that will be changed.
The property name can be copied with selected screen item
to the Inspector window under "Properties > Properties":
1. Right-click the name of the property.
2. Select "Copy property name".

value VARIANT The value assigned to the property.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.35 SetSmartServerState (RT Uni)

Description
Allows you to enable or disable the smart server.

Use in the function list
SetSmartServerState (smartServerState)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
344 System Manual, 11/2019, Online help printout

The system function "SetSmartServerState" has the following parameters:

Parameter Description
Status Status to which the Smart Server is to be set:

True = Smart Server is activated.
False = Smart Server is deactivated.

Use in scripts
HMIRuntime.SysFct.SetSmartServerStart(smartServerState)
The system function "SetSmartServerStart" has the following parameters:

Parameter Type Description
smartServerState BOOL (constant, scalar tag) Status to which the Smart Server is to be set:

True = Smart Server is activated.
False = Smart Server is deactivated.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.36 SetTagValue (RT Uni)

Description
Assigns the specified tag a new value.

Depending on the tag type, you use this system function to assign strings and numbers.

Note

The "SetTagValue" system function is only executed after a connection has been established.

Use in the function list
SetTagValue (Tag, Value)

The system function "SetTagValue" has the following parameters:

Parameters Description
Tag Tag to which the specified value is assigned.
Value The value that is assigned to the specified variable.

Use in scripts
HMIRuntime.Tags.SysFct.SetTagValue (tag, value)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 345

The system function "SetTagValue" has the following parameters:

Parameters Type Description
tag HMITag (String) Tag to which the specified value is assigned.
value VARIANT The value that is assigned to the specified variable.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

See also
"Tag" object (Page 668)

6.2.37 ShiftAndMask (RT Uni)

Description
The system function converts the input bit pattern of the source into an output bit pattern of the
target. This involves bit shifting and masking. An integer number serves is used as bit mask,
with whose bit pattern the shifted input bit pattern is multiplied. You can enter the bit mask in
three different ways:

● Hexadecimal: First enter the prefix "0h" or "0H", followed by an optional space for better
readability. Then group the bit pattern in blocks of four, for example (0000)(1001)(1010)
(1110) and set each block in hexadecimal code: (0)(9)(A)(E). Only the characters 0-9, A-F,
a-f are allowed: "0h 09AE".

● Binary: First enter the prefix "0b" or "0B", followed by an optional space for better readability.
Then group the binary bit pattern into blocks of four, for example 0000 1001 1010 1110 with
spaces in between as a check. Only the characters "0" or "1" are allowed: "0b 0000 1001
1010 1110".

● Decimal: Enter the value directly without prefix, for example "2478".

The shifted input bit pattern is multiplied by the bit mask, with bit-by-bit logical AND operation.
The result has a decimal value and is stored in the target.

Note the following:

● Source and target have the same number of bits.

● The number of the bits to shift is smaller than the number of bits of source and target.

● Bit pattern has no more bits than source and target.

Note

When the source and target have a different number of bits, using the system function in the
target can result in a violation of the value range.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
346 System Manual, 11/2019, Online help printout

Note

The left bit is "1" in the source of a signed data type integer with the sign "-". This sign bit is
padded with "0" when the bits are shifted right. The sign changes to "+".

Note

If you change the device version of the target HMI device after configuration (e.g."13.1.0" to
"13.0.0" or vice versa), you must check and test the parameters of this system function.

The data types "Char" and "Word" can be used for the parameters "Source" and "Target" as of
device version 13.1.0. In the device versions before 13.1.0, these parameters must be
assigned other data types:
● Use "SInt" instead of "Char"
● Use "Int" instead of "Word"

Otherwise, there might be unwanted effects, for example incorrect or unexpected behavior of
the configured system functions.

Use in the function list
ShiftAndMask (Source, Target, Bits to shift, Bit pattern)

The system function "ShiftAndMask" has the following parameters:

Parameter Description
Source The Source parameter includes the input bit pattern. Integer-type tags, e.g.

"Byte", "Char", "Int", "UInt", "Long" and "ULong" are permitted.
Example: The source of the 16-bit integer type has the current value 72:
0000000001001000.

Target The output-bit pattern is stored in the Target. Integer type tags, e.g. "Byte",
"Char", "Int", "UInt", "Long" and "ULong" are permitted.

Bits to shift Number of bits by which the input bit pattern is shifted right. A negative value
shifts the input bit pattern to the left.
Example: "Bits to shift" has the value "+3". The input bit pattern is shifted right
by three bits when the system function is called: 0000000000001001.
Bits to the left are padded with "0". Three bits are truncated on the right. The
new decimal value is "9".

Bit pattern An integer serves as bit mask. The bit pattern is used to multiply the shifted
input bit pattern.

Use in scripts
HMIRuntime.Tags.SysFct.ShiftAndMask (source, target, bitsToShift,
bitPattern)

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 347

The system function "ShiftAndMask" has the following parameters:

Parameter Type Description
source HMITag (String) The Source parameter includes the input bit pattern. Integer-

type tags, e.g. "Byte", "Char", "Int", "UInt", "Long" and
"ULong" are permitted.
Example: The source of the 16-bit integer type has the current
value 72: 0000000001001000.

target HMITag (string) The output-bit pattern is stored in the Target. Integer type
tags, e.g. "Byte", "Char", "Int", "UInt", "Long" and "ULong" are
permitted.

bitsToShift Variant (SINT) Number of bits by which the input bit pattern is shifted right. A
negative value shifts the input bit pattern to the left.
Example: "Bits to shift" has the value "+3". The input bit pat‐
tern is shifted right by three bits when the system function is
called: 0000000000001001.
Bits to the left are padded with "0". Three bits are truncated on
the right. The new decimal value is "9".

bitPattern Variant (UDINT) An integer serves as bit mask. The bit pattern is used to mul‐
tiply the shifted input bit pattern.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.38 ShowControlPanel (RT Uni)

Description
● Hides or shows the Control Panel.

● Opens an applet in Runtime.

Note

The system function "ShowControlPanel" is only available for WinCC Unified Comfort Panel
and is not displayed on WinCC Unified SCADA. The system outputs a compiler warning if the
function is nevertheless used through manual entry or through a device replacement in SCADA.

Use in the function list
ShowControlPanel (Home)

The system function "ShowControlPanel" has the following parameters:

Parameter Description
Home Specifies the applet to be displayed: "-p AppletName".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
348 System Manual, 11/2019, Online help printout

Use in scripts
HMIRuntime.UI.SysFct.ShowControlPanel(TargetPage)
The system function "ShowControlPanel" has the following parameters:

Parameter Type Description
TargetPage STRING (HMITag) Specifies the applet to be displayed: "-p AppletName".

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

List of available applets
List of applet names that are available to the system function:

Display page Applet name
Panel information SystemProperties.PanelInformation
Display SystemProperties.Display
Screensaver SystemProperties.Screensaver
Reboot SystemProperties.Reboot
Network settings NetworkandInternet.NetworkSettings

6.2.39 ShowSoftwareVersion (RT Uni)

Description
Hides or shows the version number of the Runtime software.

Use this system function if during servicing, for example, you required the version of the
Runtime software used.

Use in the function list
ShowSoftwareVersion ()

The system function "ShowSoftwareVersion" has no parameters.

Use in scripts
HMIRuntime.UI.SysFct.ShowSoftwareVersion()
The system function "ShowSoftwareVersion" has no parameters:

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 349

6.2.40 StartProgram (RT Uni)

Description
Starts the specified program on the HMI device.

The Runtime software continues running in the background.

Alarms continue to be output and process values continue to be updated.

When the given application is exited, the screen which was active during the performance of the
system function is displayed on the HMI device.

This system function is used, for example, to edit recipe data records in MS Excel on the HMI
device.

The function is supported by both the Windows and Linux systems.

Note

On a SIMATIC Unified PC, this system function can only be used to start applications that do
not have a user interface.

Use in the function list
StartProgram (Program name, Program parameters, Display mode, Wait for end of program,
Result (optional))

The system function "StartProgram" has the following parameters:

Parameter Description
Program name Name and path of the program to start. Upper and lower case are taken into

account in this parameter.
Program parameters The parameters you transfer at the start of the program, for example a file that

is opened after the start of the program.
You can find additional information on the necessary parameters in the doc‐
umentation of the program to be started.

Display mode Determines how the program window is displayed on the HMI device. See
AUTOHOTSPOT documentation for further information on the "OpenWind‐
ow" function.
This function has no effect on Linux systems.

Waiting for end of pro‐
gram

Determines whether there is a change back to the project after the called up
program has ended:
0 = No change to project.
1 = Change to project.

Result (optional) Contains data that can be written to the standard output from an external
application.

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
350 System Manual, 11/2019, Online help printout

Note

If the path for the program name contains spaces, the program can only be started correctly if
the path is specified in quotation marks, e.g. "C:\Program Files\START\start.exe".

Use in scripts
HMIRuntime.UI.SysFct.StartProgram(programName, programParameters,
displayMode, waitingForProgramToEnd, result)
The system function "StartProgram" has the following parameters:

Parameters Type Description
programName STRING (constant, string tag) Name and path of the program which is started. Upper and

lower case are taken into account in this parameter.
programParameters STRING (constant, string tag) The parameters you transfer at the start of the program, for

example a file that is opened after the start of the program.
You can find additional information on the necessary param‐
eters in the documentation of the program to be started.

displayMode USINT (constant, scalar tag) Determines how the program window is displayed on the HMI
device. See Win32 Microsoft (https://docs.microsoft.com/en-
us/locale/?target=https://docs.microsoft.com/en-us/windows/
win32/api/winuser/nf-winuser-showwindow) documentation
for further information on the "OpenWindow" function.
This function has no effect on Linux systems.

waitingForProgramToEn
d

BOOL (constant, scalar tag) Determines whether there is a change back to the project
after the called up program has ended:
0 = No change to project.
1 = Change to project.

result (optional) SetCommand (scalar tag) Contains data that can be written to the standard output from
an external application.

Note

If the path for the program name contains spaces, the program can only be started correctly if
the path is specified in quotation marks, e.g. "C:\Program Files\START\start.exe".

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 351

https://docs.microsoft.com/en-us/locale/?target=https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://docs.microsoft.com/en-us/locale/?target=https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://docs.microsoft.com/en-us/locale/?target=https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow

6.2.41 StopRuntime (RT Uni)

Description
Ends the Runtime software and the project running on the HMI device.

Note

All functions after "StopRuntime" are not executed.

Use in the function list
StopRuntime ()

The system function "StopRuntime" has no parameters.

Use in scripts
HMIRuntime.SysFct.StopRuntime()
The system function "StopRuntime" has no parameters.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

6.2.42 ToggleLanguage (RT Uni)

Description
This function allows you to change the Runtime language in order to display language-
dependent texts correctly on the user interface. The conversion takes place according to the
Runtime language configuration.

Use in the function list
ToggleLanguage()

The system function "ToggleLanguage" has no parameters.

Use in scripts
HMIRuntime.Resources.SysFct.ToggleLanguage()
The system function "ToggleLanguage" has no parameters.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
352 System Manual, 11/2019, Online help printout

6.2.43 WriteManualValue (RT Uni)

Description
Assigns a new value to the specified logging tag. The associated time stamp is transferred in
this process.

Use in the function list
WriteManualValue (Logging tag name, Value, Time stamp)

The system function "WriteManualValue" has the following parameters:

Parameter Description
Logging tag name Logging tag to which the specified value is assigned.
Value The value assigned to the specified logging tag.
Time stamp The time stamp assigned to the specified value.

Use in scripts
HMIRuntime.TagLogging.SysFct.WriteManualValue (loggingTagName,
value, timestamp)
The system function "WriteManualValue" has the following parameters:

Parameters Type Description
loggedTagName HMILoggedTag (String) Logging tag to which the specified value is assigned.
value Variant Value assigned to the specified logging tag.
timestamp DateTime The time stamp assigned to the specified value.

Can be used, provided the configured device supports scripts. For additional information, refer
to "Device dependency".

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 353

Using system functions (RT Uni)
6.2 System functions (RT Uni)

WinCC Engineering V16 - Runtime Unified
354 System Manual, 11/2019, Online help printout

Programming scripts (RT Uni) 7
7.1 Runtime scripting (RT Uni)

Area of application
You use Runtime Scripting in WinCC for the following tasks in runtime:

● Dynamization of properties

● Triggering functions for an event

Runtime Scripting uses JavaScript as the programming language. Runtime Scripting is
supported at the following objects:

● Screen

● Screen item

● Task

Global modules for frequently required functions
Global modules contain scripts which are available in the entire project. Global modules are
therefore suitable for configuring frequently required functions.

Using scripts for dynamization
The properties of screens and screen items can be dynamized via local scripts. In addition, a
screen or screen item has its own script area to create a "Global definition".

The "Global definition" is used to define modules, local tags and functions and to import other
modules with "Import".

① Global definition for screen or screen item
② Local scripts per property

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 355

Input support
The "Scripts" editor assists you in entering code through:

● Syntax highlighting

● Snippets

● System functions

● Referencing HMI objects

● Tooltips

● Autocomplete

● Error marking and correction

See also
Global modules (Page 360)

Local scripts (Page 361)

Configuring a script to an event (Page 368)

Dynamizing object properties by script (Page 369)

Input support (Page 363)

7.2 Basics (RT Uni)

Scripting environment
WinCC provides you with a modern scripting environment that you can use to automate a
variety of system components, such as the graphical Runtime system.

In the process, the scripting environment forms individual elements of the system components,
such as the screens of the graphical runtime system, through an object model. You use this
object model in your scripts to solve a variety of tasks or to control processes.

The script environment in WinCC offers:

● Efficiency and current technologies
The scripting environment supports Unicode and uses JavaScript (JS) as the scripting
language. The scripting environment is object-oriented and offers numerous asynchronous
operations for high-performance and secure script execution.

● Support of mass data
The script environment is optimized for the processing of mass data, for example the writing
of 1000 tags in one pass. Special script objects are available to this purpose that record
numerous HMI objects of the same type. These script objects execute operations on all the
HMI objects simultaneously instead of processing each HMI object individually.

Programming scripts (RT Uni)
7.2 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
356 System Manual, 11/2019, Online help printout

JavaScript
The script environment supports JavaScript in accordance with the ECMAScript Language
Specification. Google V8 that implements ECMAScript 2015, 6th Edition of June 2015
(ECMAScript 6) to a very large extent is used as the script engine.

Scripting in WinCC
As a rule the script environment executes all the scripts on the server side. Referenced external
resources such as files used in the script therefore have to be available in the server
environment.

7.3 Notes on creating scripts (RT Uni)

7.3.1 Data types (RT Uni)

Data types in the object model
Unlike the basic JavaScript data types String, Number and Boolean, the data types in the object
model of WinCC are more typified.

The following table lists the utilized data types of the object model:

Data type Description
Bool Logical values (True/False)
UInt8 Unsigned 8-bit integer
Int8 Signed 8-bit integer
UInt16 Unsigned 16-bit integer
Int16 Signed 16-bit integer
UInt32 Unsigned 32-bit integer
Int32 Signed 32-bit integer
Float Signed 32-bit floating-point number
String Sequence of characters
Variant Object that can have any data type.
DateTime Date/time information
StringStringMap Map: Value pairs from strings
Promise Object
Object Object
Function Method
ErrorCode Error code

Programming scripts (RT Uni)
7.3 Notes on creating scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 357

7.3.2 Object instances (RT Uni)

Create objects
In the object model, all object instances are returned via access methods. There are no
constructors that create objects.

Example

var t1 = Tags("Tag_1"); // returns HMITag object
var screenItem1 = Screen.FindItem("Button_1"); // returns HMIScreenItem
object

Error example

var t1 = new Tag("Tag_1"); // Error!

7.3.3 Asynchronous operations (RT Uni)

Promises in JavaScript
Promises are used in the script environment to handle asynchronous operations. A Promise
object contains placeholders for results of an operation that are not yet known.

A Promise has the following status:

● Pending: Operation of the Promise object is still being executed.

● Settled: Operation of the Promise object has been completed.

– Fulfilled: Operation was successful. Result is a value.

– Rejected: Operation was unsuccessful. Result is a reason.
reason may contain an error code for an object with text, links or any other conceivable
contents of an object. For this reason, for targeted error processing, it is advisable
for reason to use an instance of an Error object.

As soon as the operation has been completed, a corresponding Handler with the available
result is called.

Promises minimize latencies (delay times caused by signal processing), because the script
continues to be executed during evaluation. In contrast, a script stops with asynchronous calls.
Promises allow clean error handling with the "catch" method.

Promises can be cascaded in order to transform results or to sequence asynchronous
operations.

Programming scripts (RT Uni)
7.3 Notes on creating scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
358 System Manual, 11/2019, Online help printout

Using promises
In the simplest form, Promises return a value or error which is processed with the "then" and
"catch" methods of the Promise object:

getPromise()
.then(function(Value) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Cascaded promises each return a Promise and allow a sequence of asynchronous calls:

getPromise()
.then(return p1)
.then(return p2)
.then(return p3)
.catch();

The functions of the Promise objects are executed in the order p1 > p2 > p3 and the "catch"
method is called in case of error. All tags of the calling function are also available in the internal
functions.

7.3.4 Support for errors (RT Uni)
The user has various options of diagnosing errors and then rectifying them.

Trace Log
WinCC writes a log file for every subsystem. This file contains helpful information of the
respective subsystem for narrowing down possible error causes.

Note

The log files are located in the directory "%PROGRAMDATA%\Siemens\Automation\Logfiles
\WinCC_Unified_SCADA_V*".

Trace Viewer
The Trace Viewer is an external application for the display and targeted filtering of Trace alarms.

See also
RTIL Trace Viewer (Page 397)

Programming scripts (RT Uni)
7.3 Notes on creating scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 359

7.3.5 Global modules (RT Uni)
Global modules can only be linked with the global definition (script). All scripts, except the
Global definition, are simple functions.

The "import" statement must be a top-level statement.

Core statement
A global module is a container for one or more global functions with a shared definition area.

Several global modules can be created for each device.

Global modules are suitable for categorizing or grouping global functions.

Call and view

Global modules are shown in the project tree in the respective device under "Scripts" as folder
symbols with the letters "JS" .

You can create new global modules via the shortcut menu of "Scripts".

You can create new global functions via the shortcut menu of the desired global module.

You can also add new global modules and functions via "Add ... new" in the project tree.

Examples
● General mathematical operations

● General logic operations

● Unit of measure conversions

See also
Local scripts (Page 361)

Programming scripts (RT Uni)
7.3 Notes on creating scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
360 System Manual, 11/2019, Online help printout

7.3.6 Local scripts (RT Uni)
A local script is a function written in JavaScript which is assigned to the object in question.

Starting local scripts
A local script is always started by a trigger:

● an event at a screen object

● a trigger on dynamization of object properties (cycle or change of a tag value)

● the event "Update" of a task in the Scheduler (cycle, change to a tag value or alarm)

Access to global modules
Local scripts can call functions which are contained in the scripts of global modules.

Applications
For example, local scripts can be used to

● dynamize object properties,

● process user entries and

● automatize complex operations

See also
Creating a customized script (Page 366)

Configuring a script to an event (Page 368)

Dynamizing object properties by script (Page 369)

Creating a global definition in a local script (Page 369)

Basics of cycles (Page 927)

7.4 "Scripts" editor (RT Uni)

7.4.1 Structure of the "Scripts" editor (RT Uni)
In the "Scripts" editor, you create and edit customized JavaScript functions.

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 361

The "Scripts" editor can be opened in the following execution contexts:

● Global functions in global modules
You open the "Scripts" editor via the project tree by double-clicking a script.

● Local scripts which are triggered by events ("Images" editor and Scheduler)
The "Scripts" editor is opened in the Inspector window under "Properties > Events" as soon
as you have selected an event and selected the "Convert function list to script" button.
Additional local scripts which are triggered by events can be triggered for each property
under "Properties > Properties" for the events "Change" and "Quality code change".

● Local scripts for dynamizing object properties
The "Scripts" editor is opened in the Inspector window under "Properties > Properties" as
soon as you select the "Scripts" entry in the "Dynamization" column.

Different representation formats
Depending on the application, the "Scripts" editor is shown in different areas of TIA Portal and
contains different control elements.

Depending on the execution context, the code area opens either as a new editor window in the
working area (global modules) or embedded in the Inspector window (local script).

Overview

The code area represents the actual JavaScript code.

Buttons are located above the code area. Depending on the application context, buttons are
available with specific functions:

Button Global modules Event-related functions Dynamization of object prop‐
erties

Global definition1 × ✓ ✓
Function2 × ✓ ✓
Deleting a script × ✓ ×
Syntax check ✓ ✓ ✓
Previous ✓ ✓ ✓
Continue ✓ ✓ ✓
Asynchronous ✓ ✓ ✓
Trigger × × ✓

1 Only visible if the editing mode is active for functions.

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
362 System Manual, 11/2019, Online help printout

2 Only visible if the editing mode is active for global definitions.

Note

Asynchronous functions cannot be used if the function returns a value.

Alternatively, the value can be specified via the respective property.

Shortcut menu
The shortcut menu contains so-called "Snippets". Snippets provide frequently required code
templates.

See also
Global modules (Page 360)

Configuring a script to an event (Page 368)

Dynamizing object properties by script (Page 369)

Input support (Page 363)

7.4.2 Input support (RT Uni)

Introduction
You create the JavaScript code of your scripts in the code area of the "Scripts" editor.

The editor supports you with the following functions:

● Syntax highlighting

● Snippets (code templates)

● System functions

● Referencing HMI objects

● Tooltips

● Autocomplete

● Error marking and correction

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 363

Syntax highlighting

The JavaScript code in the code area of the editor is highlighted in different colors to make it
easier to read.

Snippets for programming support
Snippets are code templates for frequently required instructions: Snippets are divided into the
following groups:

● HMIRuntime
Contains Snippets for accessing the object model, e.g. "Change base screen" or "Set
Connection Mode".

● Logic
Contains Snippets such as "If...Else" or "For loop".

You insert a Snippet in the local script via the shortcut menu.

System functions
The system functions are provided in the "Scripts" editor. For additional information, refer to
"System functions".

Referencing HMI objects
HMI objects (e.g. tags and screens) are referenced in scripts.

Therefore, you perform the following actions without editing the script:

● Rename HMI object

● Re-create a previously deleted HMI object

● Create HMI object used as text reference in the script

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
364 System Manual, 11/2019, Online help printout

Info tips
While you compose the code, additional information about all objects of the
WinCC Unified object model is displayed. For example, you receive information on the required
parameters of the system functions.

Autocomplete

Autocomplete supports you in entering your code. Suitable objects of the
WinCC Unified object model are displayed.

Error marking and correction

Error while configuring
Your JavaScript code is checked immediately during input for a variety of criteria and
highlighted in color in case of errors.

● To get a tooltip, move the cursor over the marking.

Errors during compiling and loading
Alarms during the compiling and loading of a project are displayed in the Inspector window in
the "Info > Compile" tab.

The "Scripts" editor supports you by displaying faulty scripts directly for editing:

● To go directly to the "Scripts" editor, select the green arrow .

See also
System functions (Page 308)

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 365

7.4.3 Creating a customized script (RT Uni)

Introduction
Customized scripts are functions in the form of JavaScript code which are developed and
entered by the user.

You solve individual tasks with customized scripts, e.g.

● Automating processes

● Dynamizing objects

● Evaluating events, such as user input.

Note

When creating scripts, also consider the object model.

Preparation
In advance of creating the script, consider where you will enter the script and how it will be
executed.

Depending on which objects and system components you address, you use a specific editor for
creating your JavaScript code.

Depending on the execution context of the editor, the script is executed in a script context with
differing ranges of validity.

Note

Each module has its own namespace, which means it is possible to use the same function
name and global tag name in two modules.

The functions are distinguished by the symbol name of the imported module. Example:

import * as modA from 'ModuleA';
import * as modB from 'ModuleB';
modA.function1();
modB.function1();

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
366 System Manual, 11/2019, Online help printout

Execution context of the editor Script context and referencing
"Scripts" editor in the "Screens" editor Each process screen has two independent script contexts:

● Context for dynamization of properties
● Context for evaluation of events
The script of a property cannot access global tags of an event even in the
same screen.
Each script context references the modules that it has imported using the
'import' statement. However, each script context receives its own copy of
the tags defined there.

"Scripts" editor in the Scheduler All jobs share a script context.
Different tasks can access common global tags.
Each required module must be referenced by means of the 'import' state‐
ment.

Create 'import' statement
A module can be referenced in a script or another module:

● Drag and drop the module to be referenced into the "Global Definition" area of the script or
into the definition area of the module.

Requirement
● "Scripts" editor is opened in the desired execution context.

Procedure
1. Enter your JavaScript code in the code area.

2. Use Snippets and system functions to create error-free code faster.

3. When you dynamize the property of a screen item, add a trigger.

4. Perform a syntax check.

5. Save the project.

See also
Local scripts (Page 361)

Configuring a script to an event (Page 368)

Dynamizing object properties by script (Page 369)

Creating a global definition in a local script (Page 369)

WinCC Unified object model (Page 411)

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 367

7.4.4 Configuring a script to an event (RT Uni)

Note
Restriction of "activated" and "deactivated" events

If the focus is on the affected screen item, scripts are executed at the "activated" and
"deactivated" events.

Requirement
● One of the following objects is configured:

– Task

– Screen

– Screen item

Procedure
To configure a script to an event, follow these steps:

1. Open the relevant editor.

2. Select the object.

3. Select the event under "Properties > Events" in the Inspector window.

4. Generate the local script.

5. Write the code.

6. Perform a syntax check.

7. Save the project.

See also
Runtime scripting (Page 355)

Local scripts (Page 361)

Creating a customized script (Page 366)

Creating a global definition in a local script (Page 369)

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
368 System Manual, 11/2019, Online help printout

7.4.5 Dynamizing object properties by script (RT Uni)

Requirement
● One of the following objects is configured:

– Screen

– Screen object

● The selected object property supports the dynamization type "Script".

Procedure
1. Open the editor of the object in question.

2. Select the object.

3. Select the desired object property under "Properties > Properties" in the Inspector window.

4. Dynamize the object property:

– Select the "Script" entry in the "Dynamization" column.
The editor creates a script and is displayed in the Inspector window.

– Write the code.

5. Select the trigger that triggers the dynamization in runtime.

Result
The script changes the selected property dynamically in line with the written code.

See also
Local scripts (Page 361)

Creating a global definition in a local script (Page 369)

7.4.6 Creating a global definition in a local script (RT Uni)

Procedure
1. Open the local script.

2. Click "Global definition".

3. Write the code.

4. Perform a syntax check.

5. Click "Function".

Programming scripts (RT Uni)
7.4 "Scripts" editor (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 369

See also
Local scripts (Page 361)

Creating a customized script (Page 366)

Configuring a script to an event (Page 368)

Dynamizing object properties by script (Page 369)

7.5 Examples (RT Uni)

7.5.1 Notes on the code examples (RT Uni)

General
The comments at the beginning of each code example are required for technical reasons.

At the same time these comments show the relationships between various code examples
within a chapter.

Further comments in the code examples explain individual program code lines.

Executing examples
1. Set the language of the develop environment to "English", so that the object names used in

the examples are automatically assigned correctly.

2. Create a project with corresponding screens in which you can configure buttons, I/O fields,
etc. These elements are required to carry out the code examples.

3. Apply the code examples to the associated script areas.

4. Compile the project.

5. Start the simulation of the project.

6. Start the tracer to diagnose potential errors.

See also
RTIL Trace Viewer (Page 397)

7.5.2 Dynamizing the position of an object (RT Uni)

Introduction
The example shows how to dynamically change an object position using JavaScript.

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
370 System Manual, 11/2019, Online help printout

A classic application would be the adjustment of the object position to the size and/or position
of adjacent objects on the screen page.

Execution of example
1. Configure 4 tags with the names "HMI_Tag1" to "HMI_Tag_4".

2. Configure a screen page with the following objects:

– 4 objects of the type I/O field with the process values "HMI_Tag_1" to "HMI_Tag_4"

– 1 object of the type "Circle" with the name "Circle_1"

– 1 object of the type "Button" with the name "Button_1"

3. Dynamize the parameters "Position X" and ""Position" Y" of the objects "Circle_1" and
"Button_1" using scripts.

4. Set the triggers for dynamization with the tags

– HMI_Tag_1 for Button_1/Position X,

– HMI_Tag_2 for Button_1/Position Y,

– HMI_Tag_3 for Circle_1/Position X,

– HMI_Tag_4 for Circle_1/Position Y.

The scripts are started accordingly by changing the tag.

5. Copy the sample code below to your project.

Reading out and returning the tag HMI_Tag_1
The script with the function "Circle_1_CenterX_Trigger(item)" is created when the
parameter "Position X" is dynamized by a script in the properties of the object "Circle_1".

//JEx: "Position X dynamization of a Circle with tags"
//TagsRequired: "HMI_Tag_1"

export function Circle_1_CenterX_Trigger(item) {
 var value = Tags("HMI_Tag_1").Read();
 return value;
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 371

Reading out and returning the tag HMI_Tag_2
The script with the function "Circle_1_CenterY_Trigger(item)" is generated when the
parameter "Position Y" is dynamized by a script in the properties of the object "Circle_1".

//JEx: "Position Y dynamization of a Circle with tag"
//TagsRequired: "HMI_Tag_2"

export function Circle_1_CenterY_Trigger(item) {
 var value = Tags("HMI_Tag_2").Read();
 return value;
}

Reading out and returning the tag HMI_Tag_3
The script with the function "Button_1_Left_Trigger(item)" is generated when the
parameter "Position X" is dynamized by a script in the properties of the object "Button_1".

//JEx: "Position X dynamization of a Button with tag"
//TagsRequired: "HMI_Tag_3"

export function Button_1_Left_Trigger(item) {
 var value = Tags("HMI_Tag_3").Read();
 return value;
}

Reading out and returning the tag HMI_Tag_4
The script with the function "Button_1_Top_Trigger(item)" is generated when the
parameter "Position Y" is dynamized by a script in the properties of the object "Button_1".

//JEx: "Position Y dynamization of a Button with tag"
//TagsRequired: "HMI_Tag_4"

export function Button_1_Top_Trigger(item) {
 var value = Tags("HMI_Tag_4").Read();
 return value;
}

Result (in runtime)
The position of the object in question changes in accordance with the values entered in the I/O
fields.

See also
Notes on the code examples (Page 370)

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
372 System Manual, 11/2019, Online help printout

7.5.3 Reading and writing tag values (RT Uni)

Introduction
The example shows how to read, multiply and write the values from two tags (HMI_Tag_2,
HMI_Tag_3) to another tag (HMI_Tag_1).

In practical use, the tags could represent the following parameters:

● HMI_Tag_1: Apparent power S

● HMI_Tag_2: Electrical voltage U

● HMI_Tag_3: Electrical current I

Execution of example
1. Configure 3 tags "HMI_Tag1" to "HMI_Tag_3" of the "Int" type.

2. You configure the following objects on a screen:

– 1 button (in the example "Button_1")

– 3 I/O fields with the process values "HMI_Tag_1" to "HMI_Tag_3"

3. Create a script for the event "Click left mouse button".
The JavaScript editor creates the function "Button_1_OnTapped(item, x, y,
modifiers, trigger)".

4. Insert the example code.

Sample code

//JEx: "Reading and writing tag values"
//Tags_Required: "HMI_Tag_1"; "HMI_Tag_2"; "HMI_Tag_3"

export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 Tags("HMI_Tag_1").Write(Tags("HMI_Tag_2").Read() * Tags("HMI_Tag_3").Read());
}

See also
Notes on the code examples (Page 370)

7.5.4 Change language (RT Uni)

Introduction
The example shows how to change the language of the interface using JavaScript.

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 373

Execution of example
1. Configure a button "Button_1".

2. Activate the project languages required for the example:

– English

– German

– Hungarian

– French

3. Create a script for the event "Left mouse button clicked" of the button "Button_1".

4. Define the tag "step" under "Global definition" and assign the value "2" to it.

Global definition

//JEx: "LanguageChangeGlobalDef"
var step = 2;

Sample code
Clicking the button increments the tag "step". The stored code for the language is assigned
to HMIRuntime.Language according to its value.

//JEx: "LanguageChange"
//JExRequired: "LanguageChangeGlobalDef"

export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 //change to English
 if (step == 1) {HMIRuntime.Language = "1033";}

 //change to Hungarian
 if (step == 2) {HMIRuntime.Language = "1038";}

 //change to German
 if (step == 3) {HMIRuntime.Language = "1031";}

 //change to French
 if (step == 4) {HMIRuntime.Language = "1036";}

 step ++; //step
 if (step == 5) {step = 1;} //reset
}

See also
Notes on the code examples (Page 370)

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
374 System Manual, 11/2019, Online help printout

7.5.5 Dynamically changing the output format of an object (RT Uni)

Introduction
This example shows how to dynamically change the output format of an object of the type "I/O
field" using JavaScript.

The output in the example is switched between the following formats:

● Hexadecimal

● Decimal

● Binary

Execution of example
1. Configure a screen page with 3 buttons with the names "Button_1" to "Button_3".

2. Configure max. 9 objects of the type I/O field with the names "HmiIOField_1" to
"HmiIOField_9".

3. Create a script for the event "Button pressed" for each button.

4. Define the constants as described in the section "Global definition of constants".

5. Create 2 global scripts:

– toggleOutputFormat()

– setOutputFormat(format)

6. Transfer the source code from the following sections.

Global script "toggleOutputFormat()"

//JEx: "Toggle Output Format"
//SOM_OM_"HmiIOField"
//JExRequired: "Set Output Format";"GlobalConstants for OutputFormat"

function toggleOutputFormat() {
 let index = outputFormats.indexOf(Screen.FindItem(screenItemNameBase +
minScreenItemIndex).OutputFormat);
 index = (index + 1) % outputFormats.length;
 setOutputFormat(outputFormats[index]);
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 375

Global script "setOutputFormat(format)"

//JEx: "Set Output Format"
//SOM_OM_"HmiIOField"
//JExRequired: "GlobalConstants for OutputFormat"

function setOutputFormat(format) {
 for(let i = minScreenItemIndex; i <= maxScreenItemIndex; i++) {
 let name = screenItemNameBase + i;
 Screen.FindItem(name).OutputFormat = format;
 }
}

Global definition of constants

//JEx: "GlobalConstants for SetOutputFormat"

const outputFormats = ['{I}', '{H2,2}', '{B8,4}'];
// Erstellen der dynamischen Objektnamen, die sich ausschließlich durch die
Nummer am Ende unterscheiden
const screenItemNameBase = 'HmiIOField_';
// the screen item names begin with the prefix 'HmiIOField_'
const minScreenItemIndex = 1; // range of the screen items: min
const maxScreenItemIndex = 9; // range of the screen items: max

Switch to hexadecimal output format

//JEx: "Switch Output Format Hex"
//SOM_OM_"HmiIOField"
//JExRequired: "Set Output Format"

export function Button_1_OnDown(item, x, y, modifiers, trigger) {
 setOutputFormat('{H2,2}');
}

Switch to decimal output format

//JEx: "Switch Output Format Dec"
//SOM_OM_"HmiIOField"
//JExRequired: "Set Output Format"

export function Button_2_OnDown(item, x, y, modifiers, trigger) {
 setOutputFormat('{I}');
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
376 System Manual, 11/2019, Online help printout

Switch to the next output format

//JEx: "Switch Output Format Bin"
//SOM_OM_"HmiIOField"
//JExRequired: "Toggle Output Format"

export function Button_3_OnDown(item, x, y, modifiers, trigger) {
 toggleOutputFormat();
}

See also
Notes on the code examples (Page 370)

7.5.6 Setting the alarm filter (RT Uni)

Introduction
The example shows how to set the alarm filter using a JavaScript function.

To make the examples easy, the filters are set by pressing a button.

Classic application example: Setting alarm filters using check boxes on a screen page.

Execution of example
1. Configure a screen page with the following elements:

– 1 alarm view (Alarm_control_1)

– 2 buttons (in the example "Button_7" and "Button_8").

2. Configure the generation of alarms of the alarm class "Warning" and "Alarm".

3. Ensure that the alarms in the alarm view "Alarm control_1" are displayed.

Filtering sample code for "Warning"
In the sample code, messages of the alarm class "Warning" are filtered.

//JEx: "Alarm Filter Control with Warnings"
//SOM_OM_"Alarm control" (Alarm control_1);SOM_OM_
//JExRequired: "Alarm Subscription"

export function Button_7_OnDown(item, x, y, modifiers, trigger) {
 let alarmControl = Screen.FindItem('Alarm control_1');
 alarmControl.Filter = "AlarmClassName='Warning'";
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 377

Filtering sample code for "Warning" and "Alarm"
In the sample code, messages of the alarm class "Warning" and "Alarm" are filtered.

//JEx: "Alarm Filter Control with Warnings and Alarms"
//SON_ON_"Alarm control" (Alarm control_1);
//JExRequired: "Alarm Subscription"

export function Button_8_OnDown(item, x, y, modifiers, trigger) {
 let alarmControl = Screen.FindItem('Alarm control_1');
 alarmControl.Filter = "AlarmClassName IN ('Warning','Alarm')";
}

See also
Notes on the code examples (Page 370)

7.5.7 Creating an alarm subscription (RT Uni)

Introduction
The example shows how an "Alarm Subscription" is programmed in JavaScript.

Execution of example
1. Configure a task in the Scheduler with the time interval for the update.

2. Create a script for the event "Update" at the configured task.

3. Create the tag "subs" under "Global definition" (compare section "Global definition").

4. Copy the code under "Example code" to the script for the "Update" event.

Global definition

//JEx: "AlarmSubscriptionDef"
// A global tag is required for the Alarm Subscription,
// to be able to end the subscription
var subs;

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
378 System Manual, 11/2019, Online help printout

Sample code
The JavaScript function in the example is started via the event "Update" of a task in the
Scheduler.

//JEx: "AlarmSubsciption"
//JExRequired: "AlarmSubscriptionDef"
//TagsReqired: "HMI_Tag_1_Int"

// Function will be generated when you create a script on event "Update" of a task
export function Task_Task_1_Update() {
 let tag = Tags("HMI_Tag_1_Int");
 tag.Read();
 if(tag.Value == 1) {
 // start subscription
 if(subs) {
 // stop already existing subscription
 subs.Stop();
 subs = undefined;
 }
 subs = HMIRuntime.Alarming.CreateSubscription();
 subs.Filter = 'AlarmClassName=\'Warning\'';
 //subs.Language = 1033; // For explicit setting of a specific language
 subs.OnAlarm = function(Errorcode, SystemNames, ResultSet) {
 // Callback function is performed as soon as the alarm attribute changes
 for (let index in ResultSet) {
 HMIRuntime.Trace('Alarm[' + index + '] Name="' + ResultSet[index].Name + '"');
 HMIRuntime.Trace('Alarm[' + index + '] State="' + ResultSet[index].State +
'"');
 HMIRuntime.Trace('Alarm[' + index + '] EventText="' +
ResultSet[index].EventText + '"');
 }
 }
 subs.Start();
 } else if(tag.Value == 2) {
 // stop subscription
 if(subs) {
 // Stop already existing Alarm Subscription
 subs.Stop();
 subs = undefined;
 }
 }
}

See also
Notes on the code examples (Page 370)

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 379

7.5.8 Reading and writing binary files (RT Uni)

Introduction
The example shows how to write a binary file to the file system with JavaScript.

Note
● For access to the data, use the class "DataView" or one of the "*Array" classes together with

the class "arrayBuffer".
● If the Endianess of the computer systems used for development (Compiler) and execution

(Runtime) are different, use the class "DataView".
● The method HMIRuntime.Trace(text) outputs whether the function was successful via the

Tracer.

Execution of example
1. Configure 3 buttons with the names "Button_10", "Button_11" and "Button_14".

2. Create a script for the event "Print" for each button.

3. Copy the sample code below to your project.

Writing a binary file

//JEx: Write a binary file with class "Int32Array" into file system

export function Button_10_OnDown(item, x, y, modifiers, trigger) {
 var arrayBuffer = new Int32Array([1,2,3]);
 HMIRuntime.FileSystem.WriteFileBinary('C:\\Users\\Public\\binaryfile.bin',
arrayBuffer).then(
 function() {
 HMIRuntime.Trace('Write file finished successfully');
 }).catch(
 function(e) {
 HMIRuntime.Trace(`Write file failed with error code ${e}`);
 });
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
380 System Manual, 11/2019, Online help printout

Reading a binary file with the class Int32Array

//JEx: Read a binary file with class "Int32Array" from file system

export function Button_11_OnDown(item, x, y, modifiers, trigger) {
 var arrayBuffer = new Int32Array([1,2,3]);
 HMIRuntime.FileSystem.ReadFileBinary('C:\\Users\\Public\\binaryfile.bin',
arrayBuffer).then(
 function(arrayBuffer) {
 let intView = new Int32Array(arrayBuffer);
 for(let i in intView) {
 HMIRuntime.Trace('intView[' + i + '] = ' + intView[i]);
 }
 }).catch(
 function(e) {
 HMIRuntime.Trace(`Read file failed with error code ${e}`);
 });
}

Reading a binary file with the class DataView

//JEx: Read a binary file with class "DataView" from file system

export function Button_14_OnDown(item, x, y, modifiers, trigger) {
 HMIRuntime.FileSystem.ReadFileBinary('C:\\Users\\Public\\binaryfile.bin').then(
 function(arrayBuffer) {
 let dv = new DataView(arrayBuffer, 0, arrayBuffer.length);
 HMIRuntime.Trace('Int32[0] LE:' + dv.getInt32(0, true).toString(16));
 HMIRuntime.Trace('Int32[0] BE:' + dv.getInt32(0).toString(16));
 HMIRuntime.Trace('Int16[2] LE:' + dv.getInt16(2, true).toString(16));
 }).catch(
 function(e) {
 HMIRuntime.Trace(`Read file failed with error code ${e}`);
 });
}

See also
Notes on the code examples (Page 370)

7.5.9 Reading and writing text files (RT Uni)

Introduction
This example shows how text files can be read and written with JavaScript.

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 381

Execution of example

Note

The method HMIRuntime.Trace(text) outputs whether the function was successful via the
Tracer.

1. Configure 2 buttons "Button_12" and "Button_13".

2. Create a script for the event "Print" for each button.

3. Copy the sample code below to your project.

Writing sample code for text file

//JEx: "Write Text File"

export function Button_12_OnDown(item, x, y, modifiers, trigger) {
 HMIRuntime.FileSystem.WriteFile('C:\\Users\\Public\\textfile.txt', 'my utf8 string',
'utf8').then(
 function() {
 HMIRuntime.Trace('Write file finished successfully');
 }).catch(function(errorCode) {
 HMIRuntime.Trace('Write failed errorcode=' + errorCode);
 });
}

Reading sample code for text file

//JEx: "Read Text File"

export function Button_13_OnDown(item, x, y, modifiers, trigger) {
 HMIRuntime.FileSystem.ReadFile('C:\\Users\\Public\\textfile.txt',
'utf8').then(
 function(text) {
 HMIRuntime.Trace('Text=' + text);
 }).catch(function(errorCode) {
 HMIRuntime.Trace('Read failed errorcode=' + errorCode);
 });
}

See also
Notes on the code examples (Page 370)

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
382 System Manual, 11/2019, Online help printout

7.5.10 Converting values (RT Uni)

Introduction
The example shows how temperature values can be converted into a different unit with
JavaScript.

Executing an example
1. Create a global module "TemperatureConversions" with 2 global scripts:

– "celsiusToFahrenheit(t_celsius)"

– "fahrenheitToCelsius(t_fahrenheit)"

2. Copy the corresponding sample code to the global scripts.

3. Copy the sample code from the "Global definition range" to the global definition range of the
global module "TemperatureConversion".

4. Create a screen with 2 elements of the type "I/O field".

5. Dynamize the "Process value" property of the two "I/O field" elements through scripts.

6. Copy the sample code of both scripts.

Celsius to Fahrenheit (global script)

//JEx: "CelsiusToFahrenheit"
//JExRequired: "TempConv_GlobalDefRange"

export function celsiusToFahrenheit(t_celsius) {
 return t_celsius * 1.8 + 32;
}

Fahrenheit to Celsius (global script)

//JEx: "FahrenheitToCelsius"
//JExRequired: "TempConv_GlobalDefRange"

export function fahrenheitToCelsius(t_fahrenheit) {
 return (t_fahrenheit - 32) / 1.8;
}

Global definition range

//JEx: "TempConv_GlobalDefRange"
import * as tempConv from 'TemperatureConversion';

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 383

Celsius to Fahrenheit (dynamization of process value)
The JavaScript function is triggered by the tag 'celsius1'.

//JEx: "DynCelsiusToFahrenheit"
//SOM_OM_"HmiIOField"
//TagsRequired: "celsius1"
//JExRequired: "celsiusToFahrenheit"
//JExRequired: "TempConv_GlobalDef"

export function I_O_field_1_ProcessValue_Trigger(item) {
 const tagCelsius = Tags('celsius1');
 tagCelsius.Read();
 return tempConv.celsiusToFahrenheit(tagCelsius.Value);
}

Fahrenheit to Celsius (dynamization of process value)
The JavaScript function is triggered by the tag 'fahrenheit1'.

//JEx: "DynFahrenheitToCelsius"
//SOM_OM_"HmiIOField"
//TagsRequired: "fahrenheit1"
//JExRequired: "fahrenheitToCelsius"
//JExRequired: "TempConv_GlobalDef"

export function I_O_field_2_ProcessValue_Trigger(item) {
 const tagFahrenheit = Tags('fahrenheit1');
 tagFahrenheit.Read();
 return tempConv.fahrenheitToCelsius(tagFahrenheit.Value);
}

See also
Notes on the code examples (Page 370)

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
384 System Manual, 11/2019, Online help printout

7.5.11 Setting bits (RT Uni)

Introduction
The example shows how single and multiple bits are masked and set with JavaScript.

Note
Using different methods for integer data types

The methods of the "Math.Uint64" object and of the standard model exist for setting and
resetting multiple bits.

The methods of the "Math.Uint64" object work with all integer data types.
● For values < 231 use the standard methods of JavaScript.
● For values ≥ 231 use the methods from the "Math.Uint64" object model.

Executing an example
1. Create 6 buttons in a project.

2. Create a tag of the "Int" type.

3. For all 6 buttons create local scripts for the event "Left mouse button pressed".

4. Transfer the source code for the examples to the respective script areas.

5. To retain a clear overview assign descriptive texts to the buttons.

Setting a single bit (not error handling)
The methods "SetBit()" and "ResetBit()" of the "HMITag" class exist for setting and resetting
single bits.

//JEx: "SetSingleBit"
//SOM_OM_"
//TagsRequired: "HMI_Tag_1"

export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 Tags('HMI_Tag_1').SetBit(37);
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 385

Setting a single bit
During error handling a corresponding message is output with the "HMIRuntimeTrace"
method.

//JEx: "SetSingleBitWithErrorHandling"
//SOM_OM_"
//TagsRequired: "HMI_Tag_1"

export function Button_5_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const bitNum = 37;
 tag1.SetBit(bitNum).then(() => {HMIRuntime.Trace('SetBit succeeded');})
 .catch((e) => {HMIRuntime.Trace(`SetBit failed, error=${e}`);});
}

Changing bits with "Xor" without error handling
Changing multiple bits with 64 bits without error handling.

The example is created with the method of the "Math.Uint64" object model.

//JEx: "SetMultipleBits"
//SOM_OM_"
//TagsRequired: "HMI_Tag_1"

export function Button_6_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 // Define a 64-bit mask using a binary constant
 const mask =
HMIRuntime.Math.Uint64('0b0110011000000000000000000000000000001');
 tag1.Read();
 // Check whether the value is of the type "Uint64".
 // The 'And', 'Or' and 'Xor' methods of the "Math.Uint64" object model
only work if this is the case.
 const newValue = HMIRuntime.Math.Uint64(tag1.Value);
 newValue.Xor(mask); // use '.And()' / '.Or' for clearing / setting bits
 tag1.Write(newValue);
}

Setting bits with "Or"
The function sets every bit in the mask that has the value "1".

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
386 System Manual, 11/2019, Online help printout

The example is created with the method of the "Math.Uint64" object model, uses asynchronous
writing and contains an extended error handling.

//JEx: "SetMultipleBitsWithErrorHandlingOr"
//TagsRequired: "HMI_Tag_1"

// set bits with 'Or': sets every bit which is '1' in mask
export function Button_16_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const mask =
HMIRuntime.Math.Uint64('0b0110011000000000000000000000000000001');
 tag1.Read();
 if(tag1.LastError != 0) {
 HMIRuntime.Trace(`Read failed, error=${tag1.LastError}`);
 } else if((tag1.QualityCode & 0x80) == 0) {
 // Check whether QC is 'good' or 'good cascade'
 HMIRuntime.Trace(
 `Read succeeded, but Quality is not 'good', QC=$
{tag1.QualityCode}`
);
 } else {
 const newValue = HMIRuntime.Math.Uint64(tag1.Value);
 newValue.Or(mask); // Set bits
 const ts = Tags.CreateTagSet([[tag1.Name, newValue]]);
 ts.WriteAsync().then(()=>{HMIRuntime.Trace('Write succeeded')})
 .catch((e)=>{HMIRuntime.Trace(`Write failed, error=${e}`)});
 }
}

Deleting bits with "AND"
The script deletes each masked bit with the value "1".

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 387

The example is created with the method of the "Math.Uint64" object model.

//JEx: "ClearMultipleBitsWithErrorHandlingAnd"
//TagsRequired: "HMI_Tag_1"

export function Button_17_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const mask =
HMIRuntime.Math.Uint64('0b0110011000000000000000000000000000001');
 // invert all bit of mask for 'And' operation
 mask.Xor(HMIRuntime.Math.Uint64('0xffffffffffffffff'));
 tag1.Read();
 if(tag1.LastError != 0) {
 HMIRuntime.Trace(`Read failed, error=${tag1.LastError}`);
 } else if((tag1.QualityCode & 0x80) == 0) {
 // Check whether QC is 'good' or 'good cascade'
 HMIRuntime.Trace(
 `Read succeeded, but Quality is not 'good', QC=$
{tag1.QualityCode}`
);
 } else {
 const newValue = HMIRuntime.Math.Uint64(tag1.Value);
 newValue.And(mask); // Delete bits
 const ts = Tags.CreateTagSet([[tag1.Name, newValue]]);
 ts.WriteAsync().then(()=>{HMIRuntime.Trace('Write succeeded')})
 .catch((e)=>{HMIRuntime.Trace(`Write failed, error=${e}`)});
 }
}

Replacing bits with "Xor"
The script replaces each bit in the mask that has the value "1".

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
388 System Manual, 11/2019, Online help printout

The example is created with the method of the "Math.Uint64" object model.

//JEx: "FlipMultipleBitsWithErrorHandlingXor"
//TagsRequired: "HMI_Tag_1"

export function Button_12_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const mask =
HMIRuntime.Math.Uint64('0b0110011000000000000000000000000000001');
 tag1.Read();
 if(tag1.LastError != 0) {
 HMIRuntime.Trace(`Read failed, error=${tag1.LastError}`);
 } else if((tag1.QualityCode & 0x80) == 0) {
 // Check whether QC is 'good' or 'good cascade'
 HMIRuntime.Trace(
 `Read succeeded, but Quality is not 'good', QC=$
{tag1.QualityCode}`
);
 } else {
 const newValue = HMIRuntime.Math.Uint64(tag1.Value);
 newValue.Xor(mask);
 const ts = Tags.CreateTagSet([[tag1.Name, newValue]]);
 ts.WriteAsync().then(()=>{HMIRuntime.Trace('Write succeeded')})
 .catch((e)=>{HMIRuntime.Trace(`Write failed, error=${e}`)});
 }
}

See also
Notes on the code examples (Page 370)

7.5.12 Changing the date format (RT Uni)

Introduction
The example shows how the date format is changed using JavaScript.

Executing an example
1. Create 2 I/O fields und 1 button.

2. Configure 2 global tags:

– HMI_Tag_1 of the type "Int"

– HMI_Tag_2 of the type "WString"

3. Create a script for the event "Press" of the button "Button_1".

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 389

Sample code

//JEx: "ChangeDateformat"
//SOM_OM_"HmiIOField_1", SOM_OM"HmiIOField_2"

//TagsRequired: "HMI_Tag_1:Int","HMI_Tag_2:WString"

export function Button_1_OnDown(item, x, y, modifiers, trigger) {
 //Create array with all month names
 var monthNames = [
 "January", "February", "March",
 "April", "May", "June", "July",
 "August", "September", "October",
 "November", "December"
];
 var date = new Date(); //Create tag with current date
 var day = date.getDate(); //Separation of the individual date components
 var monthIndex = date.getMonth();
 var year = date.getFullYear();
 var month = monthIndex + 1;
 //The "getMonth()" object contains 12 values from "0" to "11".

 //Set the date format
 switch (Tags("HMI_Tag_1").Read()) {
 case 1: Tags("HMI_Tag_2").Write(day +'/' +month +'/' +year); break;
 case 2: Tags("HMI_Tag_2").Write(year +'-' +month+ '-' +day); break;
 case 3:
 Tags("HMI_Tag_2").Write(year +'-' +monthNames[monthIndex] + '-'
+day);
 break;
 default:
 Tags("HMI_Tag_2").Write(day + ' ' + monthNames[monthIndex] + '
' + year);
 break;
 }
}

See also
Notes on the code examples (Page 370)

7.5.13 Simulating value changes in tags (RT Uni)

Introduction
This example shows how tags are supplied with values in defined time intervals by a simulation.

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
390 System Manual, 11/2019, Online help printout

With the simulation, demo projects can be created or tested without process integration.

Note
Connection of existing process tags leads to influencing of processes

The simulation writes the calculated values to the tags without further test steps.
● Do not link any external tags; these remain linked to any existing process.

The simulation thus influences the process in which the external tag is integrated.
● If you purposely want to influence a process with simulation, note that the external tag of the

process can only be reached for simulation if the following requirements are met:
– The connection to the controller (PLC) is established.
– The controller (PLC) is in "RUN" mode.

The global functions for generating sine and sawtooth waves use 5 parameters:

● counter: Counter that uses the current date in milliseconds.

● phase: Phase offset as a factor between 0.0 and 1.0
The factor 0.0 to 1.0 corresponds to a phase offset of 0° to 360°.

● period: Duration of a full vibration cycle in milliseconds

● amp: Strength of the amplitude

● offset: Shift of the amplitude on the y-axis

Executing an example
1. Create a global "Simulator" module.

2. Configure the two functions "sinWave" and "sawTooth" in this global module.
Use the source codes from the following sections for the functions:

– "Example code > Simulate sine wave (global script)"

– "Example code > Simulate sawtooth wave (global script)"

3. Create a script for the "Loaded" event for the screen.

4. Go to the "Global definition" view of the event.

5. Insert the sample code under "Sample code > Event - Global definition area" in the "Global
definition" view of the event.

6. If necessary, adapt the copied sample code to your project. For example, if you use more
than 2 tags, you must add more lines with the function ts.Add(...).

7. Go back to the "Function" view of the event.

8. Insert the source code from "Example code > Event".

The tags HMI_Tag_1 and HMI_Tag_2 can now be connected to any objects in the screen that
can display the values, such as:

● f(x) trend view

● Gauges

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 391

● Bar graphs

● Text fields

Result
1. When the application is loaded in Runtime, the import function initializes the scripts from

the global module "Simulator" for the "Loaded" event of the screen.
The example code can be found under "Event - Global definition area".

2. If the event is triggered when the screen is loaded, the function "simulateTags()" starts at the
specified intervals.
In the example, the interval is 500 ms.
The call of the function "simulateTags()" is stopped as soon as the screen is deselected.
The example code can be found under "Event" and "Event - Global definition area".

3. The function "simulateTags()" starts with each call of the functions "sinWave" and
"sawTooth" and transfers the new values to the tags.
The example code can be found under "Simulate sine wave (global script)" and "Simulate
sawtooth wave (global script)".

Sample code

Simulate sine wave (global script)

//JEx: "Simulate Sine Wave"

export function sinWave(counter, phase, period, amp, offset) {
 return offset + amp * Math.sin((phase + ((counter % period) / period)) * (2*Math.PI));
}

Simulate sawtooth wave (global script)

//JEx: "Simulate Saw Tooth Wave"

export function sawTooth(counter, phase, period, amp, offset) {
 return offset + amp * (((counter + phase * period) % period) / period);
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
392 System Manual, 11/2019, Online help printout

Global event definition area

//JEx: "Generate signals"
//SOM_OM_"HmiTrendControl"
//JExRequired: "Simulate Sine Wave", "Simulate Saw Tooth Wave"

import * as sim from "Simulator";

function simulateTags() {
 let counter = Date.now();
 let ts = Tags.CreateTagSet();
 ts.Add([['HMI_Tag_1', sim.sinWave(counter, 0.00, 10000, 25, 25)]]);
 ts.Add([['HMI_Tag_2', sim.sawTooth(counter, 0.25, 37000, 30, 15)]]);
 ts.WriteAsync();
}

Event

//JEx: "Event Screen_1 OnLoad"
//SOM_OM_"HmiTrendControl"
//JExRequired: "Generate signals"

export function Screen_1_OnLoad(item) {
 HMIRuntime.Timers.SetInterval(simulateTags, 500);
}

See also
Notes on the code examples (Page 370)

7.5.14 Monitoring alarms (RT Uni)

Introduction
This example shows how to create and monitor active alarms.

The reason (NotificationReason) for which the alarms were sent can have the following values:

● Unknown (1)

● Add (1)
The alarm was added to the filtered result list. The alarm meets the filter criteria that apply
to the monitoring, for example "State = 1".

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 393

● Modify (2)
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

● Remove (3)
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.

Note

Changes to the alarm will not result in notifications until the alarm meets the filter criteria
again, such as "State = 1". In this case, "NotificationReason" is set to Add.

State-based and event-based monitoring
The respective client application determines whether or not notifications of alarms with the
"NotificationReason" Modify or Remove are ignored.

For example:

● State-based monitoring: A customer wants to create a list of incoming alarms. All notification
reasons are relevant. The client removes an alarm from the list as soon as the notification
reason is Remove.

● Event-based monitoring: If an alarm is received, an email should be sent. Only the
notification reason Add is relevant.

Execution of example
1. Configure a button (in the example "Button_1") on a screen.

2. Create a script for the event "Click left mouse button".
The JavaScript editor creates the function "Button_1_OnTapped(item, x, y,
modifiers, trigger)".

3. Insert the example code.

4. Compile and load it in Runtime.

5. Trigger the event "Click left mouse button" on the button.

Result
1. A customer begins monitoring with the filter criterion "State = 1".

2. An alarm is triggered. Runtime notifies the customer of the "NotificationReason" as follows:

NotificationReason Description
Add "State" is 1 The alarm has arrived.
Modify "State" property has not changed.

Another property that is not part of the filter criterion has changed, e.g.
"Priority".

Remove "State" has changed. The alarm is removed.

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
394 System Manual, 11/2019, Online help printout

Sample code

//JEx: "A client starts an alarm subscription with filter criterion “State = 1” (Raised
alarms)."
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
var subs = HMIRuntime.Alarming.CreateSubscription();
subs.Filter = 'State=1';
subs.Language = 1033;
subs.OnAlarm = function(Errorcode, SystemNames, ResultSet) {
 for (let index in ResultSet)
 {
 HMIRuntime.Trace('Alarm Name_' + (index+1) + ' = ' + ResultSet[index].Name);
 HMIRuntime.Trace(' Alarm State_' + (index+1) + '= ' + ResultSet[index].State);
 HMIRuntime.Trace(' Notification Reason_' + (index+1) + '= ' +
ResultSet[index].NotificationReason);
 }
}
subs.Start();
}

7.5.15 Using tag values globally (RT Uni)

Introduction
The example shows how to use tag values globally. A tag value can therefore be shared
between screens and tasks, for example.

The basic procedure is as follows:

1. The tag value is written into an internal tag via a script.

2. The tag value is read by another script at the desired place.

You can save and read the values of all data types supported by the object model in internal
tags.

Execution of example
The following example writes a structured value of a JavaScript tag to an internal tag. Another
member is added to the structured value in the sample code on button 2.

1. Configure an HMI tag "Tag".

2. Configure two buttons (in the example "Button_1" and "Button_2") on a screen.

3. Create a script for each "Click left mouse button" event of the buttons.
The JavaScript editor creates the functions "Button_1_OnTapped(item, x, y,
modifiers, trigger)" und Button_2_OnTapped(item, x, y, modifiers,
trigger).

4. Insert the sample code "Write structured value into internal tag" into the script of the first
button.

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 395

5. Insert the sample code "Enhance structure by member "c"" into the script of the second
button.

6. Compile and load it in runtime.

7. Trigger the event "Click left mouse button" on both buttons.

Result

Button 1
1. The JavaScript tag "tag" is created and initialized with the HMI tag "Tag".

2. The JavaScript tag "myObj" is created and initialized.

3. The JavaScript tag "myObj" is converted into a JSON string and assigned to the JavaScript
tag "json".

4. The value of the JavaScript tag "json" is written into the HMI tag "Tag".

Button 2
1. The JavaScript tag "tag" is created and initialized with the HMI tag "Tag".

2. The JavaScript tag "myObj" is created and initialized.

3. The JavaScript tag "myObj" is extended by the member "c".

4. The JavaScript tag "myObj" is converted into a JSON string and assigned to the JavaScript
tag "json".

5. The value of the JavaScript tag "json" is written into the HMI tag "Tag".

Sample code

Write structured value into internal tag

//JEx: "set initial values without 'c'"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
let tag = Tags('Tag');
let myObj = {a:10, b:20, pos: {x:100, y:200}, layers: [1, 8, 18, 24,
33]};
let json = JSON.stringify(myObj);
HMIRuntime.Trace('Jason ' + json);
tag.Write(json, 1);
}

Programming scripts (RT Uni)
7.5 Examples (RT Uni)

WinCC Engineering V16 - Runtime Unified
396 System Manual, 11/2019, Online help printout

Enhance structure by member "c"

//JEx: "add member 'c'"
export function Button_2_OnTapped(item, x, y, modifiers, trigger) {
const tag = Tags('Tag');
let myObj = JSON.parse(tag.Read(1));
myObj.c = (myObj.c || 0) + 1; // increment 'c'
let json = JSON.stringify(myObj);
HMIRuntime.Trace("New JSON: " + json);
tag.Write(json, 1);
}

7.6 Troubleshooting (RT Uni)

7.6.1 RTIL Trace Viewer (RT Uni)

Core statement
The RTIL Trace Viewer is a separate application which runs independently of the TIA Portal,
but which can be integrated into the TIA Portal as an "external application".

Principle
During runtime, the RTIL Trace Viewer displays all alarms which are listed in the configurable
TraceCatalog.

Layout
The traces are displayed in tabular form and can be sorted in ascending and descending order
by the columns displayed.

Filters
The required alarms can be filtered using filters. Alarms in non-selected categories are hidden.

File functions
You export alarms as trace logs in the following formats:

● Text file (.txt, .log): Loading and evaluation in the RTIL Trace Viewer

● CSV file: Evaluation in conventional spreadsheet programs or other CSV-compatible
applications

See also
Support for errors (Page 359)

Programming scripts (RT Uni)
7.6 Troubleshooting (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 397

7.6.2 Integrate RTIL Trace Viewer as an external application (RT Uni)

Procedure
1. Open the settings via "Tools > Settings".

2. Open the category "External applications".

3. Double-click in the first empty line.
An input mask for the external application opens.

4. Assign a descriptive name for the application, e.g. "RTIL Trace Viewer" in the field "Name".

5. Insert the following path under "Command": %ProgramFiles%\Siemens\Automation
\WinCCUnified\bin\RTILtraceViewer.exe

6. Leave the fields "Arguments" and "Start in" empty.

7. Click "Add" and then close the "Settings" dialog.

The application is now available via the menu "Tools > External applications".

7.6.3 Tracing with the RTIL Trace Viewer (RT Uni)
There is a "Trace Viewer" for finding errors in the JavaScript code.

Preparation
The "Trace Viewer" are located in the following path:

● %ProgramFiles%\Siemens\Automation\WinCCUnified\bin\RTILtraceViewer.exe

Requirement
● Simulation or runtime are started.

● RTILtraceViewer.exe has been started.

Procedure
1. Carry out an action in the simulation which starts a JavaScript function.

2. Filter by the trace messages "Subsystem > ScriptFW".

Note

As long as no JavaScript function was executed in the simulation during the runtime of the
Trace Viewer, the entry "ScriptFW" is missing in the "Filter > Subsystem" menu.

Programming scripts (RT Uni)
7.6 Troubleshooting (RT Uni)

WinCC Engineering V16 - Runtime Unified
398 System Manual, 11/2019, Online help printout

3. Define additional filter criteria if required.

4. Evaluate trace messages if actions in the simulation lead to errors.

Note

If no messages are displayed in the Trace Viewer despite errors in the simulation, reset the
filters:
● Only in the submenu, e.g. "Subsystem": "Filter > Subsystem > Clear filter" menu
● All filters: "Filter > Clear all filters" menu

See also
Integrate RTIL Trace Viewer as an external application (Page 398)

Programming scripts (RT Uni)
7.6 Troubleshooting (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 399

7.7 Debugging scripts (RT Uni)

7.7.1 Basics of debugging (RT Uni)

Introduction
For example, you can use a debugger to test whether correct values are being transferred to
tags and whether abort conditions are being correctly implemented. Check the following in the
debugger:

● Source code of functions

● Function sequence

● Values

Note

Your code is displayed in the debugger, but is write-protected.

Basic procedure
To find an error, check the script with the debugger.

The following options are available for your support:

● Setting breakpoints

● Step-by-step execution

● Viewing values parallel to execution of the script

You do not edit the code of your scripts directly in the debugger. When you find an error, follow
these steps:

1. Correct the error in the engineering system.

2. Compile the changed code.

3. Load the runtime.

4. Update the debugger.

See also
Starting the debugger (Page 404)

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
400 System Manual, 11/2019, Online help printout

7.7.2 Design and function of the debugger (RT Uni)
Google Chrome provides the user interface of the debugger. Not all functions of the user
interface of the debugger are relevant for debugging WinCC Unified scripts. Only the functions
that are needed to debug scripts in WinCC Unified are explained below.

You can find more information on Chrome DevTools under: https://
developers.google.com/web/tools/chrome-devtools/ (https://developers.google.com/web/
tools/chrome-devtools/).

The debugger is divided into two areas:

● Debugger for screens

● Debugger for jobs

With the debugger for screens you view scripts at screens and screen objects. With the
debugger for jobs, you view scripts that you have configured in the Scheduler.

Start page of the debugger
After the debugger has been started, its start page is displayed.

The available contents differ depending on the selected area.

On the start page of the debugger for screens you can see two different contexts:

● Dynamizations (e.g. "UMCadmin@192.168.116.144 VCS_1 Dynamics")

● Events (e.g. "UMCadmin@192.168.116.144 VCS_1 Events")

The name of the contexts is composed as follows:

● UMCadmin: User name

● 192.168.116.144: IP address of the computer

● VCS: Name of the graphic component

● _1: Number of the open client

● Events/Dynamics: Scripts at events or dynamizations

Note

A client corresponds to a tab in Google Chrome in which the runtime is open. When you have
opened runtime in multiple tabs, multiple clients are used. The client opened first is given the
number 1. Numbering is reset when the runtime is restarted.

On the start page of the debugger for jobs you can see the context "JobsExecution".

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 401

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/

User interface of the debugger

① Navigation area
② Code display area
③ Console
④ Debugging area

Navigation area
In the navigation area, the available contents for the screen shown in runtime are displayed in
groups. The available groups vary depending on the use of scripts and functions.

Groups in the debugger for screens
The debugger for screens can contain the following groups in the dynamizations context:

● A group for scripts that were configured for dynamizations.

● One group per screen window in which scripts were configured for dynamizations.

The debugger for screens can contain the following groups in the events context:

● A group for scripts that were configured for events.

● One group for functions that were configured for events using the function list.

● One group per screen window in which scripts were configured for events.

● One group per screen window in which functions were configured for events using the
function list.

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
402 System Manual, 11/2019, Online help printout

Groups in the debugger for jobs
The debugger for jobs can contain the following groups:

● A group for scripts that were configured for tasks.

● One group for functions that were configured for tasks using the function list.

Code display area
Your code is displayed in the code display area. The rows are numbered.

Debugging area
The debugging area offers the following relevant options for WinCC Unified:

● Toolbar: Control for executing the script

● "Watch": Display of values

● "Callstack": Display of the current call stack

● "Scope": Available local values ("Local"), functions ("Module") and global values ("Global"),

● "Breakpoints": List of set breakpoints

7.7.3 Enabling the debugger (RT Uni)

Requirement
● SIMATIC Runtime Manager is installed.

● The logged-on user has administrator rights.

Note

The debugger is only available locally.

Remote access from the debugger to other devices is not possible.

Procedure
The debugger is disabled by default.

Note

The debugger should be deactivated in production operation, as using the debugger can
endanger system stability and security. Actions can accumulate if the debugger is, for example,
at a breakpoint for a long time or the screen is not refreshed.

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 403

To activate the debugger, follow these steps:

1. Run the SIMATIC Runtime Manager application with administrator rights.

2. Click "Settings of SIMATIC Runtime Manager".

3. Open the "Script Debugger Settings" tab.

4. To enable the debugger for screens, select the "Enable" check box in the
"Screen Debugger" area.

5. To enable the debugger for jobs, select the "Enable" check box in the "Scheduler Debugger"
area.

6. Assign an available port number to the debugger for screens (default port number: 9222).

7. Assign an available port number to the debugger for jobs (default port number: 9224).

8. Click "Save".

Note

Start the runtime after enabling the debugger.

7.7.4 Starting the debugger (RT Uni)

Requirement
● Google Chrome (version 55 or higher) is installed.

● A project is opened in runtime.

Procedure
● To start the debugger, call the URL http://localhost:port number (e.g. http://localhost:9222)

in Google Chrome. Instead of the term "localhost", you can use the computer name.

You access the debugger user interface as follows:

1. Select the desired context.

2. Open the "Sources" tab.
The user interface of the debugger is displayed.

Updating the debugger
Updating the debugger is necessary when

● You reload the runtime.

● You execute a screen change in runtime.

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
404 System Manual, 11/2019, Online help printout

The connection to the debugger is lost in both cases. Google Chrome therefore shows an error
message and asks whether you want to restore the connection.

● To restore the connection, click "Reconnect DevTools".

Note

If the start page of the debugger is displayed while you are restarting Runtime or change the
screen in Runtime, update the page display in Google Chrome.

Stopping the debugger
● You stop the debugger by closing the respective tab in Google Chrome.

This does not stop runtime.

See also
Design and function of the debugger (Page 401)

7.7.5 Working with breakpoints (RT Uni)
Set breakpoints to stop the execution of the script at certain points and thus localize errors step-
by-step. Previously set breakpoints are still available after updating the debugger.

Requirement
● Runtime has started.

● The debugger has been started.

● The group you want to debug is selected.

Pause script
To pause the execution of a script, you have 2 options:

● To pause the script immediately, click the "Pause script execution" button while the
script is being executed.

● Set a breakpoint in the desired line.
The script pauses when a breakpoint is reached.

To pause a script at a breakpoint that is configured to an event, follow these steps:

1. Set a breakpoint in the script.

2. Trip the respective event in runtime.
The script pauses at the breakpoint.

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 405

Setting breakpoints
You have several options to set a breakpoint in a line of the script:

● Click on the line number.

● Right-click the line number and select "Add Breakpoint".

All set breakpoints are displayed in the debugging area under "Breakpoints".

Linking breakpoints to conditions
To link a breakpoint to a condition, proceed as follows:

1. Open the shortcut menu of the relevant line.

2. Select the entry "Add conditional breakpoint".
Execution of the script is stopped at the breakpoint when the condition is fulfilled.

Edit conditions as follows:

1. Open the shortcut menu of the relevant line.

2. Select the entry "Edit breakpoint...".

To prevent the script from pausing at a selected line, proceed as follows:

1. Open the shortcut menu of the respective line.

2. Select the entry "Never pause here".

Showing and hiding breakpoints
When you hide a breakpoint, its position is retained. The script then ignores the hidden
breakpoint. When you need the breakpoint again, it can simply be shown.

In the debugging area, all breakpoints set in the selected group are displayed under
"Breakpoints".

You have several options to show a breakpoint:

● Set the check mark in front of the relevant breakpoint in the debugging area under
"Breakpoints".

● Alternatively, right-click the number of the respective line in the code display area and then
select "Enable breakpoint".

You have several options to hide a breakpoint:

● Remove the check mark in front of the relevant breakpoint in debugging area under
"Breakpoints".

● Alternatively, right-click the number of the respective line in the code display area and then
select "Disable breakpoint".

To show or hide all breakpoints, follow these steps:

1. Open the shortcut menu in the debugging area under "Breakpoints".

2. Select "Enable all breakpoints" or "Disable all breakpoints"

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
406 System Manual, 11/2019, Online help printout

Enabling and disabling breakpoints
You can enable or disable all breakpoints independent of showing or hiding individual
breakpoints.

You have several options to enable or disable all breakpoints:

● Click on the "Deactivate breaktpoints" button in the debugging area.

● Open the shortcut menu of a breakpoint in the debugging area and select
"Activate breakpoints" or "Deactivate breakpoints".

● Press <Ctrl + F8>.

Deleting breakpoints
You have several options to delete a breakpoint:

● Click on the breakpoint in the code display area.

● Open the shortcut menu of the breakpoint in the code display area and select
"Remove breakpoint".

● Open the shortcut menu in the debugging area under "Breakpoints" and select
"Remove breakpoint"..

To delete breakpoints, the shortcut menu offers the following additional options in the
debugging area under "Breakpoints":

● Delete all breakpoints ("Remove all breakpoints")

● Delete all breakpoints except the selected breakpoint ("Remove other breakpoints")

7.7.6 Step-by-step execution of scripts (RT Uni)

Introduction
The following options are available to execute your script step-by-step:

● Execute script to the next breakpoint

● Force execution of a script

● Execute script to the next function call

● Jump into a function

● Jump out of a function

● Execute script up to a selected line

● Pause at Exceptions

● Use call stack

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 407

Requirement
● The group you want to debug is selected.

● The script pauses at a breakpoint.

Execute script to the next breakpoint
To pause the continuation of a script, you have several options:

● Click on the "Resume script execution" button in the debugging area.

● Press the <F8> key.
The script is executed to the next breakpoint. If there is no other breakpoint, the script is
executed completely.

Force execution of a script
To ignore the following breakpoints when resuming execution of a paused script, proceed as
follows:

1. Click and hold down the "Resume script execution" button.
The "Force script execution" button appears.

2. Move the mouse pointer to the "Force script execution" button while keeping the mouse
button pressed.

3. Now release the mouse button.
The script is executed to the end.

Execute script to the next function call
If a line with a breakpoint contains a function that you are not interested in, you can suppress
the debugging of this function:

● Click on the "Step over next function call" button in the debugging area.

● Press the <F10> key.
The function is executed without the script pausing within the function.

Jumping into a function
If the script pauses in a line containing a function that interests you, you can pause the script
in that function:

● Click on the "Step into next function call" button in the debugging area.

● Press the <F11> key.
The script pauses in the first line of the function.

Note

You can only jump into functions that you have defined yourself.

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
408 System Manual, 11/2019, Online help printout

Jump out of a function
If the script pauses within a function that you are not interested in, you can suppress further
debugging of this function:

● Click on the "Step out of current function" button in the debugging area.

● Press the key combination <Shift + F11>.

Note

You can only jump out of a function that you have defined yourself.

Execute script up to a selected line
To pause a paused script again at a selected line, proceeds as follows:

1. Right-click the number of the line in the code display area.

2. Select the entry "Continue to here".
The script pauses at the selected line.

Pause at Exceptions
● To pause the script at Exceptions, click on the "Pause on exceptions" button in the

debugging area.

Use call stack
● To jump into a function of the call stack, click on the corresponding entry under "Call Stack".

Note

You can only jump into functions that you have defined yourself.

7.7.7 Show values (RT Uni)

Introduction
To identify errors in your script efficiently, have current values displayed while the script is being
executed. This way you can view properties of objects or parameters of functions, for example.
You can find additional information on objects and their properties under "WinCC Unified
Object Model".

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 409

Requirements
● The group you want to debug is selected.

● The script pauses at a breakpoint.

Procedure
You view values by moving the mouse over the label in the code display area.

You also have the following options to view values:

● In the debugging area under "Scope"

● In the debugging area under "Watch"

● In the console

"Scope" area
All local values ("Local"), functions ("Module") and global values ("Global") that are defined at
this time are displayed in the "Scope" area.

The values cannot be edited.

"Watch" area
In the "Watch" area, you view how values change in the course of a script.

The following buttons are available to you:

● "Add expression": Add a value

● "Refresh": Refresh the "Watch" area

● "Delete watch expression": Delete a value from the "Watch" area. Available when the
mouse pointer is located above the respective value.

Console
The values available at the current time can be called in the console.

● You show or hide the console with <Esc>.

Call the current values in the console as follows:

1. Enter the name of a local or global value in the console.

2. Press <Enter>.

See also
WinCC Unified object model (Page 411)

Programming scripts (RT Uni)
7.7 Debugging scripts (RT Uni)

WinCC Engineering V16 - Runtime Unified
410 System Manual, 11/2019, Online help printout

7.8 WinCC Unified object model (RT Uni)

Object model
The figure below shows an overview of the object model of the graphical Runtime system of
WinCC Unified:

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 411

Object and List/
Factory

Object

You access the objects of the graphical runtime system through the object model.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
412 System Manual, 11/2019, Online help printout

Use
You use the object model as follows:

● Objects
Objects and lists give you access to basic elements of the runtime system, for example,
tags, screens and levels.

● Properties
You use the properties to read the current status of individual objects, for example, the name
of a tag. You can also change many properties of the objects directly, for example, enable
a button.

● Methods
You apply methods to individual objects and write, for example, tag values back to the AS
or output alarms in runtime.

7.8.1 Objects (RT Uni)

7.8.1.1 "Alarming" area (RT Uni)

"Alarming" object (RT Uni)

Description

The "Alarming" object ("HMIAlarming" type) gives you access to the WinCC Unified alarm
system. You can create a new "AlarmSet" list, compile active alarms ("AlarmSubscription"
objects) and reference configured alarms ("Alarm" objects) for read and write access.

Type identifier in JavaScript
HMIAlarming

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 413

See also
"AlarmSet" description (Page 417)

"CreateAlarmSet" method (Alarming.CreateAlarmSet) (Page 415)

"CreateSubscription" method (Alarming.CreateSubscription) (Page 416)

"Alarms" method (Alarming.Alarms) (Page 414)

Properties (RT Uni)

Properties
The "Alarming" object has the following properties:

Properties Type Access Description
SysFct Object read on‐

ly
Returns the "SysFct" object.

Methods of "Alarming" (RT Uni)

Overview (RT Uni)

Methods
The "Alarming" object has the following methods:

Methods Description
Alarms Returns an "Alarm" object (type "HMIAlarm").
CreateAlarmSet Creates a new "AlarmSet" object (type "HMIAlarmSet").
CreateSubscription Creates an "AlarmSubscription" object (type "HMIAlarmSubscription").
GetActiveAlarms Supplies all active alarms at the time of the call.

"Alarms" method (Alarming.Alarms) (RT Uni)

Description
Returns an "Alarm" object (type "HMIAlarm"). With the "Alarm" object, you can execute
operations with an alarm, e.g. acknowledgment or commenting.

Member
Method of the "Alarming" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
414 System Manual, 11/2019, Online help printout

Syntax
HMIRuntime.Alarming.Alarms(AlarmName);

Parameters

AlarmName
Type: String

Alarm name

Return value
Object of the type "HMIAlarm"

See also
"Alarming" object (Page 413)

"CreateAlarmSet" method (Alarming.CreateAlarmSet) (RT Uni)

Description
Creates a new "AlarmSet" object (type "HMIAlarmSet"). With the returned "AlarmSet" object,
you can execute operations with multiple alarms in one call, e.g. acknowledgment or
commenting.

Member
Method of the "Alarming" object

Syntax
HMIRuntime.Alarming.CreateAlarmSet([AlarmNames]);

Parameters

AlarmNames
Optional, type: String, String[]

Name of one or multiple active alarms that are added to the "AlarmSet" object. Without
parameters, an empty "AlarmSet" object is created.

Return value
Object of the type "HMIAlarmSet"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 415

See also
"Alarming" object (Page 413)

"AlarmSet" description (Page 417)

"CreateSubscription" method (Alarming.CreateSubscription) (RT Uni)

Description
Creates an "AlarmSubscription" object (type "HMIAlarmSubscription"). With the returned
"AlarmSubscription" object, you specify the grouping of active alarms.

Member
Method of the "Alarming" object

Syntax
HMIRuntime.Alarming.CreateSubscription();

Parameters
--

Return value
Object of the type "HMIAlarmSubscription"

See also
"Alarming" object (Page 413)

"GetActiveAlarms" method (Alarming.GetActiveAlarms) (RT Uni)

Description
Supplies all active alarms at the time of the call. Unlike with an AlarmSubscription, no status
changes or new alarms are signaled that occur after the function call.

Users can filter the alarms or specify a SystemName if they only want to receive the active
alarms of a specific system.

Member
Method of the "Alarming" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
416 System Manual, 11/2019, Online help printout

Syntax
PromiseParameterTagSet
HMIRuntime.Alarming.GetActiveAlarms(Language, Filter, SystemNames);

Parameters

Language
Type: UInt32

Language for all texts of an alarm and the filter

Filter
Optional, type: String

SQL-type string for filtering

SystemNames
Optional, type: String[]

A string array with the SystemNames of the systems by which its alarms are to be filtered

Return value
Promise
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMIAlarmResult[]"

● Promise rejected
Error code as parameter of the "catch()" handler.

"AlarmSet" object (RT Uni)

"AlarmSet" description (RT Uni)

Description

The "AlarmSet" object ("HMIAlarmSet" type) is a list of "Alarm" objects that give you optimized
access to active alarms in runtime. After initialization of the "AlarmSet" object, you can execute

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 417

operations with multiple alarms in one call, e.g. acknowledgment or commenting. Simultaneous
access demonstrates better performance and lower communication load than single access to
multiple alarms.

You create a new "AlarmSet" object with the "Alarming.CreateAlarmSet" method.

Type identifier in JavaScript
HMIAlarmSet

See also
"Alarming" object (Page 413)

"CreateAlarmSet" method (Alarming.CreateAlarmSet) (Page 415)

"Add" method (AlarmSet.Add) (Page 420)

"Remove" method (AlarmSet.Remove) (Page 424)

"Disable" method (Alarm.Disable, AlarmSet.Disable) (Page 421)

"Enable" method (Alarm.Enable, AlarmSet.Enable) (Page 422)

"Shelve" method (Alarm.Shelve, AlarmSet.Shelve) (Page 426)

"Unshelve" method (Alarm.Unshelve, AlarmSet.Unshelve) (Page 427)

"Acknowledge" method ((Alarm.Acknowledge, AlarmSet.Acknowledge) (Page 419)

"Reset" method (Alarm.Reset, AlarmSet.Reset) (Page 425)

"Item" method (AlarmSet.Item) (Page 423)

Properties (RT Uni)

Properties
The "AlarmSet" object has the following properties:

Properties Type Access Description
Count UInt32 read on‐

ly
Returns the number of elements in the specified list.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
418 System Manual, 11/2019, Online help printout

Methods of "AlarmSet" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmSet" object has the following methods:

Methods Description
Acknowledge Acknowledges active alarms.
Add Adds alarms to the "AlarmSet" list.
Disable Temporarily deactivates the generation of alarms in the alarm source.
Enable Re-enables deactivated alarms for display.
Item Returns an "Alarm" object of the "AlarmSet" list.
Remove Removes an alarm by its name from the "AlarmSet" list.
Reset Acknowledges the outgoing state of an active alarm.
Shelve Hides active alarms.
Unshelve Makes hidden active alarms visible again.

"Acknowledge" method ((Alarm.Acknowledge, AlarmSet.Acknowledge) (RT Uni)

Description
Acknowledges active alarms. The method uses the entire "Alarm" object as reference. If you
want to acknowledge individual instances of an active alarm using the InstanceID, use the
"AcknowledgeInstance" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Member
Method of the following objects:

● Alarm

● AlarmSet

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 419

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Acknowledge();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Acknowledge()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
"AlarmSet" description (Page 417)

"Add" method (AlarmSet.Add) (RT Uni)

Description
Adds alarms to the "AlarmSet" list. The alarms are referenced by the name.

Member
Method of the "AlarmSet" object

Syntax
HMIRuntime.Alarming.AlarmSet.Add(AlarmName);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
420 System Manual, 11/2019, Online help printout

Parameters

AlarmName
Type: String or String[]

Names of "Alarm" objects that are added to the list.

The following data types are supported:

● Alarm name

● Array with tag names

Note

No "Alarm" object can be transferred as a parameter. An "Alarm" object is referenced using the
name.

Return value
Array of objects of the "HMIAlarm" type

See also
"AlarmSet" description (Page 417)

"Disable" method (Alarm.Disable, AlarmSet.Disable) (RT Uni)

Description
Temporarily deactivates the generation of alarms in the alarm source. You can reactivate the
generation of the alarms again with the "Enable" method.

You can use the "Disable" method to prevent the display of the alarms, for example, for
maintenance work.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Member
Method of the following objects:

● Alarm

● AlarmSet

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 421

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Disable();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Disable()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
"AlarmSet" description (Page 417)

"Enable" method (Alarm.Enable, AlarmSet.Enable) (RT Uni)

Description
Re-enables deactivated alarms for display. You can temporarily deactivate the generation of
the messages in the alarm source with the "Disable" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
422 System Manual, 11/2019, Online help printout

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Enable();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Enable()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
"AlarmSet" description (Page 417)

"Item" method (AlarmSet.Item) (RT Uni)

Description
Returns an "Alarm" object of the "AlarmSet" list.

Member
Method of the "AlarmSet" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 423

Syntax
HMIRuntime.AlarmSet[.Item](name);

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "AlarmSet" object.

Parameters

name
Type: String

Name or index number (1...n) of an "Alarm" object in the list

Note

The index number of an "Alarm" object does not represent the order in which the "Alarm"
objects were added to the "AlarmSet" list.

Return value
Object of the type "HMIAlarm"

See also
"AlarmSet" description (Page 417)

"Remove" method (AlarmSet.Remove) (RT Uni)

Description
Removes an alarm by its name from the "AlarmSet" list.

Member
Method of the "AlarmSet" object

Syntax
HMIRuntime.Alarming.AlarmSet.Remove(AlarmName);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
424 System Manual, 11/2019, Online help printout

Parameters

AlarmName
Type: String or String[]

Name of "Alarm" objects that are removed from the "AlarmSet" list.

The following data types are supported:

● Alarm name

● Array with tag names

Note

No "Alarm" object can be transferred as a parameter. An "Alarm" object is referenced using the
name.

Return value
ErrorCode

See also
"AlarmSet" description (Page 417)

"Reset" method (Alarm.Reset, AlarmSet.Reset) (RT Uni)

Description
Acknowledges the outgoing state of an active alarm. The alarms are removed from the alarm
system. The method uses the entire "Alarm" object as reference. If you want to acknowledge
individual instances of an active alarm using the InstanceID, use the "ResetInstance" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Member
Method of the following objects:

● Alarm

● AlarmSet

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 425

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Reset();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Reset()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
"AlarmSet" description (Page 417)

"Shelve" method (Alarm.Shelve, AlarmSet.Shelve) (RT Uni)

Description
Hides active alarms. These are no longer displayed by Alarm Control in runtime. You can show
the alarms again with the "Unshelve" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
426 System Manual, 11/2019, Online help printout

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Shelve();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Shelve()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
"AlarmSet" description (Page 417)

"Unshelve" method (Alarm.Unshelve, AlarmSet.Unshelve) (RT Uni)

Description
Makes hidden active alarms visible again. These are once again displayed by the Alarm Control
in runtime. You can hide the alarms again with the "Shelve" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 427

method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Unshelve();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Unshelve()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
"AlarmSet" description (Page 417)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
428 System Manual, 11/2019, Online help printout

"Alarm" object (RT Uni)

"Alarm" description (RT Uni)

Description

The "Alarm" object ("HMIAlarm" type) gives you access to the properties and methods of the
active alarms. An "Alarm" object is returned by the "Alarming" or "AlarmSet" lists.

Type identifier in JavaScript
HMIAlarm

Properties (RT Uni)

Properties
The "Alarms" object has the following properties:

Properties Type Access Description
ErrorCode Error‐

Code
read/
write

Specifies the error code of the last method call of the
object.

Name String read/
write

Returns the object name or specifies it

InstanceID UInt32 read Returns the instance ID of the alarm.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 429

Methods of "Alarm" (RT Uni)

Overview (RT Uni)

Methods
The "Alarms" object has the following methods:

Methods Description
Acknowledge Acknowledges an alarm.
AcknowledgeInstance Acknowledges an alarm instance.
Disable Temporarily deactivates the generation of alarms in the alarm source.
Enable Re-enables deactivated alarms for display.
Reset Acknowledges the outgoing state of an alarm.
ResetInstance Acknowledges the outgoing state of an alarm instance.
Shelve Hides active alarms.
Unshelve Makes hidden active alarms visible again.

"Acknowledge" method ((Alarm.Acknowledge, AlarmSet.Acknowledge) (RT Uni)

Description
. The method uses the entire "Alarm" object as reference.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Member
Method of the following objects:

● Alarm

● AlarmSet

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
430 System Manual, 11/2019, Online help printout

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Acknowledge();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Acknowledge()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"AcknowledgeInstance" method (Alarm.AcknowledgeInstance, AlarmSet.Acknowledge.Instance) (RT
Uni)

Description
Acknowledges an alarm instance. The method uses the entire "Alarm" object as reference.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Member
Method of the following objects:

● Alarm

● AlarmSet

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 431

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.AcknowledgeInstance(InstanceID);

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.AcknowledgeInstance(InstanceID)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

InstanceID
Type: UInt32

Number of the alarm instance.

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"Disable" method (Alarm.Disable, AlarmSet.Disable) (RT Uni)

Description
Temporarily deactivates the generation of alarms in the alarm source. You can reactivate the
generation of the alarms again with the "Enable" method.

You can use the "Disable" method to prevent the display of the alarms, for example, for
maintenance work.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
432 System Manual, 11/2019, Online help printout

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Disable();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Disable()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"Enable" method (Alarm.Enable, AlarmSet.Enable) (RT Uni)

Description
Re-enables deactivated alarms for display. You can temporarily deactivate the generation of
the messages in the alarm source with the "Disable" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 433

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Enable();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Enable()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"Reset" method (Alarm.Reset, AlarmSet.Reset) (RT Uni)

Description
Acknowledges the outgoing state of an active alarm. The alarm is removed from the alarm
system. The method uses the entire "Alarm" object as reference. If you want to acknowledge
individual instances of an active alarm using the InstanceID, use the "ResetInstance" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
434 System Manual, 11/2019, Online help printout

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Reset();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Reset()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"ResetInstance" method (Alarm.ResetInstance, AlarmSet.ResetInstance) (RT Uni)

Description
Acknowledges the outgoing state of an alarm instance. The alarm instance is removed from the
alarm system. The method uses the entire "Alarm" object as reference. If you want to
acknowledge individual instances of an active alarm using the InstanceID, use the
"ResetInstance" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 435

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Reset();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Reset()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"Shelve" method (Alarm.Shelve, AlarmSet.Shelve) (RT Uni)

Description
Hides active alarms. These are no longer displayed by Alarm Control in runtime. You can show
the alarms again with the "Unshelve" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
436 System Manual, 11/2019, Online help printout

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Shelve();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Shelve()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"Unshelve" method (Alarm.Unshelve, AlarmSet.Unshelve) (RT Uni)

Description
Makes hidden active alarms visible again. These are once again displayed by the Alarm Control
in runtime. You can hide the alarms again with the "Shelve" method.

As member of the "Alarm" object, the method is executed as a synchronous operation.

As member of the "AlarmSet" object, the method is applied to all "Alarm" objects of the list. The
method is executed as asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern with the ErrorCode as parameter is called after the execution.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 437

Member
Method of the following objects:

● Alarm

● AlarmSet

Syntax
The syntax of the method depends on the object:

● For objects of the type "HMIAlarm" (synchronous):
HMIRuntime.Alarming.Alarm.Unshelve();

● For objects of the type "HMIAlarmSet" (asynchronous):
HMIRuntime.Alarming.AlarmSet.Unshelve()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters
--

Return value
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
438 System Manual, 11/2019, Online help printout

"AlarmSubscription" object (RT Uni)

"AlarmSubscription" description (RT Uni)

Description

The "AlarmSubscription" object (type "HMIAlarmSubscription") gives you access to active
alarms.

Use
The "AlarmSubscription" object represents a selection of active alarms. An
"AlarmSubscription" object is initialized through the "CreateSubscription" method of the
"Alarming" object. Afterwards, the active alarms are grouped and called according to the
properties of the "AlarmSubscription" object. Finally, notification is given of the changes to the
alarm mapping

Type identifier in JavaScript
HMIAlarmSubscription

Properties (RT Uni)

Properties
The "AlarmSubscription" object has the following properties:

Properties Type Access Description
Filter String read/

write
Specifies a string for filtering active alarms.
The syntax of the filter string is equivalent to the
WHERE clause of an SQL command.

Language UInt32 read/
write

Specifies the current Runtime language.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 439

Properties Type Access Description
OnAlarm Func‐

tion
write on‐
ly

Specifies the name of the "OnAlarm" callback function
for monitoring active alarms.
The properties of the active alarms are transferred as
"AlarmResultArray" object to the "OnAlarm" callback
function.
Required prototype of the callback function: OnA‐
larm(errorCode, systemName, alarmResultArray)

SystemNames String read/
write

Specifies the name of the Runtime system of type "HMI‐
System" for the grouping of active alarms.

Methods of "AlarmSubscription" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmSubscription" object has the following methods:

Methods Description
Start Activates the monitoring of defined alarms of the "AlarmSubscription"

object.
Stop Cancels the monitoring of defined alarms of the "AlarmSubscription"

object.

"Start" method (AlarmSubscription.Start) (RT Uni)

Description
Activates the monitoring of defined alarms of the "AlarmSubscription" object.

Member
Method of the "AlarmSubscription" object

Syntax
HMIRuntime.AlarmSubscription.Start();

Parameters
--

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
440 System Manual, 11/2019, Online help printout

Return value
ErrorCode

"Stop" method (AlarmSubscription.Stop) (RT Uni)

Description
Cancels the monitoring of defined alarms of the "AlarmSubscription" object.

Member
Method of the "AlarmSubscription" object

Syntax
HMIRuntime.AlarmSubscription.Stop();

Parameters
--

Return value
ErrorCode

"AlarmResult" object (RT Uni)

"AlarmResult" description (RT Uni)

Description

The "AlarmResult" object (type "HMIAlarmResult") gives you access to the properties of an
active alarm. The "AlarmResult" object is a pure data object which maps all properties of an
active alarm.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 441

Use
Once an active alarm has been output, the "OnAlarm" callback function is called. The
"AlarmResult" object together with the SystemName and ErrorCode are transferred as
parameters to this function.

In the case of multiple active alarms, the parameters are transferred as lists to the "OnAlarm"
callback function. Alarms from different servers are processed in a single call of the OnAlarm
callback function.

The "AlarmResult" object only contains properties and no methods.

All texts of the "AlarmResult" object are monolingual strings. The language is specified with the
"AlarmSubscription.Language" property.

Type identifier in JavaScript
HMIAlarmResult

Properties (RT Uni)

Properties
The "AlarmResult" object has the following properties:

Properties Type Access Description
AcknowledgementTime Date‐

Time
read on‐
ly

Returns the time of alarm acknowledgment.

AlarmClassName String read on‐
ly

Returns the name of the alarm class of an alarm.

AlarmClassSymbol String read on‐
ly

Returns the abbreviation for the display of the alarm
class of the alarm, for example, "W" for the alarm class
"Warning".

AlarmParameterValues Variant read on‐
ly

Returns an array with parameter values of an alarm. The
property is mapped in the "AlarmResult" object.
The parameter values are added to an alarm from the
alarm source in the alarm state "Incoming" and "Reset".
They can also include diagnostic or raw data from the
PLC in addition to simple tag values from the configured
AlarmParamterTags.

AlarmText String[] read on‐
ly

Returns the localized additional texts 1 to 9 of an alarm
as an array. The text can contain triggered placeholders
and reference all the "AlarmParameterValues" proper‐
ties of the respective alarm state "Incoming" or "Reset".

Area String read on‐
ly

Specifies the origin area of an alarm.
The "Area" property can be configured and, together
with the "Origin" property, defines the source of an
alarm. You can also use placeholders for context-sen‐
sitive format.
The "Area" property, for example, includes subsystem,
application name or PLC ID. You can sort and filter
alarms through the "Area" context.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
442 System Manual, 11/2019, Online help printout

Properties Type Access Description
BackColor UInt32 read on‐

ly
Specifies the background color.

ChangeReason
(Page 445)

UInt16 read on‐
ly

Returns the trigger event for the modification of the
alarm state.

ClearTime Date‐
Time

read on‐
ly

Returns the time of alarm reset.

Connection String read on‐
ly

Returns the name of the connection by which an alarm
was triggered.

EventText String read on‐
ly

Returns a localized text that describes an alarm event
for the alarm.
The text can contain triggered placeholders and refer‐
ence all the "AlarmParameterValues" properties of the
respective alarm state "Incoming" or "Reset".

Flashing (Page 445) Bool read on‐
ly

Returns whether the specified object flashes in runtime.

InstanceID UInt32 read on‐
ly

Returns the ID of alarms with multiple instances.

InvalidFlags (Page 446) UInt8 read on‐
ly

Returns the cause of invalid data of an alarm.

LoopInAlarm String read on‐
ly

Navigates from the display of an active alarm to its origin.
The "LoopInAlarm" property includes the name of a
function that leads to the origin of an alarm. The required
parameters of the function are returned with the associ‐
ated "LoopInAlarmParameterValues" property.

LoopInAlarmParame‐
terValues

Variant read on‐
ly

Returns the parameters of the function that navigates
from the display of an active alarm to its origin. The as‐
sociated "LoopInAlarm" property contains the name of
the function that is used for the call, for example the
"OpenScreen" function when the origin of the alarm is a
screen.

ModificationTime Date‐
Time

read on‐
ly

Returns the time stamp of the last modification of the
alarm state.
The reason for the change is included in the "ChangeR‐
eason" property.

Name String read on‐
ly

Returns the name of the object or specifies it.

NotificationReason
(Page 446)

UInt8 read on‐
ly

Returns the reason for an alarm.

Origin (Page 447) String read on‐
ly

Returns the origin of an alarm.

Priority UInt8 read on‐
ly

Specifies the relevance of an alarm or a machine status.

RaiseTime Date‐
Time

read on‐
ly

Returns the trigger time of an alarm.

ResetTime Date‐
Time

read on‐
ly

Returns the time of alarm reset. After the reset, the
alarm is deleted from the alarm system.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 443

Properties Type Access Description
SourceID String read on‐

ly
Returns the source at which an alarm was triggered.
The value depends on the origin of an alarm and is as‐
signed by the data source, for example,
Range-ID, controller/connection name or computer
name.

State (Page 448) UInt32 read on‐
ly

Returns the state of an alarm.

StateText String read on‐
ly

Returns the alarm state as text, e.g. "Incoming" or "Out‐
going".
The texts can be assigned system-wide for each alarm
status.

SuppressionState
(Page 449)

UInt8 read on‐
ly

Returns the status of visibility of an active alarm.

SystemSeverity
(Page 450)

UInt16 read on‐
ly

Returns the severity level of a system fault as property
of a system alarm.

TextColor UInt32 read on‐
ly

Returns the text color of the alarm state. Each alarm
state has its own visual representation.

UserName String read on‐
ly

Returns the name of the user who triggered the alarm
object.

UserResponse
(Page 449)

UInt16 read on‐
ly

Returns the expected or required user response to an
alarm.

Value Variant read on‐
ly

Specifies a value for the object being used or returns it.

ValueLimit Variant read on‐
ly

Returns the limit of a process value of an alarm.

ValueQuality UInt16 read on‐
ly

Returns the quality level of a process value of an alarm.

See also
"Flashing" property (Page 445)

"ChangeReason" property (Page 445)

"NotificationReason" property (Page 446)

"InvalidFlags" property (Page 446)

"Origin" property (Page 447)

"State" property (Page 448)

"SuppressionState" property (Page 449)

"UserResponse" property (Page 449)

"SystemSeverity" property (Page 450)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
444 System Manual, 11/2019, Online help printout

Special properties (RT Uni)

"Flashing" property (RT Uni)

Description
Returns whether the specified object flashes in runtime.

Value Status
1 Alarm flashes
0 Alarm does not flash

A background color for flashing is specified with the "BackColor" property. The second
background color and the frequency of the flashing is configured in the Alarm Control.

Syntax
Object.Flashing

Object
Required. An object from the "Availability" section.

"ChangeReason" property (RT Uni)

Description
Returns the trigger event for the modification of the alarm state. The time of last modification is
saved in the "ModificationTime" property.

The alarm state can change for the following reasons:

Values ChangeReason Description
0x0001 AlarmStateChanged "State" property has changed
0x0003 RaiseEvent Status change "Incoming"
0x0005 ClearEvent Status change "Reset"
0x0007 AcknowledgeEvent Status change "Acknowledged"
0x0009 ResetEvent Status change "Deleted"
0x000F RemoveEvent Status change "Removed"
0x0010 AlarmQualityChanged "Quality" property has changed
0x0020 AlarmParameter-ValuesChanged A value of the "AlarmParameterVal‐

ues" property has changed
0x0040 AlarmPriorityChanged "Priority" property has changed
0x0100 AlarmSuppression-StateChanged "SuppressionState" property has

changed
0x1000 ConfigurationChanged Alarm configuration has changed

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 445

Syntax
Object.ChangeReason

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

"NotificationReason" property (RT Uni)

Description
Returns the reason for an alarm.

The property can have the following values:

● 0: Unknown (e.g. when the alarm was read out from a log)

● 1: Add

● 2: Change

● 3: Remove

Syntax
Object.NotificationReason

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

"InvalidFlags" property (RT Uni)

Description
Returns the cause of invalid data of an alarm.

An invalid alarm is marked with the following bits:

Bit number InvalidFlags Description
Bit 0 Invalid configuration flag Alarm configuration is invalid. HMI device does

not match data source.
Bit 1 Invalid timestamp flag Data source transfers invalid time stamps.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
446 System Manual, 11/2019, Online help printout

Bit number InvalidFlags Description
Bit 2 Invalid alarm parameter flag Data source transfers invalid parameter values.
Bit 3 Invalid event text flag Runtime system cannot format text due to missing

parameter values.

A valid alarm has the following properties:

● InvalidFlags = 0

● Quality = "good"

Syntax
Object.InvalidFlags

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

"Origin" property (RT Uni)

Description
Returns the origin of an alarm.

The "Origin" property, for example, includes system names, data source or CPU ID. You can
sort and filter alarms through the "Origin" context.

The "Origin" property can be configured and, together with the "Area" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.

Type
String

Access
Access depends on the object.

Availability
The property is available for the following objects:

● AlarmResult

● LoggedAlarmStateResult

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 447

Syntax
Object.Origin

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

"State" property (RT Uni)

Description
Returns the state of an alarm.

The table below shows the possible states of an alarm.

Value State Description
0x00 Normal (Idle) Not an active alarm
0x01 Raised Incoming
0x02 RaisedCleared Incoming and reset
0x05 RaisedAcknowledged Incoming and acknowledged
0x06 RaisedAcknowledgedCleared Incoming, acknowledged and reset
0x07 RaisedClearedAcknowledged Incoming, reset and acknowledged
0x80 Removed Alarm was removed and is no longer

available

Syntax
Object.State

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
448 System Manual, 11/2019, Online help printout

"SuppressionState" property (RT Uni)

Description
Returns the status of visibility of an active alarm.

Value SuppressionState Description
0x0 Unsuppressed Alarm is visible.
0x1 Suppressed Alarm is configured as invisible.
0x3 Shelved Alarm was hidden manually. The methods "Unshelve"

and "Shelve" can be applied.

Syntax
Object.SuppressionState

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

"UserResponse" property (RT Uni)

Description
Returns the expected or required user response to an alarm:

Value UserResponse Description
0x0 No response Active message expects no user response
0x1 Acknowledgment Active message expects acknowledgment (also in

group)
0x2 Reset Active message expects reset (also in group)
0x5 Single acknowledgment Active message explicitly expects individual acknowl‐

edgment
0x6 Single reset Active message explicitly expects individual reset

Syntax
Object.UserResponse

Object
Required. An object from the "Availability" section.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 449

See also
Properties (Page 442)

"SystemSeverity" property (RT Uni)

Description
Returns the severity level of a system fault as property of a system alarm. The value of the
"SystemSeverity" property also has an impact on the runtime system monitoring
(SystemHealthIndex).

The "SystemSeverity" property can display the following severity:

Value SystemSeverity Description
0 None No effect on system monitoring.
1 Lowest severity Fault with lowest impact on system monitoring.
2 Low severity Fault with low impact on system monitoring.
3 Medium severity Fault with medium impact on system monitoring.
4 High severity Fault with great impact on system monitoring.
5 Highest severity Fault with greatest impact on system monitoring.

Syntax
Object.SystemSeverity

Object
Required. An object from the "Availability" section.

See also
Properties (Page 442)

Methods of "AlarmResult" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmResult" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
450 System Manual, 11/2019, Online help printout

"AlarmColumn" object (RT Uni)

"AlarmColumn" description (RT Uni)

Description
The "AlarmColumn" object enables access to the columns of the alarm view.

Type identifier in JavaScript
HMIAlarmColumn

Properties (RT Uni)

Properties
The "AlarmColumn" object has the following properties:

Properties Type Access Description
AlarmBlock (Page 452) HmiAlarm‐

Block
read/
write

Specified which component of the alarm is dis‐
played.

AllowSort Bool read/
write

Specifies whether the sorting of columns is al‐
lowed.

BackColor UInt32 read/
write

Specifies the background color.

Content Object read/
write

Returns the "Content" object.

Enabled Bool read/
write

Specifies whether the specified object can be op‐
erated in runtime.

ForeColor UInt32 read/
write

Specifies the font color.

Header Object read/
write

Specifies the "Header" object.
Specifies the properties of a column header.

MaximumWidth UInt32 read/
write

Specifies the maximum width.

MinimumWidth UInt32 read/
write

Specifies the minimum width.

Name String read on‐
ly

Returns the name of the object or specifies it.

OutputFormat String read/
write

Specifies the format for displaying values.

SortDirection HmiSortDir‐
ection

read/
write

Specifies the direction of sorting:
● None (0): None
● Ascending (1): Oldest entries first
● Descending (2): Newest entries first

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 451

Properties Type Access Description
SortOrder UInt8 read/

write
Specifies the sorting order.

UseAlarmColors Bool read/
write

Specifies whether the configured color of the alarm
is used.

Visible Bool read/
write

Specifies whether the selected object is visible.

Width UInt32 read/
write

Specifies the width.

See also
"AlarmBlock" property (Page 452)

Special properties (RT Uni)

"AlarmBlock" property (RT Uni)

Description
Specifies which component of the alarm is displayed:

● Undefined (0): Not defined

● ID (1): Alarm number

● Name (2): Name

● Class (3): Alarm class

● Priority (4): Priority

● Group (5): Alarm group

● Origin (6): Origin

● Area (7): Area

● Comments (8): Alarm comment

● Information (9): Information text

● LoopInAlarm (10): Navigates to the screen in which the alarm was triggered.

● EventText (11): Alarm text

● AlarmText1..9 (12- 20): Custom alarm text

● AlarmState (21): Alarm state

● ModificationTime (22): Time of modification

● RaiseTime (23): Trigger time

● AcknowledgeTime (24): Time of acknowledgment

● ClearTime (25): Time of completion

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
452 System Manual, 11/2019, Online help printout

● ResetTime (26): Reset time

● SuppressionState (27): Status of alarm suppression

● EscalationLevel (28): Escalation level

● Context (29): Context

● Duration (30): Duration

● AckknowledgementState (31): Acknowledgment state

● Value (32): Value

● ValueQuality (33): Quality code

● ValueLimit (34): Value limit

● TagName (35): Trigger tag

● Computer (36): PLC name

● User (37): Logged-on user

● ProcessValue1..10 (38-47): Process value

● ClassSymbol (48): Alarm class symbol

● StateSymbol (49): State symbol

Syntax
Object.AlarmBlock

Object
Required. An object from the "Availability" section.

See also
Properties (Page 451)

Methods of "AlarmColumn" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmColumn" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 453

"AlarmStatisticColumn" object (RT Uni)

"AlarmStatisticColumn" description (RT Uni)

Description
The "AlarmStatisticColumn" object enables access to the column for statistic calculations of the
alarm view.

Type identifier in JavaScript
HMIAlarmStatisticColumn

Properties (RT Uni)

Properties
The "AlarmStatisticColumn" object has the following properties:

Properties Type Access Description
AlarmStatistic‐
Block (Page 455)

HmiAlarmStatistic‐
Block

read/
write

Specifies the property of the alarm that is dis‐
played in the column.

AllowSort Bool read/
write

Specifies whether the sorting of columns is al‐
lowed.

BackColor UInt32 read/
write

Specifies the background color.

Content Object read/
write

Specifies the "Content" object.

Enabled Bool read/
write

Specifies whether the specified object can be op‐
erated in runtime.

ForeColor UInt32 read/
write

Specifies the font color.

Header Object read/
write

Specifies the "Header" object.
Specifies the properties of a column header.

MaximumWidth UInt32 read/
write

Specifies the maximum width.

MinimumWidth UInt32 read/
write

Specifies the minimum width.

Name String read on‐
ly

Returns the name of the object or specifies it.

OutputFormat String read/
write

Specifies the format for displaying values.

SortDirection HmiSortDirection read/
write

Specifies the direction of sorting:
● None (0): None
● Ascending (1): Oldest entries first
● Descending (2): Newest entries first

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
454 System Manual, 11/2019, Online help printout

Properties Type Access Description
SortOrder UInt8 read/

write
Specifies the sorting order.

Visible Bool read/
write

Specifies whether the selected object is visible.

Width UInt32 read/
write

Specifies the width.

See also
"AlarmStatisticBlock" property (Page 455)

Special properties (RT Uni)

"AlarmStatisticBlock" property (RT Uni)

Description
Specifies the property of the alarm that is displayed in the column:

● Undefined (0): Not defined

● AverageRaisedRaised (4097): Average time between the alarm and the resulting alarms

● AverageRaisedCleared (4098): Average time between the alarm and its clearance

● AverageRaisedAcknowledged (4099): Average time between the alarm and its
acknowledgment

● AverageRaisedReset (4100): Average time between the alarm and its reset

● Frequency (4101): Number of alarms per unit of time

● SumRaisedRaised (4102): Sum of all alarms and resulting alarms

Syntax
Object.AlarmStatisticBlock

Object
Required. An object from the "Availability" section.

See also
Properties (Page 454)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 455

Methods of "AlarmStatisticColumn" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmStatisticColumn" object has the following methods:

Methods Description
-

"AlarmStatisticsView" object (RT Uni)

"AlarmStatisticsView" description (RT Uni)

Description
Represents the "Report statistics" object.

Type identifier in JavaScript
HMIAlarmStatisticsView

Properties (RT Uni)

Properties
The "AlarmStatisticsView" object has the following properties:

Properties Type Access Description
AllowSort Bool read/

write
Specifies whether the sorting of columns is al‐
lowed.

AlternateBackColor UInt32 read/
write

Specifies the second color for a color gradient.

AlternateForeColor UInt32 read/
write

Specifies the flashing color for the text.

BackColor UInt32 read/
write

Specifies the background color.

CellPadding Object read/
write

Specifies the inner distance of the contents from
the cell frame.

CellTextTrimming HmiTextTrimming read/
write

Specifies the type of trimming of cell contents:
● None (0): None
● Ellipsis (1): Abbreviation at the end of the text

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
456 System Manual, 11/2019, Online help printout

Properties Type Access Description
ColoringMode HmiGridColoring‐

Mode
read/
write

Specifies whether the alternate coloring of every
other row or column is activated:
● None (0): None
● Rows (1): Alternately color the rows
● Columns (2): Alternately color the columns

Columns Object read/
write

Specifies the "Columns" object.

ElementID UInt32 read/
write

Specifies the ID of an element within the active
screen.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

GridLineColor UInt32 read/
write

Specifies the color of the grid lines.

GridLineVisibility HmiSimpleGrid‐
Line

read/
write

Specifies the visibility of the grid lines.
● None (0): None
● Vertikal (1): Vertical
● Horizontal (2): Horizontal

GridLineWidth UInt8 read/
write

Specifies the width of the separator lines in pixels.

GridSelectionMode HmiGridSelec‐
tionMode

read/
write

Specifies whether multiple selection is enabled in
the table content.
● None (0): None
● Single (1): Only single selection
● Multi (2): Multiple selection

HeaderSettings Object read/
write

Specifies the "HeaderSettings" object.
Specifies the settings for all column headers of
the table.

HorizontalScrollBar‐
Visibility

HmiScrollBarVisi‐
bility

read/
write

Specifies the setting for the horizontal scroll bar
of the window.
● Automatic (0): Only visible if required
● Visible (1): Visible
● Collapsed (2): Not visible

RowHeight UInt8 read/
write

Specifies the height of all rows of the table in DIU
(Device Independent Unit).
"0" corresponds to an automatic mechanism,
which adjusts the height of each line according to
the font size and number of paragraphs.

SelectFullRow Bool read/
write

Specifies whether only the cell or the whole row is
included in a selection.

SelectionBackColor UInt32 read/
write

Specifies the background color of the selected
cells.

SelectionBorderCol‐
or

UInt32 read/
write

Specifies the border color of a selection.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 457

Properties Type Access Description
SelectionBorder‐
Width

UInt8 read/
write

Specifies the border thickness of a selection.

SelectionForeColor UInt32 read/
write

Specifies the foreground color of the selected
cells.

Type UInt32 read/
write

Specifies the type ID.

VerticalScrollBarVi‐
sibility

HmiScrollBarVisi‐
bility

read/
write

Specifies the setting for the vertical scroll bar of
the window:
● Automatic (0): Only visible if required
● Visible (1): Visible
● Collapsed (2): Not visible

Methods of "AlarmStatisticsView" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmStatisticsView" object has the following methods:

Methods Description
-

7.8.1.2 "AlarmLogging" area (RT Uni)

"AlarmLogging" object (RT Uni)

"AlarmLogging" description (RT Uni)

Description

The "AlarmLogging" object ("HMIAlarmLogging" type) gives you access to logged alarms of a
logging system.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
458 System Manual, 11/2019, Online help printout

Type identifier in JavaScript
HMIAlarmLogging

Properties (RT Uni)

Properties
The "AlarmLogging" object has the following properties:

Properties Type Access Description
-

Methods of "AlarmLogging" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmLogging" object has the following methods:

Methods Description
AddComment Adds comments for logged alarms ("LoggedAlarmStateResult" ob‐

jects) asynchronously in the logging system.
Read Reads out logged alarms ("LoggedAlarmStateResult" objects) of a

time period asynchronously from a logging system.

"AddComment" method (AlarmLogging.AddComment) (RT Uni)

Description
Adds comments for logged alarms ("LoggedAlarmStateResult" objects) asynchronously in the
logging system.

The method executes an asynchronous write operation without blocking further script
execution. The method uses a Promise object to do this which has handlers for the successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the write operation, the corresponding handler of the Promise pattern is called.

Note

The "LoggedAlarmStateObjectID", "InstanceID" and "TimeStamp" parameters must
correspond to the properties of the associated "LoggedAlarmStateResult" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 459

Member
Method of the "AlarmLogging" object

Syntax
HMIRuntime.AlarmLogging.AddComment(LoggedAlarmStateObjectID,Instance
ID,TimeStamp,Language,Comment)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

LoggedAlarmStateObjectID
Type: String

ID of the logged alarm

InstanceID
Type: UInt32

InstanceID of the logged alarm

TimeStamp
Type: DateTime

Time stamp of the comment

Language
Type: UInt32

Country identification of the language of the comment

Comment
Type: String

Comment for the logged alarms

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
460 System Manual, 11/2019, Online help printout

"Read" method (AlarmLogging.Read) (RT Uni)

Description
Reads out logged alarms ("LoggedAlarmStateResult" objects) of a time period asynchronously
from a logging system.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, after
the read operation is complete, the corresponding handler of the Promise pattern is called with
an array with "LoggedAlarmStateResult" objects or an error code as parameter.

Member
Method of the "AlarmLogging" object

Syntax
HMIRuntime.AlarmLogging.Read(dateFrom,dateTo,filter,language,systemN
ames)
.then(function(LoggedAlarmStateResult[]) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

dateFrom
Type: DateTime

Start date of the time period

dateTo
Type: DateTime

End date of the time period

filter
Type: String

SQL-like string for filtering the result set of the logged alarms.

language
Type: UInt32

Country identification of the language of the logged alarms and filter

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 461

systemNames
Type: String[]

System names of the Runtime systems of the logged alarms.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Array with "LoggedAlarmStateResult" objects as parameters of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

"LoggedAlarmStateResult" object (RT Uni)

"LoggedAlarmStateResult" description (RT Uni)

Description

The "LoggedAlarmStateResult" object ("HMILoggedAlarmStateResult" type) gives you access
to the properties of a logged alarm. The "LoggedAlarmStateResult" object is a pure data object
that maps all properties of a logged alarm.

Type identifier in JavaScript
HMILoggedAlarmStateResult

Properties (RT Uni)

Properties
The "LoggedAlarmStateResult" object has the following properties:

Properties Type Access Description
Acknowledgement‐
Time

Date‐
Time

read on‐
ly

Returns the time of alarm acknowledgment.

AlarmClassName String read on‐
ly

Returns the name of the alarm class of an alarm.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
462 System Manual, 11/2019, Online help printout

Properties Type Access Description
AlarmClassSymbol String read on‐

ly
Returns the abbreviation for the display of the alarm class
of the alarm, for example, "W" for the alarm class "Warn‐
ing".

AlarmParameterVal‐
ues

Variant read on‐
ly

Returns an array with parameter values of an alarm. The
property is mapped in the "AlarmResult" object.
The parameter values are added to an alarm from the
alarm source in the alarm state "Incoming" and "Reset".
They can also include diagnostic or raw data from the PLC
in addition to simple tag values from the configured Alarm‐
ParamterTags.

AlarmText String[] read on‐
ly

Returns the localized additional texts 1 to 9 of an alarm as
an array. The text can contain triggered placeholders and
reference all the "AlarmParameterValues" properties of
the respective alarm state "Incoming" or "Reset".

Area String read on‐
ly

Specifies the origin area of an alarm.
The "Area" property can be configured and, together with
the "Origin" property, defines the source of an alarm. You
can also use placeholders for context-sensitive format.
The "Area" property, for example, includes subsystem, ap‐
plication name or PLC ID. You can sort and filter alarms
through the "Area" context.

BackColor UInt32 read on‐
ly

Specifies the background color.

ChangeReason
(Page 465)

UInt16 read on‐
ly

Returns the trigger event for the modification of the alarm
state.

ClearTime Date‐
Time

read on‐
ly

Returns the time of alarm reset.

Connection String read on‐
ly

Returns the name of the connection by which an alarm was
triggered.

Deadband Variant read on‐
ly

Returns the hysteresis value of the trigger tag of the alarm.

EventText String read on‐
ly

Returns a localized text that describes an alarm event for
the alarm.
The text can contain triggered placeholders and reference
all the "AlarmParameterValues" properties of the respec‐
tive alarm state "Incoming" or "Reset".

HostName String read on‐
ly

Returns the name of the PC on which the alarm was trig‐
gered.

ID UInt32 read on‐
ly

Returns the ID of a logged alarm.

InfoText String read on‐
ly

Returns the information text of an alarm in all archived lan‐
guages.
Normally, the text is used for operator instructions.

InstanceID UInt32 read on‐
ly

Returns the ID of alarms with multiple instances.

InvalidFlags
(Page 466)

UInt8 read on‐
ly

Returns the cause of invalid data of an alarm.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 463

Properties Type Access Description
LoggedAlarmSta‐
teObjectID

String read on‐
ly

Returns the ID of a logged alarm.
The ID is used for referencing a logged alarm, e.g. for
commenting with the "AlarmLogging.AddComment" meth‐
od.

ModificationTime Date‐
Time

read on‐
ly

Returns the time stamp of the last modification of the alarm
state.
The reason for the change is included in the "ChangeRea‐
son" property.

Origin String read on‐
ly

Returns the origin of an alarm.
The "Origin" property, for example, includes system
names, data source or CPU ID. You can sort and filter
alarms through the "Origin" context.
The "Origin" property can be configured and, together with
the "Area" property, defines the source of an alarm. You
can also use placeholders for context-sensitive format.

Priority UInt8 read on‐
ly

Specifies the relevance of an alarm or a machine status.

RaiseTime Date‐
Time

read on‐
ly

Returns the trigger time of an alarm.

ResetTime Date‐
Time

read on‐
ly

Returns the time of alarm reset.

SingleAcknowledge‐
ment

Boo‐
lean

read on‐
ly

Returns whether an alarm must be acknowledged exclu‐
sively or can also be acknowledged in a group.

SourceType
(Page 466)

UInt16 read on‐
ly

Returns the type of the alarm source of an alarm. After the
reset, the alarm is deleted from the alarm system.

State (Page 467) UInt32 read on‐
ly

Returns the state of an alarm.

StateMachine UInt8 read on‐
ly

Returns the response of the alarm for alarm states and
alarm events.

StateText String read on‐
ly

Returns the alarm state as text, e.g. "Incoming" or "Outgo‐
ing".
The texts can be assigned system-wide for each alarm
status.

SuppressionState
(Page 468)

UInt8 read on‐
ly

Returns the status of visibility of an active alarm.

TextColor UInt32 read on‐
ly

Returns the text color of the alarm state. Each alarm state
has its own visual representation.

UserName String read on‐
ly

Returns the name of the user who triggered the alarm ob‐
ject.

UserResponse
(Page 468)

UInt16 read on‐
ly

Returns the expected or required user response to an
alarm.

Value Variant read on‐
ly

Specifies a value for the object being used or returns it.

ValueLimit Variant read on‐
ly

Returns the limit of a process value of an alarm.

ValueQuality UInt16 read on‐
ly

Returns the quality level of a process value of an alarm.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
464 System Manual, 11/2019, Online help printout

See also
"ChangeReason" property (Page 465)

"InvalidFlags" property (Page 466)

"SourceType" property (Page 466)

"State" property (Page 467)

"SuppressionState" property (Page 468)

"UserResponse" property (Page 468)

Special properties (RT Uni)

"ChangeReason" property (RT Uni)

Description
Returns the trigger event for the modification of the alarm state. The time of last modification is
saved in the "ModificationTime" property.

The alarm state can change for the following reasons:

Values ChangeReason Description
0x0001 AlarmStateChanged "State" property has changed
0x0003 RaiseEvent Status change "Incoming"
0x0005 ClearEvent Status change "Reset"
0x0007 AcknowledgeEvent Status change "Acknowledged"
0x0009 ResetEvent Status change "Deleted"
0x000F RemoveEvent Status change "Removed"
0x0010 AlarmQualityChanged "Quality" property has changed
0x0020 AlarmParameter-ValuesChanged A value of the "AlarmParameterVal‐

ues" property has changed
0x0040 AlarmPriorityChanged "Priority" property has changed
0x0100 AlarmSuppression-StateChanged "SuppressionState" property has

changed
0x1000 ConfigurationChanged Alarm configuration has changed

Syntax
Object.ChangeReason

Object
Required. An object from the "Availability" section.

See also
Properties (Page 462)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 465

"InvalidFlags" property (RT Uni)

Description
Returns the cause of invalid data of an alarm.

An invalid alarm is marked with the following bits:

Bit number InvalidFlags Description
Bit 0 Invalid configuration flag Alarm configuration is invalid. HMI device does

not match data source.
Bit 1 Invalid timestamp flag Data source transfers invalid time stamps.
Bit 2 Invalid alarm parameter flag Data source transfers invalid parameter values.
Bit 3 Invalid event text flag Runtime system cannot format text due to missing

parameter values.

A valid alarm has the following properties:

● InvalidFlags = 0

● Quality = "good"

Syntax
Object.InvalidFlags

Object
Required. An object from the "Availability" section.

See also
Properties (Page 462)

"SourceType" property (RT Uni)

Description
Returns the type of the alarm source of an alarm.

The following types of alarm sources are available:

● Tag system for tag-based alarms (Tag)

● PLC or external communication source for controller-based alarms (Controller)

● Subsystem of HMIRuntime for system-based alarms (System)

● Alarm system itself for alarms that are grouped (Alarm)

Syntax
Object.SourceType

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
466 System Manual, 11/2019, Online help printout

Object
Required. An object from the "Availability" section.

See also
Properties (Page 462)

"State" property (RT Uni)

Description
Returns the state of an alarm.

The table below shows the possible states of an alarm.

Value State Description
0x00 Normal (Idle) Not an active alarm
0x01 Raised Incoming
0x02 RaisedCleared Incoming and reset
0x05 RaisedAcknowledged Incoming and acknowledged
0x06 RaisedAcknowledgedCleared Incoming, acknowledged and reset
0x07 RaisedClearedAcknowledged Incoming, reset and acknowledged
0x80 Removed Alarm was removed and is no longer

available

Syntax
Object.State

Object
Required. An object from the "Availability" section.

See also
Properties (Page 462)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 467

"SuppressionState" property (RT Uni)

Description
Returns the status of visibility of an active alarm.

Value SuppressionState Description
0x0 Unsuppressed Alarm is visible.
0x1 Suppressed Alarm is configured as invisible.
0x3 Shelved Alarm was hidden manually. The methods "Unshelve"

and "Shelve" can be applied.

Syntax
Object.SuppressionState

Object
Required. An object from the "Availability" section.

See also
Properties (Page 462)

"UserResponse" property (RT Uni)

Description
Returns the expected or required user response to an alarm:

Value UserResponse Description
0x0 No response Active message expects no user response
0x1 Acknowledgment Active message expects acknowledgment (also in

group)
0x2 Reset Active message expects reset (also in group)
0x5 Single acknowledgment Active message explicitly expects individual acknowl‐

edgment
0x6 Single reset Active message explicitly expects individual reset

Syntax
Object.UserResponse

Object
Required. An object from the "Availability" section.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
468 System Manual, 11/2019, Online help printout

See also
Properties (Page 462)

Methods of "LoggedAlarmStateResult" (RT Uni)

Overview (RT Uni)

Methods
The "LoggedAlarmStateResult" object has the following methods:

Methods Description
-

7.8.1.3 "Connections" area (RT Uni)

"Connection" object (RT Uni)

"Connection" description (RT Uni)

Description

The "Connection" object ("HMIConnection" type) enables access to individual connections of
the Runtime system. A connection is a configured, logical assignment of two communication
partners.

Type identifier in JavaScript
HMIVorlage

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 469

Properties (RT Uni)

Properties
The "Connection" object has the following properties:

Properties Type Access Description
-

Methods of "Connection" (RT Uni)

Overview (RT Uni)

Methods
The "Connection" object has the following methods:

Methods Description
SetConnectionMode Changes the status of a connection ("Connection" object) in the Run‐

time system.

"SetConnectionMode" method (Connection.SetConnectionMode) (RT Uni)

Description
Changes the status of a connection ("Connection" object) in the Runtime system.

The method executes an asynchronous operation without blocking further script execution. The
method uses a Promise object to do this which has handlers for the successful ("then()") and
faulty ("catch()") execution of the operation. Depending on the result, after the execution, the
corresponding handler of the Promise pattern is called.

Member
Method of the "Connection" object

Syntax
[HMIRuntime.]Connections.Connection.SetConnectionMode(mode)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
470 System Manual, 11/2019, Online help printout

Parameters

mode
Type: hmiConnectionMode

New connection status

The enumeration contains the following values:

● Disabled (0)
Connection disconnected

● Enabled (1)
Connection established

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

"Connections" object (RT Uni)

"Connections" description (RT Uni)

Description

The "Connections" object ("HMIConnections" type) enables access to the connections of the
Runtime system. A connection is a configured, logical assignment of two communication
partners.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 471

Use

Note

The "Connections" object is not a list, but rather a "Factory". You create an instance of the
"Connection" object using the tag name.

The "Connection" objects cannot be counted and enumerated like conventional lists.

To reduce the use of the "Connections" object, you can also use the alias Connections for
HMIRuntime.Connections.

Type identifier in JavaScript
HMIVorlage

Properties (RT Uni)

Properties
The "Connections" object has the following properties:

Properties Type Access Description
-

Methods of "Connections" (RT Uni)

Overview (RT Uni)

Methods
The "Connections" object has the following methods:

Methods Description
Item Returns a connection ("Connection" object) of the runtime system.

"Item" method (Connections.Item) (RT Uni)

Description
Returns a connection ("Connection" object) of the runtime system.

Member
Method of the "Connections" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
472 System Manual, 11/2019, Online help printout

Syntax
[HMIRuntime.]Connections[.Item](name);

Note

The HMIRuntime. part of the expression is not required. The alias Connections stands
for HMIRuntime.Connections.

The .Item part of the expression is not required. The "Item" method is the standard method of
the "Connections" object.

Parameter

name
Type: String

Name of a connection

Return value
Object of the type "HMIConnection"

7.8.1.4 "Database" area (RT Uni)

"Database" object (RT Uni)

"Database" description (RT Uni)

Description

Displays the ODBC interface. You use this interface to access the data in a database using SQL
commands.

Requirement is that an ODBC interface is installed on the HMI device.

Type identifier in JavaScript
HMIDatabase

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 473

Properties (RT Uni)

Properties
The "Database" object has the following properties:

Properties Type Access Description
- - - -

Methods of the "Database" object (RT Uni)

Overview (RT Uni)

Methods
The "Database" object has the following methods:

Methods Description
CreateConnection Creates a connection to the database.

See also
"CreateConnection" method (HMIDatabase.CreateConnection) (Page 474)

"CreateConnection" method (HMIDatabase.CreateConnection) (RT Uni)

Description
Establishes the connection to a database.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"HMIDatabase" object or the error code as parameter.

Member
Method of the "HMIDatabase" object

Syntax
HMIRuntime.HMIDatabase.CreateConnection(connectionString);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
474 System Manual, 11/2019, Online help printout

Parameters

connectionString
Type: String

Name of the database.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMIDatabase" as parameter of the "then()" handler.

● Promise failed (rejected)
ErrorCode as parameter of the "catch()" handler

"DatabaseConnection" object (RT Uni)

"DatabaseConnection" description (RT Uni)

Description

Displays the connection to the database.

Type identifier in JavaScript
HMIDatabaseConnection

Properties (RT Uni)

Properties
The "DatabaseConnection" object has the following properties:

Properties Type Access Description
- - - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 475

Methods of the "DatabaseConnection" object (RT Uni)

Overview (RT Uni)

Methods
The "DatabaseConnection" object has the following methods:

Methods Description
Close Terminates the connection to the database.
Execute Executes a query in the database.

See also
"Close" method (HMIDatabaseConnection.Close) (Page 476)

"Execute" method (HMIDatabaseConnection.Execute) (Page 477)

"Close" method (HMIDatabaseConnection.Close) (RT Uni)

Description
Terminates the connection to the database.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"HMIDatabaseConnection" object or the error code as parameter.

Member
Method of the "HMIDatabaseConnection" object

Syntax
HMIRuntime.HMIDatabaseConnection.Close();

Parameters
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
476 System Manual, 11/2019, Online help printout

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMIDatabaseConnection" as parameter of the "then()" handler.

● Promise failed (rejected)
ErrorCode as parameter of the "catch()" handler

"Execute" method (HMIDatabaseConnection.Execute) (RT Uni)

Description
Executes a query in the database.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"HMIDatabaseConnection" object or the error code as parameter.

Member
Method of the "HMIDatabaseConnection" object

Syntax
HMIRuntime.HMIDatabaseConnection.Execute(query, values);

Parameters

query
Type: String

Query

values
Type: Variant

Value array

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMIDatabaseConnection" as parameter of the "then()" handler.

● Promise failed (rejected)
ErrorCode as parameter of the "catch()" handler

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 477

"DatabaseDetailedError" object (RT Uni)

"DatabaseDetailedError" description (RT Uni)

Description

Displays the error description of a failed database query.

Type identifier in JavaScript
HMIDatabaseDetailedError

Properties (RT Uni)

Properties
The "DatabaseDetailedError" object has the following properties:

Properties Type Access Description
Message String read

only
Returns the error description.

State String read
only

Returns the ODBC error type.

Methods of the "DatabaseDetailedError" object (RT Uni)

Overview (RT Uni)

Methods
The "DatabaseDetailedError" object has the following methods:

Methods Description
- -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
478 System Manual, 11/2019, Online help printout

"DatabaseResult" object (RT Uni)

"DatabaseResult" description (RT Uni)

Description

Displays the result of a database query.

Type identifier in JavaScript
HMIDatabaseResult

Properties (RT Uni)

Properties
The "DatabaseResult" object has the following properties:

Properties Type Access Description
GlobalError ErrorCode read

only
Returns the error ID.

Results Object[] read
only

Contains the result of the database query.

Methods of the "DatabaseResult" object (RT Uni)

Overview (RT Uni)

Methods
The "DatabaseResult" object has the following methods:

Methods Description
- -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 479

"DatabaseStatementResult" object (RT Uni)

"DatabaseStatementResult" description (RT Uni)

Description

Displays table rows of a database query.

Type identifier in JavaScript
HMIDatabaseStatementResult

Properties (RT Uni)

Properties
The "DatabaseStatementResult" object has the following properties:

Properties Type Access Description
Errors Object[] read

only
Returns the error descriptions.

Rows Object[] read
only

Returns the rows of the database table.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
480 System Manual, 11/2019, Online help printout

Methods of the "DatabaseStatementResult" object (RT Uni)

7.8.1.5 "FileSystem" object (RT Uni)

"FileSystem" description (RT Uni)

Description

The "FileSystem" object ("HMIFileSystem" type) enables access to the file system of the server
on which WinCC Unified is installed.

Type identifier in JavaScript
HMIFileSystem

Properties (RT Uni)

Properties
The "FileSystem" object has the following properties:

Properties Type Access Description
-

Methods of "FileSystem" (RT Uni)

Overview (RT Uni)

Methods
The "FileSystem" object has the following methods:

Methods Description
AppendFile Appends text to the end of a text file in the file system.
AppendFileBinary Appends binary data to the end of a binary file in the file system.
CreateDirectory Creates a new directory in the file system.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 481

Methods Description
DeleteDirectory Deletes a directory with all subdirectories and files contained in the file

system.
DeleteFile Deletes a file from the file system.
ReadFile Reads the content of a text file from the file system.
ReadFileBinary Reads the content of a binary file from the file system.
WriteFile Writes text to a new file in the file system.
WriteFileBinary Writes binary data to a new file in the file system.

"AppendFile" method (FileSystem.AppendFile) (RT Uni)

Description
Appends text to the end of a text file in the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.AppendFile(path,data,encoding)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the text file in the file system

data
Type: String

Content that is written to the text file.

encoding
Type: String

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
482 System Manual, 11/2019, Online help printout

Encoding of text file, e.g. UFT-8 or UCS-2.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

See also
"AppendFileBinary" method (FileSystem.AppendFileBinary) (Page 483)

"AppendFileBinary" method (FileSystem.AppendFileBinary) (RT Uni)

Description
Appends binary data to the end of a binary file in the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.AppendFileBinary(path,data)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the binary file in the file system

data
Type: Blob

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 483

Content that is written to the binary file.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

See also
"AppendFile" method (FileSystem.AppendFile) (Page 482)

"CreateDirectory" method (FileSystem.CreateDirectory) (RT Uni)

Description
Creates a new directory in the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.CreateDirectory(path)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the directory in the file system

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
484 System Manual, 11/2019, Online help printout

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

See also
"DeleteDirectory" method (FileSystem.DeleteDirectory) (Page 485)

"DeleteDirectory" method (FileSystem.DeleteDirectory) (RT Uni)

Description
Deletes a directory with all subdirectories and files contained in the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.DeleteDirectory(path)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the directory in the file system

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 485

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

See also
"CreateDirectory" method (FileSystem.CreateDirectory) (Page 484)

"DeleteFile" method (FileSystem.DeleteFile) (RT Uni)

Description
Deletes a file from the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.DeleteFile(path)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the file in the file system

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
486 System Manual, 11/2019, Online help printout

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

See also
"WriteFile" method (FileSystem.WriteFile) (Page 489)

"ReadFile" method (FileSystem.ReadFile) (RT Uni)

Description
Reads the content of a text file from the file system.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called with the content of the
file or the error code as parameter.

Member
Method of the "FileSystem" object

Syntax
HMIRuntime.FileSystem.ReadFile(path,encoding)
.then(function(data) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

path
Type: String

Path of the text file in the file system

encoding
Type: String

Encoding of text file, e.g. UFT-8 or UCS-2.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 487

Return value
Depending on the status of the Promise object:

● Promise fulfilled
File content as string as parameter of the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

"ReadFileBinary" method (FileSystem.ReadFileBinary) (RT Uni)

Description
Reads the content of a binary file from the file system.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called with the content of the
file or the error code as parameter.

Member
Method of the "FileSystem" object

Syntax
HMIRuntime.FileSystem.ReadFileBinary(path)
.then(function(data) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

path
Type: String

Path of the binary file in the file system

Return value
Depending on the status of the Promise object:

● Promise fulfilled
File content as binary data object (Blob) as parameter of the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
488 System Manual, 11/2019, Online help printout

"WriteFile" method (FileSystem.WriteFile) (RT Uni)

Description
Writes text to a new file in the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.WriteFile(path,data,encoding)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the new text file in the file system

data
Type: String

Content that is written to the new text file.

encoding
Type: String

Encoding of the new text file, e.g. UFT-8 or UCS-2.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 489

See also
"WriteFileBinary" method (FileSystem.WriteFileBinary) (Page 490)

"DeleteFile" method (FileSystem.DeleteFile) (Page 486)

"WriteFileBinary" method (FileSystem.WriteFileBinary) (RT Uni)

Description
Writes binary data to a new file in the file system.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, after
the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.WriteFileBinary(path,data)
.then(function() {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Member
Method of the "FileSystem" object

Parameters

path
Type: String

Path of the new binary file in the file system

data
Type: Blob

Content that is written to the new binary file.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
No return for the "then()" handler

● Promise rejected
Error code as parameter of the "catch()" handler.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
490 System Manual, 11/2019, Online help printout

See also
"WriteFile" method (FileSystem.WriteFile) (Page 489)

7.8.1.6 "HMIRuntime" object (RT Uni)

"HMIRuntime" description (RT Uni)

Description

The "HMIRuntime" object represents the Runtime system of WinCC Unified. The
"HMIRuntime" object contains properties, methods and all objects of the runtime system that
can be scripted.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 491

Use

Note

The following objects have an alias to allow briefer notation:
● Alias Tags corresponds to HMIRuntime.Tags
● Alias UI corresponds to HMIRuntime.UI

Type identifier in JavaScript
HMIRuntime

Properties (RT Uni)

Properties
The "HMIRuntime" object has the following properties:

Properties Type Access Description
Alarming Object read on‐

ly
Returns the "Alarming" object.

AlarmLogging Object read on‐
ly

Returns the "AlarmLogging" object.

Connections HMIConnec‐
tions

read on‐
ly

Returns the "Connections" list.

CPM Object read on‐
ly

Returns the "CPM" object.

FileSystem Object read on‐
ly

Returns the "FileSystem" object.

Language UInt32 read/
write

Specifies the current Runtime language.

Math Object read on‐
ly

Returns the "Math" object.

OLEAutomation Object read on‐
ly

Returns the "OLEAutomation" object.

ParameterSet‐
Types

Object read on‐
ly

Returns the "ParameterSetTypes" object.

SysFct Object read/
write

Returns the "SysFct" object.

TagLogging Object read on‐
ly

Returns the "TagLogging" object.

Tags Object read on‐
ly

Returns the "Tags" object.

Timers Object read on‐
ly

Returns the "Timers" object.

UI Object read on‐
ly

Returns the "UI" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
492 System Manual, 11/2019, Online help printout

Methods of "HMIRuntime" (RT Uni)

Overview (RT Uni)

Methods
The "HMIRuntime" object has the following methods:

Methods Description
Trace Outputs a user-defined text through the debug output of the runtime

system.

"Trace" method (HMIRuntime.Trace) (RT Uni)

Description
Outputs a user-defined text through the debug output of the runtime system.

Member
Method of the "HMIRuntime" object

Syntax
HMIRuntime.Trace(message);

Parameter

message
Type: String

The text which is output.

Return value
--

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 493

7.8.1.7 "Math" area (RT Uni)

"Math" object (RT Uni)

"Math" description (RT Uni)

Description

The "Math" object ("HMIMath" type) enables the use of 64-bit data types in the scripting
environment. Because JavaScript does not offer native support for 64-bit integer values, these
values are encapsulated as object for further processing.

Use
Some methods return different data types; the "Tag.Read" method, for example, returns the
data type "Variant". You can check the return values of these methods with the JavaScript
operator "instanceof" for agreement with a 64-bit data type.

Note

64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Type identifier in JavaScript
HMIMath

Example
Checks if a "Tag" object returns a 64-bit data type (signed or unsigned):

Copy code
var tagVal = HMIRuntime.Tags('Tag1').Read();
if (tagVal instanceof HMIRuntime.Math.Int64Base)
{
 ...
}

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
494 System Manual, 11/2019, Online help printout

Checks if a "Tag" object returns a "signed" 64-bit data type:

Copy code
var tagVal = HMIRuntime.Tags('Tag1').Read();
if (tagVal instanceof HMIRuntime.Math.Int64)
{
 ...
}

Properties (RT Uni)

Properties
The "Math" object has the following properties:

Properties Type Access Description
DatePrecise
(Page 495)

Object read on‐
ly

Returns the "DatePrecise" object.

Int64 (Page 496) Object read on‐
ly

Represents a 64-bit integer value with sign.

Int64Base
(Page 497)

Object read on‐
ly

Checks for a 64-bit data type in combination with the
"instanceof" operator.

Uint64 (Page 497) Object read on‐
ly

Represents an unsigned 64-bit integer value and contains
methods for mathematical operations.

See also
"DatePrecise" property (Page 495)

"Int64" property (Page 496)

"Int64Base" property (Page 497)

"Uint64" property (Page 497)

Special properties (RT Uni)

"DatePrecise" property (RT Uni)

Description
Returns the "DatePrecise" object.

Represents high-resolution time information with a resolution of 100 ns as a 64-bit integer value.

Type
Object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 495

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Math

Syntax
Object.DatePrecise

Object
Required. An object from the "Availability" section.

See also
Properties (Page 495)

"Int64" property (RT Uni)

Description
Represents a 64-bit integer value with sign.

Type
Object

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Math

Syntax
Object.Int64

Object
Required. An object from the "Availability" section.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
496 System Manual, 11/2019, Online help printout

See also
Properties (Page 495)

"Int64Base" property (RT Uni)

Description
Checks for a 64-bit data type in combination with the "instanceof" operator.

Type
Object

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Math

Syntax
Object.Int64Base

Object
Required. An object from the "Availability" section.

See also
Properties (Page 495)

"Uint64" property (RT Uni)

Description
Represents an unsigned 64-bit integer value and contains methods for mathematical
operations. Returns "TRUE" for unsigned 64-bit integer values when checked with the
"instanceof" operator against an object.

Type
Object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 497

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Math

Syntax
Object.Uint64

Object
Required. An object from the "Availability" section.

See also
Properties (Page 495)

Methods of "Math" (RT Uni)

Overview (RT Uni)

Methods
The "Math" object has the following methods:

Methods Description
RGB Converts an RGB(A) specification into the corresponding hexadecimal val‐

ue.
RGBWeb Converts an RGB(A) specification into the corresponding hexadecimal val‐

ue.

"RGB" method (HMIMath.RGB) (RT Uni)

Description
Converts an RGB(A) specification into the corresponding hexadecimal value.

Member
Method of the "HMIMath" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
498 System Manual, 11/2019, Online help printout

Syntax
HMIRuntime.HMIMath.RGB(R, G, B, A);

Parameters

R
Type: UInt32

Red value

G
Type: UInt32

Green value

B
Type: UInt32

Blue value

A
Type: UInt32

Alpha value (density)

Return value
Type: UInt32

"RGBWeb" method (HMIMath.RGBWeb) (RT Uni)

Description
Converts an RGB(A) specification into the corresponding hexadecimal value.

Member
Method of the "HMIMath" object

Syntax
HMIRuntime.HMIMath.RGBWeb();

Parameters

RGB
Type: UInt32

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 499

Red-green-blue value in hexadecimal notation

A
Type: UInt32

Alpha value (density) in hexadecimal format

Return value
Type: UInt32

"Int64Base" object (RT Uni)

Description

The "Int64Base" object (type "HMIInt64Base") is used exclusively when checking for a 64-bit
integer data type. Because JavaScript does not offer native support for 64-bit integer values,
these values are encapsulated as "Int64" or "Uint64" objects for further use.

Object properties

--

Application

Note

64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
500 System Manual, 11/2019, Online help printout

The "Int64Base" object returns TRUE for all signed or unsigned 64-bit integer values when
checked with the "instanceof" operator against an object.

Example
Checks whether a "Tag" object is a 64-bit data type:

Copy code
function Int64TagValue() {
 var tagVal = HMIRuntime.Tags('Tag1').Read();

 //check if it is 64-Bit type (signed or unsigned)
 if (tagVal instanceof HMIRuntime.Math.Int64Base) {
 ...
 }
}

"Int64" object (RT Uni)

"Int64" description (RT Uni)

Description

The "Int64" object (type "HMIInt64") represents a signed 64-bit integer value and includes basic
arithmetic and bit operations. Because JavaScript does not offer native support for 64-bit
integer values, these values are encapsulated as "Int64" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 501

Application

Note

64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Type identifier in JavaScript
HMIInt64

Example
Creates a new "signed" 64-bit object and writes the value to the tag:

Copy code
function Write_Int64TagValue() {
 //create new Int64-object
 var newTagVal = HMIRuntime.Math.Int64('-6000000000000000000');

 //write to tag
 HMIRuntime.Tags('Tag1').Write(newTagVal);
}

Checks if a "Tag" object is a "signed" 64-bit data type, multiplies the value with "-1" and returns
the result as 64-bit object:

Copy code
function NegMul_Int64TagValue() {
 var tagVal = HMIRuntime.Tags('Tag1').Read();

 //check if it is *signed* 64-Bit type
 if (tagVal instanceof HMIRuntime.Math.Int64) {
 //if yes, use Mul method with negative number
 return tagVal.Mul(-1);
 }
}

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
502 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "Int64" object has the following properties:

Properties Type Access Description
Hi (Page 503) UInt32 read on‐

ly
Saves and returns the high part (32-bit) of a 64-bit integer
value.

Lo (Page 504) UInt32 read on‐
ly

Saves and returns the low part (32-bit) of a 64-bit integer val‐
ue.

See also
"Hi" property (Page 503)

"Lo" property (Page 504)

Special properties (RT Uni)

"Hi" property (RT Uni)

Description
Saves and returns the high part (32-bit) of a 64-bit integer value.

Because JavaScript does not offer native support for 64-bit integer values, these values are
encapsulated as object for further processing. The high and low 32-bit parts of a 64-bit value
are mapped in the properties "Hi" and "Lo".

Type
UInt32

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Int64

● Uint64

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 503

Syntax
Object.Hi

Object
Required. An object from the "Availability" section.

See also
Properties (Page 503)

"Lo" property (RT Uni)

Description
Saves and returns the low part (32-bit) of a 64-bit integer value.

Because JavaScript does not offer native support for 64-bit integer values, these values are
encapsulated as object for further processing. The high and low 32-bit parts of a 64-bit value
are mapped in the properties "Hi" and "Lo".

Type
UInt32

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Int64

● Uint64

Syntax
Object.Lo

Object
Required. An object from the "Availability" section.

See also
Properties (Page 503)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
504 System Manual, 11/2019, Online help printout

Methods of "Int64" (RT Uni)

Overview (RT Uni)

Methods
The "Int64" object has the following methods:

Methods Description
Add Provides the "Addition" arithmetic operation for 64-bit objects.
And Provides the "AND" bit operation for 64-bit objects.
Div Provides the "Division" arithmetic operation for 64-bit objects.
Item Creates and returns 64-bit integer values ("Int64" and "Uint64" objects).
Mul Provides the "Multiplication" arithmetic operation for 64-bit objects.
Or Provides the "OR" bit operation for 64-bit objects.
ShiftLeft Provides a bit shift "SHL" for 64-bit objects.
ShiftRight Provides the bit shift "SHR" for 64-bit objects.
Sub Provides the "Subtraction" arithmetic operation for 64-bit objects.
toString Converts the value of a 64-bit object into a string.
Xor Provides the "XOR" bit operation for 64-bit objects.

"Add" method (Int64.Add, Uint64.Add) (RT Uni)

Description
Provides the "Addition" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" objects is increased by the specified value.

This method corresponds to the JavaScript operator "+" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Add(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 505

Parameters

value
Type: Variant, object

Value that is added to the current value of the object.

The following data types are supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"And" method ((Int64.AndUint64.And) (RT Uni)

Description
Provides the "AND" bit operation for 64-bit objects. The binary value of the "Int64" or "Uint64"
objects is ANDed with the specified value.

This method corresponds to the JavaScript operator "&" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.And(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
506 System Manual, 11/2019, Online help printout

Parameters

value
Type: Variant, object

Bit sequence of the same length with which the binary value of the object is ANDed.

The following data types are supported:

● Bit string

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Div" method (Int64.DivUint64.Div) (RT Uni)

Description
Provides the "Division" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" objects is divided by the specified value.

This method corresponds to the JavaScript operator "/" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Div(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 507

Parameters

value
Type: Variant, object

Value by which the current value of the object is divided.

The following data types are supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Mul" method ((Int64.MulUint64.Mul) (Page 509)

"Item" method (Int64.Item, Uint64.Item) (RT Uni)

Description
Creates 64-bit integer values ("Int64"and "Uint64" objects) and returns these.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object[.Item](value);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
508 System Manual, 11/2019, Online help printout

Object
Required. An object of the type "HMIInt64" or "HMIUint64".

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "Int64" and "Uint64" objects.

Parameter

value
Type: Variant

New 64-bit integer value as integer string with base 10.

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Mul" method ((Int64.MulUint64.Mul) (RT Uni)

Description
Provides the "Multiplication" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" object is multiplied by the specified value.

This method corresponds to the JavaScript operator "*" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Mul(value);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 509

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Value by which the current value of the object is multiplied.

The following data types are supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Div" method (Int64.DivUint64.Div) (Page 507)

"Or" method (Int64.OrUint64.Or) (RT Uni)

Description
Provides the "OR" bit operation for 64-bit objects. The binary value of the "Int64" or "Uint64"
objects is ANDed with the specified value.

This method corresponds to the JavaScript operator "|" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Or(value);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
510 System Manual, 11/2019, Online help printout

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Bit sequence of the same length with which the binary value of the object is ORed.

The following data types are supported:

● Bit string

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Xor" method (Int64.XorUint64.Xor) (Page 515)

"ShiftLeft" method ((Int64.ShiftLeftUint64.ShiftLeft) (RT Uni)

Description
Provides a bit shift "SHL" for 64-bit objects. The binary value of the "Int64" or "Uint64" objects
is shifted by the specified number of places.

This method corresponds to the JavaScript operator "<<" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.ShiftLeft(value);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 511

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: UInt8

Number of digits by which the binary value of the object is shifted to the left.

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"ShiftRight" method ((Int64.ShiftRightUint64.ShiftRight) (Page 512)

"ShiftRight" method ((Int64.ShiftRightUint64.ShiftRight) (RT Uni)

Description
Provides the bit shift "SHR" for 64-bit objects. The binary value of the "Int64" or "Uint64" objects
is shifted by the specified number of places.

This method corresponds to the JavaScript operator ">>" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.ShiftRight(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
512 System Manual, 11/2019, Online help printout

Parameters

value
Type: UInt8

Number of digits by which the binary value of the object is shifted to the right.

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"ShiftLeft" method ((Int64.ShiftLeftUint64.ShiftLeft) (Page 511)

"Sub" method (Int64.SubUint64.Sub) (RT Uni)

Description
Provides the "Subtraction" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" objects is increased by the specified value.

This method corresponds to the JavaScript operator "-" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Sub(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 513

Value that is subtracted from the current value of the object. The following data types are
supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"toString" method (Int64.toStringUint64.toString) (RT Uni)

Description
Converts the value of a 64-bit object into a string. For other data types, you can use the native
JavaScript method "toString" with the same name.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.toString([base]);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

base
Optional, type: UInt8

Basis on which the 64-bit value of the object is converted into a string. Without parameters, the
basis is set to "10".

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
514 System Manual, 11/2019, Online help printout

Return value
Representation of the numerical value of the type String.

See also
"Int64Base" object (Page 500)

"Xor" method (Int64.XorUint64.Xor) (RT Uni)

Description
Provides the "XOR" bit operation for 64-bit objects. The binary value of the "Int64" or "Uint64"
objects is ANDed with the specified value.

This method corresponds to the JavaScript operator "^" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Xor(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Bit sequence of the same length with which the binary value of the object is XORed.

The following data types are supported:

● Bit string

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 515

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Or" method (Int64.OrUint64.Or) (Page 510)

"Uint64" object (RT Uni)

"Uint64" description (RT Uni)

Description

The "Uint64" object (type "HMIUint64") represents an unsigned 64-bit integer value and
includes basic arithmetic and bit operations. Because JavaScript does not offer native support
for 64-bit integer values, these values are encapsulated as "Uint64" object.

Application

Note

64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
516 System Manual, 11/2019, Online help printout

Type identifier in JavaScript
HMIUint64

Example
Creates a new "unsigned" 64-bit object and writes the value to the tag:

Copy code
function Write_Uint64TagValue() {
 //create new Uint64-object
 var newTagVal = HMIRuntime.Math.Uint64('6000000000000000000');

 //write to tag
 HMIRuntime.Tags('Tag1').Write(newTagVal);
}

Checks if a "Tag" object is a signed 64-bit data type, adds the value "99" and returns the result
as 64-bit object:

Copy code
function Add_Int64TagValue() {
 var tagVal = HMIRuntime.Tags('Tag1').Read();

 //check if it is 64-Bit type (unsigned)
 if (tagVal instanceof HMIRuntime.Math.Uint64) {
 //if yes, use Add method
 return tagVal.Add(99);
 }
}

Properties (RT Uni)

Properties
The "Uint64" object has the following properties:

Properties Type Access Description
Hi (Page 518) UInt32 reat only Saves and returns the high part (32-bit) of a 64-bit integer

value.
Lo (Page 518) UInt32 read on‐

ly
Saves and returns the low part (32-bit) of a 64-bit integer
value.

See also
"Hi" property (Page 518)

"Lo" property (Page 518)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 517

Special properties (RT Uni)

"Hi" property (RT Uni)

Description
Saves and returns the high part (32-bit) of a 64-bit integer value.

Because JavaScript does not offer native support for 64-bit integer values, these values are
encapsulated as object for further processing. The high and low 32-bit parts of a 64-bit value
are mapped in the properties "Hi" and "Lo".

Type
UInt32

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Int64

● Uint64

Syntax
Object.Hi

Object
Required. An object from the "Availability" section.

See also
Properties (Page 503)

Properties (Page 517)

"Lo" property (RT Uni)

Description
Saves and returns the low part (32-bit) of a 64-bit integer value.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
518 System Manual, 11/2019, Online help printout

Because JavaScript does not offer native support for 64-bit integer values, these values are
encapsulated as object for further processing. The high and low 32-bit parts of a 64-bit value
are mapped in the properties "Hi" and "Lo".

Type
UInt32

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Int64

● Uint64

Syntax
Object.Lo

Object
Required. An object from the "Availability" section.

See also
Properties (Page 503)

Properties (Page 517)

Methods of "Uint64" (RT Uni)

Overview (RT Uni)

Methods
The "Uint64" object has the following methods:

Methods Description
Add Provides the "Addition" arithmetic operation for 64-bit objects.
And Provides the "AND" bit operation for 64-bit objects.
Div Provides the "Division" arithmetic operation for 64-bit objects.
Item Creates and returns 64-bit integer values ("Int64" and "Uint64" objects).
Mul Provides the "Multiplication" arithmetic operation for 64-bit objects.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 519

Methods Description
Or Provides the "OR" bit operation for 64-bit objects.
ShiftLeft Provides a bit shift "SHL" for 64-bit objects.
ShiftRight Provides the bit shift "SHR" for 64-bit objects.
Sub Provides the "Subtraction" arithmetic operation for 64-bit objects.
toString Converts the value of a 64-bit object into a string.
Xor Provides the "XOR" bit operation for 64-bit objects.

"Add" method (Int64.Add, Uint64.Add) (RT Uni)

Description
Provides the "Addition" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" objects is increased by the specified value.

This method corresponds to the JavaScript operator "+" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Add(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Value that is added to the current value of the object.

The following data types are supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
520 System Manual, 11/2019, Online help printout

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Sub" method (Int64.SubUint64.Sub) (Page 528)

"And" method ((Int64.AndUint64.And) (RT Uni)

Description
Provides the "AND" bit operation for 64-bit objects. The binary value of the "Int64" or "Uint64"
objects is ANDed with the specified value.

This method corresponds to the JavaScript operator "&" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.And(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Bit sequence of the same length with which the binary value of the object is ANDed.

The following data types are supported:

● Bit string

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 521

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Div" method (Int64.DivUint64.Div) (RT Uni)

Description
Provides the "Division" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" objects is divided by the specified value.

This method corresponds to the JavaScript operator "/" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Div(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Value by which the current value of the object is divided.

The following data types are supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
522 System Manual, 11/2019, Online help printout

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Mul" method ((Int64.MulUint64.Mul) (Page 524)

"Item" method (Int64.Item, Uint64.Item) (RT Uni)

Description
Creates 64-bit integer values ("Int64"and "Uint64" objects) and returns these.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object[.Item](value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64".

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "Int64" and "Uint64" objects.

Parameter

value
Type: Variant

New 64-bit integer value as integer string with base 10.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 523

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Mul" method ((Int64.MulUint64.Mul) (RT Uni)

Description
Provides the "Multiplication" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" object is multiplied by the specified value.

This method corresponds to the JavaScript operator "*" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Mul(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Value by which the current value of the object is multiplied.

The following data types are supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
524 System Manual, 11/2019, Online help printout

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Div" method (Int64.DivUint64.Div) (Page 522)

"Or" method (Int64.OrUint64.Or) (RT Uni)

Description
Provides the "OR" bit operation for 64-bit objects. The binary value of the "Int64" or "Uint64"
objects is ANDed with the specified value.

This method corresponds to the JavaScript operator "|" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Or(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Bit sequence of the same length with which the binary value of the object is ORed.

The following data types are supported:

● Bit string

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 525

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Xor" method (Int64.XorUint64.Xor) (Page 529)

"ShiftLeft" method ((Int64.ShiftLeftUint64.ShiftLeft) (RT Uni)

Description
Provides a bit shift "SHL" for 64-bit objects. The binary value of the "Int64" or "Uint64" objects
is shifted by the specified number of places.

This method corresponds to the JavaScript operator "<<" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.ShiftLeft(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: UInt8

Number of digits by which the binary value of the object is shifted to the left.

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
526 System Manual, 11/2019, Online help printout

See also
"Int64Base" object (Page 500)

"ShiftRight" method ((Int64.ShiftRightUint64.ShiftRight) (Page 527)

"ShiftRight" method ((Int64.ShiftRightUint64.ShiftRight) (RT Uni)

Description
Provides the bit shift "SHR" for 64-bit objects. The binary value of the "Int64" or "Uint64" objects
is shifted by the specified number of places.

This method corresponds to the JavaScript operator ">>" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.ShiftRight(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: UInt8

Number of digits by which the binary value of the object is shifted to the right.

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"ShiftLeft" method ((Int64.ShiftLeftUint64.ShiftLeft) (Page 526)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 527

"Sub" method (Int64.SubUint64.Sub) (RT Uni)

Description
Provides the "Subtraction" arithmetic operation for 64-bit objects. The value of the "Int64" or
"Uint64" objects is increased by the specified value.

This method corresponds to the JavaScript operator "-" for other data types.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Sub(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Value that is subtracted from the current value of the object. The following data types are
supported:

● Numerical value

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Add" method (Int64.Add, Uint64.Add) (Page 520)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
528 System Manual, 11/2019, Online help printout

"toString" method (Int64.toStringUint64.toString) (RT Uni)

Description
Converts the value of a 64-bit object into a string. For other data types, you can use the native
JavaScript method "toString" with the same name.

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.toString([base]);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

base
Optional, type: UInt8

Basis on which the 64-bit value of the object is converted into a string. Without parameters, the
basis is set to "10".

Return value
Representation of the numerical value of the type String.

See also
"Int64Base" object (Page 500)

"Xor" method (Int64.XorUint64.Xor) (RT Uni)

Description
Provides the "XOR" bit operation for 64-bit objects. The binary value of the "Int64" or "Uint64"
objects is ANDed with the specified value.

This method corresponds to the JavaScript operator "^" for other data types.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 529

Member
Method of the following objects:

● Int64

● Uint64

Syntax
Object.Xor(value);

Object
Required. An object of the type "HMIInt64" or "HMIUint64."

Parameters

value
Type: Variant, object

Bit sequence of the same length with which the binary value of the object is XORed.

The following data types are supported:

● Bit string

● Reference to object of the type "HMIInt64"

● Reference to object of the type "HMIUint64"

Return value
Object of the type:

● "HMIInt64" when using HMIRuntime.Math.Int64

● "HMIUint64" when using HMIRuntime.Math.Uint64

See also
"Int64Base" object (Page 500)

"Or" method (Int64.OrUint64.Or) (Page 525)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
530 System Manual, 11/2019, Online help printout

Object "DatePrecise" (RT Uni)

"DatePrecise" description (RT Uni)

Description

The "DatePrecise" object ("HMIDatePrecise" type) represents high-resolution time information
with a resolution of 100 ns as a 64-bit integer value.

It contains methods for converting between various time stamp formats. The following
representations are supported:

● Number of milliseconds since 1970-01-01T00:00:00

● "DOMHighResTimeStamp":
Number of milliseconds since 1970-01-01T00:00:00Z and the fraction for microseconds
(resolution is approximately 5 μs).

● "hrtime"
Array of two numbers [secs, nanosecs]

– "secs": Number of seconds since 1970-01-01T00:00:00Z

– "nanosecs": Number of nanoseconds (the resolution is limited to 100 nanoseconds).
This data type is taken from "node.js" (https://nodejs.org/api/
process.html#process_process_hrtime_time).

● "fileTime": Number of 100 nanosecond intervals since 1601-01-01T00:00:00Z
(corresponds to "Win32 "FILETIME").
This is the internal format and therefore the exact representation in terms of accuracy and
value range.

The object is used, for example, to enable commenting of alarms via scripting.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 531

Use

Note

All internal time information is available as "DatePrecise" objects. To use the native JavaScript
functions for handling data objects, you must first convert the "DatePrecise" object to a
JavaScript "Date" object.

Type identifier in JavaScript
HMIDatePrecise

Example
Checks whether the time information is a "DatePrecise" object:

Copy code
function AlarmTriggerFunction(errorCode, SystemName, alarmResultArray) {
 let nanoSeconds;
 //check first if RaiseTime is a DatePrecise object
 if (alarmResultArray[0].RaiseTime instanceof
HMIRuntime.Math.DatePrecise) {
 nanoSeconds = alarmResultArray[0].RaiseTime.GetNanoseconds();
 }
}

Converts a "DatePrecise" object to a JavaScript "Date" object so that the native JavaScript
"getFullYear" function can be used:

Copy code
function AlarmTriggerFunction(errorCode, SystemName, alarmResultArray) {
 //convert to JavaScript-Date object first
 let fullYear = new Date(alarmResultArray[0].RaiseTime).getFullYear();
}

Properties (RT Uni)

Properties
The "DatePrecise" object has the following properties:

Properties Type Access Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
532 System Manual, 11/2019, Online help printout

Methods of "DatePrecise" (RT Uni)

Overview (RT Uni)

Methods
The "DatePrecise" object has the following methods:

Methods Description
GetFiletime Returns the time information as the type "FILETIME".
GetHrTime Returns the time information as high-resolution time (hrtime) as Array in the format

[seconds, nanoseconds].
GetMicrosec‐
onds

Returns the microseconds of time information in the value range of 0 ... 999.

GetNanosec‐
onds

Returns the nanoseconds of time information in the value range of 0 ... 999.

GetTime Returns the time information as the type "DOMHighResTimeStamp".
Item Creates a precise time information as a 64-bit integer value ("DatePrecise" object)

and returns it.
SetFiletime Saves high-resolution time information as the type FILETIME.
SetHrTime Saves high-resolution time information of the type "hrtime".
SetMicrosec‐
onds

Saves the microseconds of high-resolution time information.

SetNanosec‐
onds

Saves the microseconds of high-resolution time information.

SetTime Saves high-resolution time information of the type "DOMHighResTimeStamp".
toString Converts the time information of a "DatePrecise" object into a string.
valueOf Returns the time information saved in a "DatePrecise" object as "DOMHighResTi‐

meStamp".

"GetFiletime" method (DatePrecise.GetFiletime) (RT Uni)

Description
Returns the time information as the type "FILETIME".

The type corresponds to the format of Win32 "FILETIME": Number of 100 nanosecond intervals
since 1601-01-01T00:00:00Z

Member
Method of the "DatePrecise" object.

Syntax
Object.GetFiletime();

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 533

Required: An object of type "HMIDatePrecise".

Parameters
--

Return value
Object of type "HMIInt64"

See also
"SetFiletime" method (DatePrecise.SetFiletime) (Page 538)

"GetHrTime" method (DatePrecise.GetHrTime) (RT Uni)

Description
Returns the time information as high-resolution time (hrtime) as an array in the format [seconds,
nanoseconds].

Example: 2020-10-04 11:30:22.5454118 is returned as [13238335822, 545411800].

Member
Method of the "DatePrecise" object

Syntax
Object.GetHrTime();
Required: An object of type "HMIDatePrecise".

Parameters
--

Return value
hrtime

See also
"SetHrTime" method (DatePrecise.SetHrTime) (Page 539)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
534 System Manual, 11/2019, Online help printout

"GetMicroseconds" method (DatePrecise.GetMicroseconds) (RT Uni)

Description
Returns the microseconds of time information in the value range of 0 ... 999.

Member
Method of the "DatePrecise" object.

Syntax
Object.GetMicroseconds();
Required: An object of type "HMIDatePrecise".

Parameters
--

Return value
UInt16

See also
"SetMicroseconds" method (DatePrecise.SetMicroseconds) (Page 540)

"GetNanoseconds" method (DatePrecise.GetNanoseconds) (RT Uni)

Description
Returns the nanoseconds of time information in the value range of 0 ... 999.

Member
Method of the "DatePrecise" object.

Syntax
Object.GetNanoseconds();
Required: An object of type "HMIDatePrecise".

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 535

Parameters
--

Return value
UInt16

See also
"SetNanoseconds" method (DatePrecise.SetNanoseconds) (Page 540)

"GetTime" method (DatePrecise.GetTime) (RT Uni)

Description
Returns the time information as the type "DOMHighResTimeStamp".

The type corresponds to the following format: Number of milliseconds since
1970-01-01T00:00:00Z and the fraction for microseconds (resolution is approximately 5 μs).

Member
Method of the "DatePrecise" object.

Syntax
Object.GetTime();
Required: An object of type "HMIDatePrecise".

Parameters
--

Return value
DOMHighResTimeStamp

See also
"SetTime" method (DatePrecise.SetTime) (Page 541)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
536 System Manual, 11/2019, Online help printout

"Item" method (DatePrecise.Item) (RT Uni)

Description
Creates a precise time information as a 64-bit integer value ("DatePrecise" object) and returns
this.

Member
Method of the "DatePrecise" object

Syntax
Object[.Item]
([year,month,day,hours,seconds,milliseconds,microseconds,nanoseconds
]);

Object
Required: An object of type "HMIDatePrecise".

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "DatePrecise" object.

Parameters

year
Type: Variant, optional

Full year of the time information. The year can be specified as follows:

● Object of type "DatePrecise"

● JavaScript object of type "Date"

● Time stamp of type "DOMHighResTimeStamp"

● Time stamp of type "hrtime"

● Number of milliseconds

month
Optional, type: UInt8

Number that represents a month. (0 = January … 11 = December)

day
Optional, type: UInt8

Number that represents a day (1 ... 31)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 537

hours
Optional, type: UInt8

Number that represents an hour (0 ... 23)

minutes
Optional, type: UInt8

Number that represents a minute (0 ... 59)

seconds
Optional, type: UInt8

Number that represents a second (0 ... 59)

milliseconds
Optional, type: UInt16

Number that represents a millisecond (0 ... 999)

microseconds
Optional, type: UInt16

Number that represents a microsecond (0 ... 999)

nanoseconds
Optional, type: UInt16

Number that represents a nanosecond (0 ... 999)

Return value
Object of type "HMIDatePrecise"

See also
"Math" area (Page 494)

"SetFiletime" method (DatePrecise.SetFiletime) (RT Uni)

Description
Saves high-resolution time information as the type FILETIME.

Member
Method of the "DatePrecise" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
538 System Manual, 11/2019, Online help printout

Syntax
Object.SetFiletime([fileTime]);
Required: An object of type "HMIUint64".

Parameters

fileTime
Optional, type: "HMIUint64" object

Time information in the format of Win32 "FILETIME": Number of 100 nanosecond intervals
since 1601-01-01T00:00:00Z

Return value
--

See also
"GetFiletime" method (DatePrecise.GetFiletime) (Page 533)

"SetHrTime" method (DatePrecise.SetHrTime) (RT Uni)

Description
Saves high-resolution time information of the type "hrtime".

Member
Method of the "DatePrecise" object.

Syntax
Object.SetHrTime(hrtime);
Required: An object of type "HMIDatePrecise".

Parameters

hrtime
Type: Float[]

Time information of type "hrtime" as an array in format [seconds, nanoseconds]: for example,
2020-10-04 11:30:22.5454118 as [13238335822, 545411800]. The type is also returned by the
"GetHrTime" method.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 539

Return value
--

See also
"GetHrTime" method (DatePrecise.GetHrTime) (Page 534)

"SetMicroseconds" method (DatePrecise.SetMicroseconds) (RT Uni)

Description
Saves the microseconds of high-resolution time information.

Member
Method of the "DatePrecise" object.

Syntax
Object.SetMicroseconds(microSeconds);
Required: An object of type "HMIDatePrecise".

Parameters

microSeconds
Type: UInt16

Microseconds of time information in the value range of 0 ... 999

Return value
--

See also
"GetMicroseconds" method (DatePrecise.GetMicroseconds) (Page 535)

"SetNanoseconds" method (DatePrecise.SetNanoseconds) (RT Uni)

Description
Saves the microseconds of high-resolution time information.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
540 System Manual, 11/2019, Online help printout

Member
Method of the "DatePrecise" object.

Syntax
Object.SetNanoseconds(nanoSeconds);
Required: An object of type "HMIDatePrecise".

Parameters

nanoSeconds
Type: UInt16

Nanoseconds of time information in the value range of 0 ... 999

Return value
--

See also
"GetNanoseconds" method (DatePrecise.GetNanoseconds) (Page 535)

"SetTime" method (DatePrecise.SetTime) (RT Uni)

Description
Saves high-resolution time information of the type "DOMHighResTimeStamp".

The type corresponds to the following format: Number of milliseconds since
1970-01-01T00:00:00Z and the fraction for microseconds (resolution is approximately 5 μs).

Member
Method of the "DatePrecise" object.

Syntax
Object.SetTime(time);
Required: An object of type "HMIDatePrecise".

Parameters

time
Type: Float

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 541

Time information of type "DOMHighResTimeStamp": Number of milliseconds since
1970-01-01T00:00:00Z and the fraction for microseconds (resolution is approximately 5 μs).
The type is also returned by the "GetTime" method.

Return value
--

See also
"GetTime" method (DatePrecise.GetTime) (Page 536)

""toString" method (DatePrecise.toString) (RT Uni)

Description
Converts the time information of a "DatePrecise" object into a string.

The fixed format of the character string is "yyyy-mm-dd hh:mm:ss.HundredNanoSeconds", for
example, "2020-07-04 11:30:22.5454118".

Member
Method of the "DatePrecise" object

Syntax
Object.toString();
Required: An object of type "HMIDatePrecise".

Parameters
--

Return value
String

""valueOf" method (DatePrecise.valueOf) (RT Uni)

Description
Returns the time information saved in a "DatePrecise" object as "DOMHighResTimeStamp".

The value can represent either a specific point in time (in milliseconds since 01/01/1970) or the
difference between two points in time.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
542 System Manual, 11/2019, Online help printout

The value is specified in the unit milliseconds. The accuracy is up to 5 μs.

Member
Method of the "DatePrecise" object

Syntax
Object.valueOf();
Required. An object of type "HMIDatePrecise".

Parameters
--

Return value
DOMHighResTimeStamp

7.8.1.8 "ParameterSetTypes" area (RT Uni)

"ParameterSetTypes" object (RT Uni)

"ParameterSetTypes" object (RT Uni)

Description
Represents a list of "Parameter data set types".

Type identifier in JavaScript
HMIParameterSetTypes

Properties (RT Uni)

Properties
The "Template" object has the following properties.

Properties Type Access Description
- - - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 543

Overview (RT Uni)

Methods
The "ParameterSetType" object has the following methods:

Methods Description
Item(ParameterSet‐
Types.Item)

Returns an object of the type "ParameterSetType".

Methods of "ParameterSetTypes" (RT Uni)

"Item" method (ParameterSetTypes.Item) (RT Uni)

Description
Returns an object of the type "ParameterSetType".

Member
Method of the "ParameterSetTypes" object

Syntax
HMIRuntime.ParameterSetTypes.Item(parameterSetId);

Parameter

parameterSetTypeId
Type: String

Specifies the name or the ID of the parameter set type. If the name or ID of the parameter set
type does not exist, execution is terminated.

Return value
Object of the type "HMIParameterSetType"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
544 System Manual, 11/2019, Online help printout

"ParameterSetType" object (RT Uni)

"ParameterSetType" object (RT Uni)

Description
Represents the "Parameter set type" object.

Type identifier in JavaScript
HMIParameterSetType

Properties (RT Uni)

Properties
The "ParameterSetType" object has the following properties:

Properties Type Access Description
ParameterSets HMIParameter‐

Sets
read
only

Returns the "ParameterSets" list.

Overview (RT Uni)

Methods
The "ParameterSetType" object has the following methods:

Methods Description
- -

"ParameterSets" object (RT Uni)

"ParameterSets" object (RT Uni)

Description
Represents the list of "Parameter sets".

Type identifier in JavaScript
HMIParameterSets

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 545

Properties (RT Uni)

Properties
The "ParameterSet" object has the following properties:

Properties Type Access Description
- - - -

Overview (RT Uni)

Methods
The "ParameterSet" object has the following methods:

Methods Description
Item Returns an object of the type "ParameterSet".

Methods of "ParameterSets" (RT Uni)

"Item" method (ParameterSets.Item) (RT Uni)

Description
Returns an object of the type "ParameterSet".

Member
Method of the "ParameterSets" object

Syntax
HMIRuntime.ParameterSets.Item(parameterSetId);

Parameter

parameterSetId
Type: String

Specifies the name or the ID of the parameter set. If the name or ID of the parameter set does
not exist, execution is terminated.

Return value
Object of the type "HMIParameterSet"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
546 System Manual, 11/2019, Online help printout

"ParameterSet" object (RT Uni)

"ParameterSet" object (RT Uni)

Description
Represents the "Parameter set" object.

Type identifier in JavaScript
HMIParameterSet

Properties (RT Uni)

Properties
The "ParameterSet" object has the following properties:

Properties Type Access Description
- - - -

Overview (RT Uni)

Methods
The "ParameterSet" object has the following methods:

Methods Description
LoadAndWrite Loads the parameter set values from the memory and writes them to the

PLC.
ReadAndSave Reads a parameter set from the PLC and writes the parameter set to the

local memory.

Methods of "ParameterSet" (RT Uni)

"LoadAndWrite" method (ParameterSet.LoadAndWrite) (RT Uni)

Description
Loads the parameter set values from the memory and writes them to the PLC.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 547

Member
Method of the "ParameterSet" object

Syntax
HMIRuntime.ParameterSet.LoadAndWrite(parameterSetTypeID,
parameterSetID, outputStatus,processingStatus);

Parameter

parameterSetTypeID
Type: STRING

Specifies the name or the ID of the parameter set type. If the name or ID of the parameter set
type does not exist, execution is terminated.

parameterSetID
Type: STRING

Specifies the name or the ID of the parameter set. If the name or ID of the parameter set does
not exist, execution is terminated.

outputStatus
Type: BOOL

TRUE, if completion of the write operation is confirmed with a message.

processingStatus
Type: Variant

Indicates the execution status of a function:

● 2 = Function is being executed.

● 4 = Function successfully executed.

● 12 - Function was cancelled.

Return value
ErrorCode

"ReadAndSave" method (ParameterSet.ReadAndSave) (RT Uni)

Description
Reads a parameter set from the PLC and writes the parameter set to the local memory.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
548 System Manual, 11/2019, Online help printout

Member
Method of the "ParameterSet" object

Syntax
HMIRuntime.ParameterSet.ReadAndSave(parameterSetTypeID,
parameterSetID, overWrite,outputStatus,processingStatus);

Parameter

parameterSetTypeID
Type: STRING

Specifies the name or the ID of the parameter set type. If the name or ID of the parameter set
type does not exist, execution is terminated.

parameterSetID
Type: STRING

Specifies the name or the ID of the parameter set. If the name or ID of the parameter set does
not exist, execution is terminated.

overWrite
Type: hmiOverwrite

Specifies whether the values in the memory are overwritten with the values from the import file:

● 0 = Overwriting is not allowed.

● 1 = Overwriting is allowed.

The following cases are differentiated:

● If the name / ID of the specified parameter set exists, the values in the PLC are overwritten
with the parameter set values in the memory if overwriting is allowed.

● If overwriting is not allowed, the data in the memory is not replaced. The process tag is
updated to the state of the system function, if configured accordingly.

outputStatus
Type: BOOL

TRUE, if the conclusion of the read operation is confirmed with a message.

processingStatus
Type: Variant

Indicates the execution status of a function:

● 2 = Function is being executed.

● 4 = Function successfully executed.

● 12 - Function was cancelled.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 549

Return value
ErrorCode

7.8.1.9 "PlantModel" area (RT Uni)

"PlantModel" object (RT Uni)

"PlantModel" description (RT Uni)

Description

The "PlantModel" object ("HMIPlantModel" type) represents the common plant model of the
graphical runtime system. You reference all object instances ("PlantObject" objects) and
properties of the common plant model by means of the "PlantModel" object.

Note

The common plant model can map a plant hierarchy in runtime. Each hierarchy consists of
object instances which represent a component or a function part of the plant.

Each object instance is assigned to a hierarchy node of a plant hierarchy. Through this
assignment the object instance has a unique position and address in a hierarchy.

The address in the hierarchy is represented with a path. This hierarchy path is used to reference
specific objects in the properties and methods of the common plant model.

Use
You reference the instanced objects of the common plant model by means of the "PlantModel"
object. These object instances represent specific components or parts of the plant. This means
that you have access to all the properties and methods of these objects.

Type identifier in JavaScript
HMIPlantModel

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
550 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "PlantModel" object has the following properties:

Properties Type Access Description
-

Methods of "PlantModel" (RT Uni)

Overview (RT Uni)

Methods
The "PlantModel" object has the following methods:

Methods Description
GetPlantObject Returns an object instance.
GetPlantObjectByPath
GetPlantObjectsByEx‐
pression

Returns an array of object instances.

GetPlantObjectsByProper‐
tyNames
GetPlantObjectsByType

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 551

"PlantObject" object (RT Uni)

"PlantObject" description (RT Uni)

Description

The "PlantObject" object ("HMIPlantObject" type) represents the object instances of the
common plant model.

Note

The common plant model can map any number of plant hierarchies in runtime. Each hierarchy
consists of object instances which represent a component or a function part of the plant.

Each object instance is assigned to a hierarchy node in a plant hierarchy. Through this
assignment the object instance has a unique position and address in a hierarchy.

The address in the hierarchy is represented with a path. This hierarchy path is used to reference
specific objects in the properties and methods of the common plant model.

Use
The "PlantObject" object gives you access to all object properties or adjacent object instances
in the plant hierarchy.

Type identifier in JavaScript
HMIPlantObject

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
552 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "PlantObject" object has the following properties:

Properties Type Access Description
Children Object read

only
Returns all child object instances of an object in‐
stance in the hierarchy.

CurrentPlantView String read/
write

Specifies the view that is displayed in the "PlantMo‐
del View".

Name String read
only

Returns the name of the object or specifies it.

Parent Object read
only

Returns the higher-level object instance (parent),
which contains the current object instance as child.

PlantViewPaths StringStringMap read
only

Returns the currently displayed path of a view.

Methods of "PlantObject" (RT Uni)

Overview (RT Uni)

Description
The "PlantObject" object has the following methods:

Methods Description
GetChild Returns the child object instance ("CPMNode" object) of an object in‐

stance of the common plant model.
GetProperties Returns the properties of object instances ("CPMNode" objects) of the

common plant model as "CPMNodePropertySet" list.

"GetChild" method (CPMNode.GetChild) (RT Uni)

Description
The "GetChild" method returns the child object instance ("CPMNode" object) of an object
instance of the common plant model.

Member
Method of the "CPMNode" object

Syntax
Object.GetChild(ChildName);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 553

Object
Required. An object of the "HMICPMNode" type

Parameters

ChildNames
Type: String

Name of the object instance in the hierarchy

Return
Object of the "HMICPMNode" type

Example
Return the child of the "cpmNode1" object instance with the name "TemperatureSensor":

var cpmChildNode = cpmNode1.GetChild('TemperatureSensor');

"GetProperties" method (CPMNode.GetProperties) (RT Uni)

Description
The "GetProperties" method returns the properties of object instances ("CPMNode" objects) of
the common plant model as CPMNodePropertySet list.

Member
Method of the "CPMNode" object

Syntax
Object.GetProperties([PropertyNames]);

Object
Required. An object of type "HMICPMNode"

Parameters

PropertyNames
Optional, type: String, String[]

One or more properties of an object instance

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
554 System Manual, 11/2019, Online help printout

Return
Array with objects of type "HMICPMNode"

Example
Return all properties of the "cpmNode" object instance as "cpmPropertySet" list:

var cpmPropertySet = cpmNode.GetProperties();

or only return the properties "Speed" and "Temperature" as list:

var cpmPropertySet = cpmNode.GetProperties(['Speed', 'Temperature']);

Output the name of all properties of the "cpmNode" object instance:

Copy code
var cpmPropertySet = cpmNode.GetProperties();

for (let i in cpmPropertySet)
{
 var cpmProperty = cpmPropertySet[i];
 HMIRuntime.Trace(cpmProperty.Name);
}

"PlantObjectProperty" object (RT Uni)

"PlantObjectProperty" description (RT Uni)

Description

The "PlantObjectProperty" object ("PlantObjectProperty" type) represents the property of an
object instance ("PlantObject" object) of the common plant model.

A "PlantObjectProperty" object is returned by the "PlantObjectPropertySet" list or the
PlantObject.GetProperties method.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 555

Use
The "PlantObjectProperty" object gives you read and write access to the properties of an object
instance.

Type identifier in JavaScript
HMIPlantObjectProperty

Properties (RT Uni)

Properties
The "PlantObejctProperty" object has the following properties:

Properties Type Access Description
LastError Error‐

Code
read on‐
ly

Returns an error code for the last faulty read or write opera‐
tion.

Name String read on‐
ly

Returns the name of the object or specifies it.

QualityCode
(Page 556)

UInt32 read on‐
ly

Returns the quality level of a tag value after reading a tag.

TimeStamp Date‐
Time

read on‐
ly

Returns the time stamp of the last read operation.
The value 0 is returned after writing or failed reading.

Value Variant read/
write

Specifies a value for the object being used or returns it.

See also
"QualityCode" property (Page 556)

Special properties (RT Uni)

"QualityCode" property (RT Uni)

Description
Returns the quality level of a tag value after reading a tag.

The quality code has the binary 8-bit structure QQSSSLL. The first two positions (QQ) of the
quality code define the quality of the tag value:

Quality Description Q Q S S S S L L
Bad Tag value cannot be used. 0 0 - - - - - -
Uncertain Quality of the tag value is worse than usual. However, it

might still be possible to use the tag value.
0 1 - - - - - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
556 System Manual, 11/2019, Online help printout

Quality Description Q Q S S S S L L
Good (Non-Cas‐
cade)

Quality of the tag value is good. Attention should be paid
to substatus.

1 0 - - - - - -

Good (Cascade) Quality of the tag value is good. Tag value could be used. 1 1 - - - - - -

Positions 3 to 6 (SSSS) of the quality code specify the substatus of the quality. Positions 7 and
8 (LL) are optional and define possible limits.

Syntax
Object.QualityCode

Object
Required. An object from the "Availability" section.

Quality code of tags
The realized quality codes are listed in the following table. The table begins with the worst
quality code and ends with the best quality code. The best quality code has the lowest priority,
while the worst quality has the highest priority. If several statuses occur simultaneously for a tag
in the processing chain, the poorest code is passed on.

Code
(hex)

Quality Description Q Q S S S S L L

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3F Bad Function check - Local override 0 0 1 1 1 1 1 1
0x1C Bad Out of Service - The value is not reliable be‐

cause the block is not being evaluated, and
may be under construction by a configurer.
Set if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good (Non-Cas‐

cade)
Active Update event - Set if the value is good
and the block has an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics availa‐
ble.

0 0 1 0 0 1 - -

0x18 Bad No Communication, with no usable value - Set
if there has never been any communication
with this value since it was last "Out of Serv‐
ice".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value -
Set if this value had been set by communica‐
tion, which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value
is affected by a device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to

be connected and is not connected.
0 0 0 0 1 0 - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 557

Code
(hex)

Quality Description Q Q S S S S L L

0x04 Bad Configuration Error - Set if the value is not
useful because there is some inconsistency
regarding the parameterization or configura‐
tion, depending on what a specific manufac‐
turer can detect.

0 0 0 0 0 1 - -

0x00 Bad Non-specific - There is no specific reason why
the value is bad. Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value

is written by the operator while the block is in
manual mode.

0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the

value lies outside of the set of values defined
for this parameter. The Limits define which di‐
rection has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters dur‐

ing and after reset of the device or of a param‐
eter.

0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used in‐
stead of the calculated one. This is used for fail
safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this
value has stopped doing so. This is used for
fail safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why
the value is uncertain.

0 1 0 0 0 0 - -

0xE0 Good (Cascade) Initiate Fail Safe (IFS) - The value is from a
block that wants its downstream output block
(e.g. AO) to go to Fail Safe.

1 1 1 0 0 0 - -

0xD8 Good (Cascade) Local Override (LO) - The value is from a block
that has been locked out by a local key switch
or is a Complex AO/DO with interlock logic ac‐
tive. The failure of normal control must be
propagated to a function running in a host sys‐
tem for alarm and display purposes. This also
implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good (Cascade) Do Not Select (DNS) - The value is from a
block which should not be selected, due to
conditions in or above the block.

1 1 0 1 0 1 - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
558 System Manual, 11/2019, Online help printout

Code
(hex)

Quality Description Q Q S S S S L L

0xCC Good (Cascade) Not Invited (NI) - The value is from a block
which does not have a target mode that would
use this input.

1 1 0 0 1 1 - -

0xC8 Good (Cascade) Initialization Request (IR) - The value is an in‐
itialization value for a source (back calculation
input parameter), because the lower loop is
broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good (Cascade) Initialization Acknowledge (IA) - The value is
an initialized value from a source (cascade in‐
put, remote-cascade in, and remote-output in
parameters).

1 1 0 0 0 1 - -

0xC0 Good (Cascade) OK - No error or special condition is associ‐
ated with this value.

1 1 0 0 0 0 - -

0xA0 Good (Non-Cas‐
cade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good (Non-Cas‐
cade)

Unacknowledged Critical Alarm - Set if the val‐
ue is good and the block has an unacknowl‐
edged Alarm with a priority greater than or
equal to 8.

1 0 0 1 1 0 - -

0x94 Good (Non-Cas‐
cade)

Unacknowledged Advisory Alarm - Set if the
value is good and the block has an unacknowl‐
edged Alarm with a priority less than 8.

1 0 0 1 0 1 - -

0x90 Good (Non-Cas‐
cade)

Unacknowledged Update event - Set if the val‐
ue is good and the block has an unacknowl‐
edged Update event.

1 0 0 1 0 0 - -

0x8C Good (Non-Cas‐
cade)

Active Critical Alarm - Set if the value is good
and the block has an active Alarm with a pri‐
ority greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good (Non-Cas‐
cade)

Active Advisory Alarm - Set if the value is good
and the block has an active Alarm with a pri‐
ority less than 8.

1 0 0 0 1 0 - -

0xA8 Good (Non-Cas‐
cade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good (Non-Cas‐
cade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good (Non-Cas‐
cade)

Function check - Local override 1 0 1 1 1 1 - -

0x80 Good (Non-Cas‐
cade)

OK - No error or special condition is associ‐
ated with this value.

1 0 0 0 0 0 - -

Limit
The quality codes can be further subdivided by limits. Limits are optional.

Description Q Q S S S S L L
O.K. - The value is free to move. - - - - - - 0 0
Low limited - The value has acceded its low limits. - - - - - - 0 1

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 559

Description Q Q S S S S L L
High limited - The value has acceded its high limits. - - - - - - 1 0
Constant (high and low limited) - The value cannot move, no matter what the
process does.

- - - - - - 1 1

See also
Properties (Page 556)

Overview (Page 673)

Methods of "PlantObjectProberty" (RT Uni)

Overview (RT Uni)

Methods
The "PlantObjectProperty" object has the following methods:

Methods Description
Read Reads out a property ("CPMNodeProperty" object) of an object in‐

stance of the common plant model.
Write Writes the value of the property ("CPMNodeProperty" object) of an

object instance of the common plant model.

"Read" method (CPMNodeProperty.Read) (RT Uni)

Description
The "Read" method reads a property ("CPMNodeProperty" object) of an object instance of the
common plant model. The value, the Quality Code and the time stamp of the property are
determined when the property is read.

The method executes a synchronous read operation. When completed, you can use the
"LastError" property of the "CPMNodeProperty" object to determine if the execution was
successful. If you need the result of the write operation without blocking the script execution,
use the "ReadAsync" method of the "CPMNodePropertySet"object.

Member
Method of the "CPMNodeProperty" object

Syntax
Object.Read();

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
560 System Manual, 11/2019, Online help printout

Object
Required. An object of the "HMICPMNodeProperty" type

Parameters

--

Return
Variant

Example
Reads the value of the "PPP" property of an object instance:

var value = cpmNode.Properties.Item('PPP').Read();

"Write" method (CPMNodeProperty.Read) (RT Uni)

Description
The "Write" method writes the value of the property ("CPMNodeProperty" object) of an object
instance of the common plant model. You must first set the values of the "CPMNodeProperty"
objects with the "Value" property. The value of the "Value" property must not correspond to the
actual value of the "CPMNodeProperty" object once the write operation is complete. If you want
to update the "CPMNodeProperty" objects, perform a Read method.

The method executes an asynchronous write operation. The "LastError" property is written
after the write operation has been completed. This enables you to determine if the execution
was successful. If you need the result of the write operation without blocking the script
execution, use the "WriteAsync" method of the "CPMNodePropertySet" object.

The properties "QualityCode" and "TimeStamp" of the "CPMNodeProperty" object are not
determined during writing.

Member
Method of the "CPMNodeProperty" object

Syntax
Object.Write([value]);

Object
Required. An object of the "HMICPMNodeProperty" type

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 561

Parameters

value
Optional, type: Variant

Writes the value of the property of an object instance:

● Specify value
The specified value overwrites the current value of the "Value" property of the
"CPMNodeProperty" object.

● Without value
The current value of the "Value" property of the "CPMNodeProperty" object is written.

Return
--

Example
Writes a new value of the "PPP" property of an object instance:

Copy code
cpmNode.Properties.Item('PPP').Write(3000);

"PlantObjectPropertySet" object (RT Uni)

"PlantObjectPropertySet" description (RT Uni)

Description

The "PlantObjectPropertySet" object ("PlantObjectPropertySet" type) is a list of
"PlantObjectProperty" objects that give you optimized access to the properties of the object
instances of the common plant model.

After initialization of the "PlantObjectPropertySet" object, you can read and write multiple
properties in a single call. Simultaneous access has better performance and a lower
communication load than single access to multiple properties.

You reference a "PlantObjectPropertySet" object via the "PlantObject" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
562 System Manual, 11/2019, Online help printout

Use
The "CPMNodePropertySet" object gives you access to all properties or a subset of properties
of an object instance.

The "CPMNodePropertySet" object is a list and can be counted and enumerated. You can
access the "CPMNodePropertySet" list through the index or the "item" method.

Type identifier in JavaScript
HMIPlantObjectPropertySet

Properties (RT Uni)

Properties
The "PlantObjectPropertySet" object has the following properties:

Properties Type Access Description
Count UInt32 read on‐

ly
Returns the number of elements in the specified list.

Methods of "PlantObjectPropertySet" (RT Uni)

Overview (RT Uni)

Methods
The "PlantObjectPropertySet" object has the following methods:

Methods Description
Add Adds one or more properties ("CPMNodeProperty" objects) to an existing "CPMNo‐

dePropertySet" list. The properties are referenced by the name.
Item Returns a property ("CPMNodeProperty" object) of an object instance from the

"CPMNodePropertySet" list.
Read Reads in all properties ("CPMNodeProperty" objects) of the "CPMNodePropertySet"

list.
ReadAsync Reads in all properties ("CPMNodeProperty" objects) of the "CPMNodePropertySet"

list.
Remove Removes one or more properties ("CPMNodeProperty" objects) from an existing

"CPMNodePropertySet" list.
Write Writes the values of all "CPMNodeProperty" objects of the "CPMNodePropertySet"

list.
WriteAsync Writes the values of all "CPMNodeProperty" objects of the "CPMNodePropertySet"

list.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 563

"Add" method (CPMNodePropertySet.Add) (RT Uni)

Description
The "Add" method adds one or more properties ("CPMNodeProperty" objects) to an existing
"CPMNodePropertySet" list. The properties are referenced by the name.

Member
Method of the "CPMNodePropertySet" object

Syntax
Object.Add(name);
Object

Required. An object of type "HMICPMNodePropertySet"

Parameters

name
Type: String or String[]

Name of "CPMNodeProperty" objects that are added to the list.

The following data types are supported:

● Name of a CPM object property

● Array with names of CPM object properties

Return
Array with objects of type"CPMNodeProperty" that were newly added with the method.

Example
The properties "Temp3", "Temp4", "Temp5" are added to an existing "CPMNodePropertySet"
object:

var nodePropertySet = cpmNode.GetProperties(['Temp','Temp2']);
var addedProperties_1 = nodePropertySet.Add(['Temp3','Temp4']);
var addedProperties_2 = nodePropertySet.Add('Temp5');

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
564 System Manual, 11/2019, Online help printout

"Item" method (CPMNodePropertySet.Item) (RT Uni)

Description
The "Item" method returns a property ("CPMNodeProperty" object) of an object instance from
the "CPMNodePropertySet" list.

Member
Method of the "CPMNodePropertySet" object

Syntax
Object.CPMNodePropertySet[.Item](name);

Object
Required. An object of the "HMICPMNodePropertySet" type

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "CPMNodePropertySet" object.

Parameters

name
Type: String, Int32

Name or index number (0…n) of a property of the "CPMNodePropertySet" list.

Note

The index number of a "CPMNodeProperty" object does not represent the order in which the
"CPMNodeProperty" objects were added to the CPMNodePropertySet list.

Return
Object of the "HMICPMNodeProperty" type

Example
Read the value of the "PPP" property of the "cpmNode" object instance:

var value = cpmNode.Properties.Item('PPP').Read();

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 565

or more simply as standard method:

var value = cpmNode.Properties('PPP').Read();

"Read" method (CPMNodeProperty.Read) (RT Uni)

Description
The "Read" method reads in all properties ("CPMNodeProperty" objects) of the
"CPMNodePropertySet" list. The value, the Quality Code and the time stamp of all properties
are determined when the properties are read.

The method executes a synchronous read operation. When completed, you can use the
"LastError" property of the "CPMNodeProperty" object to determine if the execution was
successful. If you need the values of the write operation without blocking the script execution,
use the "ReadAsync" method.

Member
Method of the "CPMNodePropertySet" object

Syntax
Object.Read();

Object
Required. An object of the "HMICPMNodePropertySet" type

Parameters

--

Return
--

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
566 System Manual, 11/2019, Online help printout

Example
A "CPMNodePropertySet" object is created and the properties are read and output:

Copy code
var cpmPropertySet = cpmNode.GetProperties();

cpmPropertySet.Read();

for (let i in cpmPropertySet)
{
 var cpmProperty = cpmPropertySet[i];
 HMIRuntime.Trace(cpmProperty.Name + '=' + cpmProperty.Value);
}

"ReadAsync" method (CPMNodePropertySet.ReadAsync) (RT Uni)

Description
The "ReadAsync" method reads in all properties ("CPMNodeProperty" objects) of the
"CPMNodePropertySet" list. The value, the Quality Code and the time stamp of all properties
are determined when the properties are read.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"CPMNodePropertySet" object or the error code as parameter. Execution only fails (Promise
rejected) when no "CPMNodeProperty" object of the "CPMNodePropertySet" object could be
read.

Member
Method of the "CPMNodePropertySet" object

Syntax
HMIRuntime.CPM.CPMNode.CPMNodePropertySet.ReadAsync()
.then(function(HMICPMNodePropertySet) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 567

Parameters

--

Return
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMICPMNodePropertySet" as parameter of the "then()" handler.

● Promise rejected
Error code as parameter of the "catch()" handler. This status only exists if no
"HMICPMNodeProperty" object of the list could be read.

Example
A "CPMNodePropertySet" object is read in via an asynchronous call. Once all properties have
been read out, they are output with names and values:

Copy code
var cpmPropertySet = cpmNode.GetProperties();

cpmPropertySet.ReadAsync();

.then(function (propertySet) { // async execution when values have been read
 for (let i in cpmPropertySet)
 {
 var cpmProperty = propertySet[i];
 HMIRuntime.Trace(cpmProperty.Name + '=' + cpmProperty.Value);
 }
})

.catch (function (err) {
 HMIRuntime.Trace("\nReading PropertySet failed\n");
});

"Remove" method (CPMNodePropertySet.Remove) (RT Uni)

Description
The "Remove" method removes one or more properties ("CPMNodeProperty" objects) from an
existing "CPMNodePropertySet" list. The properties are referenced by the name.

Member
Method of the "CPMNodePropertySet" object

Syntax
Object.Remove(name);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
568 System Manual, 11/2019, Online help printout

Object

Required. An object of type "HMICPMNodePropertySet"

Parameters

name
Type: String or String[]

Name of "CPMNodeProperty" objects that are removed from the list.

The following data types are supported:

● Name of a CPM object property

● Array with names of CPM object properties

Return
--

Example
The property "Temp2" is removed in an existing "CPMNodePropertySet" object:

var nodePropertySet = cpmNode.GetProperties(['Temp','Temp2']);
nodePropertySet.Remove('Temp2');

"Write" method (CPMNodePropertySet.Write) (RT Uni)

Description
The "Write" method writes the values of all "CPMNodeProperty" objects of the
"CPMNodePropertySet" list. You must first set the values of the "CPMNodeProperty" objects
with the "Value" property. The value of the "Value" property must not correspond to the actual
value of the "CPMNodeProperty" object once the write operation is complete. If you want to
update the "CPMNodeProperty" objects, perform a Read method.

The method executes an asynchronous write operation. The "LastError" property is written
after the write operation for each "CPMNodeProperty" property has been completed. This
enables you to determine if the execution was successful. If you need the result of the write
operation without blocking the script execution, use the "WriteAsync" method.

The properties "QualityCode" and "TimeStamp" of the "CPMNodeProperty" objects are not
determined during writing.

Member
Method of the "CPMNodePropertySet" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 569

Syntax
Object.Write();

Object
Required. An object of the "HMICPMNodePropertySet" type

Parameters

--

Return
--

Example
A "HMICPMNodePropertySet" object with two properties is generated. The values of properties
are set and the "HMICPMNodePropertySet" object are written back:

Copy code
var cpmPropertySet = cpmNode.GetProperties(['Speed', 'Temperature']);

for (let i in cpmPropertySet)
{
 cpmPropertySet[i].Value = 4999;
}

cpmPropertySet.Write();

"WriteAsync" method (CPMNodePropertySet.WriteAsync) (RT Uni)

Description
The "WriteAsync" method writes the values of all "CPMNodeProperty" objects of the
"CPMNodePropertySet" list. You must first set the values of the individual properties of the
object instance with the "Value" property. The value of the "Value" property does not have to
correspond to the actual current value of the "CPMNodeProperty" objects after completion of
the write operation. If you want to update the "CPMNodeProperty" objects, execute a Read
method.

The "LastError" property is written for each "CPMNodeProperty" object after completion of the
write operation. This enables you to determine if the execution was successful.

The properties "QualityCode" and "TimeStamp" of the "CPMNodeProperty" objects are not
determined during writing.

The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
570 System Manual, 11/2019, Online help printout

"CPMNodePropertySet" object or the error code as parameter. Execution only fails (Promise
rejected) when no "CPMNodeProperty" object of the "CPMNodePropertySet" object could be
written.

Member
Method of the "CPMNodePropertySet" object

Syntax
HMIRuntime.CPM.CPMNode.CPMNodePropertySet.WriteAsync()
.then(function(HMICPMNodePropertySet) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

--

Return
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMICPMNodePropertySet" as parameter of the "then()" handler.

● Promise rejected
Error code as parameter of the "catch()" handler. This status only exists if no
"CPMNodeProperty" object of the list could be written.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 571

Example
A "CPMNodePropertySet" object is generated. All properties are read, the values are changed
and the "CPMNodePropertySet" object is written back asynchronously:

Copy code
var cpmPropertySet = cpmNode.GetProperties();

for (let i in cpmPropertySet)
{
 cpmPropertySet[i].Value = 4999;
}
cpmPropertySet.WriteAsync();

.then(function (propertySet) {
 HMIRuntime.Trace("\nPropertySet written\n");
})

.catch (function (err) {
 HMIRuntime.Trace("\nPropertySet not written\n");
});

7.8.1.10 "ScreenInterface" object (RT Uni)

"ScreenInterface" description (RT Uni)

Description
The "ScreenInterface" object enables access to screens and screen windows in runtime.

Type identifier in JavaScript
HMIScreenInterface

Properties (RT Uni)

Properties
The "ScreenInterface" object has the following properties:

Properties Type Access Description
CurrentWindow Object read on‐

ly
Returns the screen window which contains the current
screen.

Items Object read on‐
ly

Returns a list of all screen objects of the current screen.

Parent Object read on‐
ly

Returns the higher-level object instance (parent), which con‐
tains the current object instance as child.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
572 System Manual, 11/2019, Online help printout

Properties Type Access Description
ParentScreen Object read on‐

ly
Returns the higher-level screen that contains the screen win‐
dow of the current screen.

Windows Object read on‐
ly

Returns the "Windows" object with the list of the screen win‐
dows.

Methods of "ScreenInterface" (RT Uni)

Overview (RT Uni)

Methods
The "ScreenInterface" object has the following methods:

Methods Description
FindItem Searches for and references screen windows or screen objects

through their object path.

"FindItem" method (UI.FindItem, ScreenInterface.FindItem) (RT Uni)

Description
Searches for and references screen windows or screen objects through their object path.

Member
Method of the following objects:

● UI

● ScreenInterface

Syntax
Object.FindItem(ScreenItemPath);

Parameter

ScreenItemPath
Type: String

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 573

Object path of the searched screen window or screen object.

Note

The "UI.FindItem" method has a global search context and requires absolute object paths. The
"Screen.FindItem" method has the current screen as the search context and can also use
relative object paths.

Formulation of the object path
The syntax of the object path orients itself to the notation of tile system paths. The object path
consists of the names of the screen windows (Screen Windows) and screen objects (Screen
Items). The names are connected via a slash ("/") according to the hierarchical positioning.
Screens (Screens) and their names are not used in the formulation.

Relative and absolute objects paths are distinguished by the prefix of the object path. The
following prefixes can be used:

● Relative object path

– "..": References the higher level screen window (parent) in the context of the current
screen window.

– ".": References the own screen window (self).

– "": A screen object of the current screen window is referenced without prefix.

● Absolute object path

– "/": References a screen window on the highest level, whose name must follow.

– "~": References the screen window on the highest level in the own screen hierarchy.

Further rules for formulating an object path:

● The string ".." may be used several times in the object path, but only together at the
beginning of the object path, for example, "../../Window5".

● If the object path does not end with a screen object name, a screen window is referenced.

● An automatic search is performed for screen objects of the object path in the screens of the
referenced screen window. It is not permitted to specify a screen name.

Examples of object paths
The following window / screen object hierarchy is adopted for the following examples:

Current script context/screen window of the current screen

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
574 System Manual, 11/2019, Online help printout

The following objects paths for addressing the object result from this:

Object path Referenced object
ItemX "ItemX" screen object
. "Window1" screen window
./ItemX "ItemX" screen object
.. "WindowA" screen window
../ItemZ "ItemZ" screen object
../ItemZ/Axes/5 5th element of the axis list of the screen object "ItemZ"
../Window2 "Window2" screen window
../.. Screen windows "TopLevelWindow1" on the highest level
/TopLevelWindow1 Screen windows "TopLevelWindow1" on the highest level
~ Screen windows "TopLevelWindow1" on the highest level
/TopLevelWindow1/WindowB "WindowB" screen window
~/WindowB "WindowB" screen window
/ Invalid as the name of a screen window is missing on the

highest level.

Return value
HmiScreenObjectBase

See also
"ScreenItem" object (Page 730)

7.8.1.11 "ScreenItems" area (RT Uni)

"AlarmControl" object (RT Uni)

"AlarmControl" description (RT Uni)

Description
Represents the "AlarmView" object.

Type identifier in JavaScript
HMIAlarmControl

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 575

Properties (RT Uni)

Properties
The "AlarmControl" object has the following properties:

Properties Type Access Description
AcknowledgmentFla‐
shingRate

HmiFlashingRate read/
write

Specifies the flashing rate for alarms that
have to be acknowledged.

ActiveAlarmsViewSet‐
up (Page 578)

HmiAlarmPredefi‐
nedFilter

read/
write

Specifies which pre-defined alarm filter is ap‐
plied for pending alarms.

AlarmDefinitionView‐
Setup (Page 578)

HmiAlarmPredefi‐
nedFilter

read/
write

Specifies which pre-defined alarm filter is ap‐
plied.

AlarmSourceType
(Page 579)

HmiAlarmSource‐
Type

read/
write

Specifies the source of the alarms of the
alarm window.

AlarmStatisticsView Object read/
write

Returns the "AlarmStatisticsView" object.
Specifies an alarm window with columns and
alarm lines for statistical calculations of
alarms to be logged.

AlarmView Object read/
write

Specifies the "AlarmView" object.

AlwaysShowRecent Bool read/
write

Specifies whether the newest alarm is dis‐
played at the beginning or end of the list
based on the sorting.

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

Caption String read/
write

Specifies the text to be displayed in the head‐
er.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DefaultSortDirection
(Page 579)

HmiSortDirection read/
write

Specifies the sort sequence of the time col‐
umn if no other sorting is active.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Filter String read/
write

Specifies a string for filtering active alarms.
The syntax of the filter string is equivalent to
the WHERE clause of an SQL command.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

Icon String read/
write

Specifies the icon.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
576 System Manual, 11/2019, Online help printout

Properties Type Access Description
Left Int32 read/

write
Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

ResetFlashingRate HmiFlashingRate read/
write

Specifies the flashing rate for alarms that
have to be reset:
● Slow (0): Slow
● Medium (1): Medium
● Fast (2): Fast

StatusBar Object read/
write

Specifies the "StatusBar" object.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

SuppressFlashing Bool read/
write

Specifies whether flashing is suppressed.

Systems String[]Int32[] read/
write

Specifies the name of the Runtime system for
the grouping of active alarms.
If no reference is specified, all known systems
are used.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

TimeZone HmiTimeZone read/
write

Specifies the time zone.

ToolBar Object read/
write

Specifies the "ToolBar" object.
Specifies the toolbar of the window.

Top Int32 read/
write

Specifies the value of the Y coordinate.

UseAlarmColors Bool read/
write

Specifies whether the configured color of the
alarm is used.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Width UInt32 read/
write

Specifies the width.

WindowFlags
(Page 580)

HmiWindowFlag read/
write

Specifies the properties of the window.

See also
"ActiveAlarmsViewSetup" property (Page 578)

"AlarmDefinitionViewSetup" property (Page 578)

"AlarmSourceType" property (Page 579)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 577

"DefaultSortDirection" property (Page 579)

"WindowFlags" property (Page 580)

Special properties (RT Uni)

"ActiveAlarmsViewSetup" property (RT Uni)

Description
Specifies which pre-defined alarm filter is applied for pending alarms:

● None (0): All alarms are displayed:

● OutOfService (1): Only disabled alarms.

● Suppressed (2): Only suppressed alarms

● SuppressedByDesign (4): Only alarms suppressed by design

● Shelved (8): Only shelved alarms

Syntax
Object.ActiveAlarmsViewSetup

Object
Required. An object from the "Availability" section.

See also
Properties (Page 576)

"AlarmDefinitionViewSetup" property (RT Uni)

Description
Specifies which pre-defined alarm filter is applied:

● None (0): All alarms are displayed:

● OutOfService (1): Only disabled alarms.

● Suppressed (2): Only suppressed alarms

● SuppressedByDesign (4): Only alarms suppressed by design

● Shelved (8): Only shelved alarms

Syntax
Object.AlarmDefinitionViewSetup

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
578 System Manual, 11/2019, Online help printout

Object
Required. An object from the "Availability" section.

See also
Properties (Page 576)

"AlarmSourceType" property (RT Uni)

Description
Specifies the source of the alarms of the alarm window:

● NotConfigured (0): Not defined

● ActiveAlarms (1): Pending alarms

● LoggedAalarms (2): Logged alarms

● LoggedAlarmsUpdated (3): Logged alarms with updates.

● AlarmDefintion (4): Custom filter

● AlarmStatistics (5): Alarm statistics

Syntax
Object.AlarmSourceType

Object
Required. An object from the "Availability" section.

See also
Properties (Page 576)

"DefaultSortDirection" property (RT Uni)

Description
Specifies the sort sequence of the time column if no other sorting is active:

● None (0): None

● Ascending (1): Oldest entries first

● Descending (2): Newest entries first

Syntax
Object.DefaultSortDirection

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 579

Object
Required. An object from the "Availability" section.

See also
Properties (Page 576)

"WindowFlags" property (RT Uni)

Description
Specifies the properties of the window:

● None (0): Use default setting of the object

● ShowCaption (1): Show title

● ShowBorder (2): Show border

● AlwaysOnTop (4): Always on top

● CanSize (8): Can be sized

● CanMove (16): Can be positioned

● CanMaximize (32): Can be maximized

● CanClose (64): Can be closed

Syntax
Object.WindowFlags

Object
Required. An object from the "Availability" section.

See also
Properties (Page 576)

Methods of "AlarmControl" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmControl" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
580 System Manual, 11/2019, Online help printout

"AlarmView" object (RT Uni)

"AlarmView" description (RT Uni)

Description
Represents the "AlarmView" object.

Type identifier in JavaScript
HMIAlarmView

Properties (RT Uni)

Properties
The "AlarmView" object has the following properties:

Properties Type Access Description
AllowSort Bool read/

write
Specifies whether the sorting of columns is al‐
lowed.

AlternateBackColor UInt32 read/
write

Specifies the second color for a color gradient.

AlternateForeColor UInt32 read/
write

Specifies the flashing color for the text.

BackColor UInt32 read/
write

Specifies the background color.

CellPadding Object read/
write

Specifies the inner distance of the contents
from the cell frame.

CellTextTrimming HmiTextTrimming read/
write

Specifies the type of trimming of cell contents:
● None (0): None
● Ellipsis (1): Abbreviation at the end of the

text
ColoringMode HmiGridColoring‐

Mode
read/
write

Specifies whether the alternate coloring of ev‐
ery other row or column is activated.
● None (0): None
● Rows (1): Alternately color the rows
● Columns (2): Alternately color the columns

Columns Object read/
write

Specifies the "Columns" object.

ElementID UInt32 read/
write

Specifies the ID of an element within the active
screen.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 581

Properties Type Access Description
GridLineColor UInt32 read/

write
Specifies the color of the grid lines.

GridLineVisibility read/
write

Specifies the visibility of the grid lines.

GridLineWidth UInt8 read/
write

Specifies the width of the separator lines in
pixels.

GridSelectionMode HmiGridSelection‐
Mode

read/
write

Specifies whether multiple selection is ena‐
bled in the table content.
● None (0): None
● Single (1): Only single selection
● Multi (2): Multiple selection

HeaderSettings Object read/
write

Returns the "HeaderSettings" object.
Specifies the settings for all column headers
of the table.

HorizontalScrollBarVi‐
sibility

HmiScrollBarVisi‐
bility

read/
write

Specifies the setting for the horizontal scroll
bar of the window.
● Automatic (0): Only visible if required
● Visible (1): Visible
● Collapsed (2): Not visible

RowHeight UInt8 read/
write

Specifies the height of all rows of the table in
DIU (Device Independent Unit).
"0" corresponds to an automatic mechanism,
which adjusts the height of each line accord‐
ing to the font size and number of paragraphs.

SelectFullRow Bool read/
write

Specifies whether only the cell or the whole
row is included in a selection.

SelectionBackColor UInt32 read/
write

Specifies the background color of the selected
cells.

SelectionBorderColor UInt32 read/
write

Specifies the border color of a selection.

SelectionBorderWidth UInt8 read/
write

Specifies the border thickness of a selection.

SelectionForeColor UInt32 read/
write

Specifies the foreground color of the selected
cells.

Type UInt32 read/
write

Specifies the type ID.

VerticalScrollBarVisibil‐
ity

HmiScrollBarVisi‐
bility

read/
write

Specifies the setting for the vertical scroll bar
of the window:
● Automatic (0): Only visible if required
● Visible (1): Visible
● Collapsed (2): Not visible

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
582 System Manual, 11/2019, Online help printout

Methods of "AlarmView" (RT Uni)

Overview (RT Uni)

Methods
The "AlarmView" object has the following methods:

Methods Description
-

"Bar" object (RT Uni)

"Bar" description (RT Uni)

Description
Represents the "Bar" object.

Type identifier in JavaScript
HMIBar

Properties (RT Uni)

Properties
The "Bar" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

AlternateBorderColor UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read on‐
ly

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BarMode (Page 586) HmiBarMode read/
write

Specifies the color display of the bar graph.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 583

Properties Type Access Description
ComputedMaxPeakVal‐
ue

Variant read on‐
ly

Returns the highest occurred process value.

ComputedMinPeakValue Variant read on‐
ly

Returns the lowest occurred process value.

ComputedValueTenden‐
cy

HmiValueTend‐
ency

read on‐
ly

Returns the change of the process value.
● Steady (0): None
● Upwards (1): Change upwards
● Downwards (2): Change downwards

CurrentQuality HmiQuality read on‐
ly

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

HasFocus Bool read on‐
ly

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read on‐
ly

Returns whether the current user has suffi‐
cient rights.

Layer Object read on‐
ly

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read on‐
ly

Returns the name of the object or specifies it.

NormalRangeColor UInt32 read/
write

Specifies the color of the normal range.

Opacity Float read/
write

Specifies the opacity.

OriginValue Float read/
write

Specifies the start value that is visualized.

OutputFormat String read/
write

Specifies the format for displaying values.

PeakIndicators HmiPeakIndica‐
tor

read/
write

Specifies whether the highest and lowest
process value up to this time are displayed.
● None (0): Not displayed
● Low (1): Only the highest process value
● High (2): Only the lowest process value

ProcessValue Variant read/
write

Specifies the process value.

ProcessValueIndicator‐
BackColor

UInt32 read/
write

Specifies the background color for the proc‐
ess value.

ProcessValueIndicator‐
ForeColor

UInt32 read/
write

Specifies the foreground color for the process
value.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
584 System Manual, 11/2019, Online help printout

Properties Type Access Description
ProcessValueIndicator‐
Mode (Page 587)

HmiProcessIn‐
dicatorMode

read/
write

Specifies the type of display of the current
process value.

RelativeToOrigin Bool read/
write

Specifies whether the start value is an abso‐
lute or a percentage value between minimum
and maximum value.

RenderingTemplate String read on‐
ly

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenterPlace‐
ment

HmiRotation‐
CenterPlace‐
ment

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

ScaleBackColor UInt32 read/
write

Specifies the background color of the scale.

ScaleForeColor UInt32 read/
write

Specifies the foreground color of the scale.

ShowTrendIndicator Bool read/
write

Specifies whether the trend (rising or falling)
of the measured value to be monitored is in‐
dicated by means of a small arrow.

StraightScale Object read/
write

Specifies the linear scale of the bar display.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read on‐
ly

Returns the position of the object in the tab
order.

ThresholdIndicators HmiThreshol‐
dIndicator

read/
write

Specifies how parameterized limits are visual‐
ized.
● None (0): None
● Lines (1): As line
● Markers (2): As selection

Thresholds Object read on‐
ly

Returns the "Thresholds" object.

Title Object read/
write

Returns the "Title" object.
Specifies the labeling that is displayed as the
header.

ToolTipText String read/
write

Specifies the tooltip text.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 585

Properties Type Access Description
Top Int32 read/

write
Specifies the value of the Y coordinate.

TrendIndicatorColor UInt32 read/
write

Specifies the color of the trend view.
The trend view uses a small arrow to repre‐
sent the tendency (rising or falling) of the
measurement value to be monitored. To acti‐
vate the trend view, the "ShowTrendIndicator"
property must have the value "TRUE".

Unit Object read/
write

Specifies the unit of measurement.
Returns the "Unit" object.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

See also
"BarMode" property (Page 586)

"ProcessValueIndicatorMode" property (Page 587)

Special properties (RT Uni)

"BarMode" property (RT Uni)

Description
Specifies the color display of the bar graph:

● Segmented (0): Bar graph changes color according to the bar segments.

● Unicolor (1): Entire bar display has one color.

● SegmentedStatic (2): Bar segments in the background. Indicator for process value runs
prior to the bar segments.

● UnicolorStatic (3): Background color changes according to the process value and the limit
colors. Indicator for process value runs prior to the bar segments.

Type
HmiBarMode

Access
Access depends on the object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
586 System Manual, 11/2019, Online help printout

Availability
The property is available for the following objects:

● Bar

● Slider

Syntax
Object.BarMode

Object
Required. An object from the "Availability" section.

See also
Properties (Page 583)

"ProcessValueIndicatorMode" property (RT Uni)

Description
Specifies the type of display of the current process value:

● Bar (0): Bar graph

● Indicator (1): Hairline or needle. No numerical display of the process value.

● DetailedIndicator (2): Detailed display with numerical value

● BarWithDetailedIndicator (3): Bar graph with numerical value

Type
HmiProcessIndicatorMode

Access
Access depends on the object.

Availability
The property is available for the following objects:

● Bar

● Gauge

● Slider

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 587

Syntax
Object.ProcessValueIndicatorMode

Object
Required. An object from the "Availability" section.

See also
Properties (Page 583)

Methods of "Bar" (RT Uni)

Overview (RT Uni)

Methods
The "Bar" object has the following methods:

Methods Description
- -

"Button" object (RT Uni)

"Button" description (RT Uni)

Description
Represents the "Button" object.

Type identifier in JavaScript
HmiButton

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
588 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "Button" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

AlternateGraphic String read/
write

Specifies the graphic for the "pressed" state.

AlternateGraphi‐
cHeight

UInt32 read/
write

Specifies the height of the graphic for the
"pressed" state.

AlternateGraphic‐
Width

UInt32 read/
write

Specifies the width of the graphic for the
"pressed" state.

AlternateText String read/
write

Specifies the text for the "pressed" state.

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Content Object read/
write

Returns the "Content" object.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

Graphic String read/
write

Specifies the graphic.

GraphicHeight UInt32 read/
write

Specifies the height of the graphic.

GraphicWidth UInt32 read/
write

Specifies the width of the graphic.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 589

Properties Type Access Description
Layer Object read

only
Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Specifies the position of the object in the tab
order.

Text String read/
write

Specifies the labeling.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
590 System Manual, 11/2019, Online help printout

Methods of "Button" (RT Uni)

Overview (RT Uni)

Methods
The "Button" object has the following methods:

Methods Description
-

"CheckBoxGroup" object (RT Uni)

"CheckBoxGroup" description (RT Uni)

Description
Represents the "Checkbox" object.

Type identifier in JavaScript
HMICheckBoxGroup

Properties (RT Uni)

Properties
The "CheckBoxGroup" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

AlternateBorder‐
Color

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Content Object read/
write

Specifies the "Content" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 591

Properties Type Access Description
CurrentQuality HmiQuality read

only
Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height. The value "0" corre‐
sponds to a default setting, not the actual val‐
ue "0".

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

ProcessValue Variant read/
write

Specifies the process value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

SelectionItem‐
Height

UInt16 read/
write

Specifies the height of a selected entry.
● 0 = Automatic

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
592 System Manual, 11/2019, Online help printout

Properties Type Access Description
SelectionItems Object read

only
Returns the entries which can be selected.

SelectorPosition HmiHorizontalAlign‐
ment

read/
write

Specifies the horizontal alignment of the en‐
tries.
● Left (0): Left
● Center (1)
● Right (2): Right
● Stretch (3)

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "CheckBoxGroup" (RT Uni)

Overview (RT Uni)

Methods
The "CheckBoxGroup" object has the following methods:

Methods Description
-

"Circle" object (RT Uni)

"Circle" description (RT Uni)

Description
Represents the "Circle" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 593

Type identifier in JavaScript
HMICircle

Properties (RT Uni)

Description
The "Circle" object has the following properties:

Properties Type Ac‐
cess

Description

AlternateBackColor UInt32 read/
write

Specifies the second color for a color gradient.

AlternateBorder‐
Color

UInt32 read/
write

Specifies the second border color which is dis‐
played for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the
fill.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CenterX Int32 read/
write

Specifies the X coordinate of the rotation point.

CenterY Int32 read/
write

Specifies the Y coordinate of the rotation point.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid
● Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object is
filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
594 System Manual, 11/2019, Online help printout

Properties Type Ac‐
cess

Description

FillLevel UInt8 read/
write

Specifies the object fill in percent.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

IsAuthorized Bool read
only

Returns whether the current user has sufficient
rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Radius UInt32 read/
write

Specifies the radius.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which the
specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object center.
● 2: Absolute distance from the screen origin.

RotationCenterX Float read/
write

Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Visible Bool read/
write

Specifies whether the selected object is visible.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 595

Methods of "Circle" (RT Uni)

Overview (RT Uni)

Methods
The "Circle" object has the following methods:

Methods Description
-

"CircleSegment" object (RT Uni)

"CircleSegment" description (RT Uni)

Description
Represents the "CircleSegment" object.

Type identifier in JavaScript
HMICircleSegment

Properties (RT Uni)

Properties
The "CircleSegment" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

AngleRange Int32 read/
write

Specifies the arc angle.

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the
fill.

BorderColor UInt32 read/
write

Specifies the line color.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
596 System Manual, 11/2019, Online help printout

Properties Type Access Description
BorderWidth UInt8 read/

write
Specifies the line thickness.

CenterX Int32 read/
write

Specifies the X coordinate of the rotation
point.

CenterY Int32 read/
write

Specifies the Y coordinate of the rotation
point.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object
is filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

FillLevel UInt8 read/
write

Specifies the object fill in percent.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Radius UInt32 read/
write

Specifies the radius.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 597

Properties Type Access Description
RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StartAngle Int32 read/
write

Specifies the angle by which the start point
deviates from the zero position (0°).

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Methods of "CircleSegment" (RT Uni)

Overview (RT Uni)

Methods
The "CircleSegment" object has the following methods:

Methods Description
-

"CircularArc" object (RT Uni)

"CircularArc" description (RT Uni)

Description
Represents the "CircularArc" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
598 System Manual, 11/2019, Online help printout

Type identifier in JavaScript
HMICircularArc

Properties (RT Uni)

Properties
The "CircularArc" object has the following properties:

Properties Type Access Description
AlternateLineColor UInt32 read/

write
Specifies the second line color which is dis‐
played for line styles such as "Dash".

AngleRange Int32 read/
write

Specifies the arc angle.

Authorization Object read
only

Returns the operator authorization.

CapType HmiCapType read/
write

Specifies the shape of the line ends.
● Round (0): Round (line extends "Line

thickness/2" beyond the line end point)
● Square (256): Square (line extends "Line

thickness/2" beyond the line end point)
● Flat (512): Flat (line ends at the line end

point)
CenterX Int32 read/

write
Specifies the X coordinate of the rotation
point.

CenterY Int32 read/
write

Specifies the Y coordinate of the rotation
point.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

EndType HmiLineEndType read/
write

Specifies the type of line end.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 599

Properties Type Access Description
HasFocus Bool read

only
Returns whether the object has the focus in
runtime.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

LineColor UInt32 read/
write

Specifies the line color.

LineWidth UInt8 read/
write

Specifies the line thickness.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Radius UInt32 read/
write

Specifies the radius.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

StartAngle Int32 read/
write

Specifies the angle by which the start point
deviates from the zero position (0°).

StartType HmiLineEndType read/
write

Specifies the type of line start.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
600 System Manual, 11/2019, Online help printout

Properties Type Access Description
ToolTipText String read/

write
Specifies the tooltip text.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Methods of "CircularArc" (RT Uni)

Overview (RT Uni)

Methods
The "CircularArc" object has the following methods:

Methods Description
-

"Clock" object (RT Uni)

"Clock" description (RT Uni)

Description
Represents the "Clock" object.

Type identifier in JavaScript
HMIClock

Properties (RT Uni)

Properties
The "Clock" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is dis‐
played for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 601

Properties Type Access Description
BorderColor UInt32 read/

write
Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

ComputedHours UInt8 read/
write

Specifies the hours of the current time.

ComputedMinutes UInt8 read/
write

Specifies the minutes of the current time.

ComputedSeconds UInt8 read/
write

Specifies the seconds of the current time.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DialBackColor UInt32 read/
write

Specifies the color of the dial background.

DialLabelColor UInt32 read/
write

Specifies the color of the text of the dial.

DialLabelFont Object read/
write

Specifies the character set for the dial.

DialMode HmiScaleMode read/
write

Specifies the details of the dial that are dis‐
played.
● None (0): None
● Labels (1): Labels

DialTickColor UInt32 read/
write

Specifies the color of the graduation of the dial.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

ProcessValue Variant read/
write

Specifies the process value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
602 System Manual, 11/2019, Online help printout

Properties Type Access Description
RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which the
specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

ShowHours Bool read/
write

Specifies whether the hour hand is displayed.

ShowMinutes Bool read/
write

Specifies whether the minute hand is dis‐
played.

ShowSeconds Bool read/
write

Specifies whether the second hand is dis‐
played.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

Title Object read/
write

Specifies the labeling that is displayed as the
header.
Returns the "Title" object.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "Clock" (RT Uni)

Overview (RT Uni)

Methods
The "Clock" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 603

"Ellipse" object (RT Uni)

"Ellipse" description (RT Uni)

Description
Represents the "Ellipse" object.

Type identifier in JavaScript
HMIEllipse

Properties (RT Uni)

Properties
The "Ellipse" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or
the fill.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CenterX Int32 read/
write

Specifies the X coordinate of the rotation
point.

CenterY Int32 read/
write

Specifies the Y coordinate of the rotation
point.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
604 System Manual, 11/2019, Online help printout

Properties Type Access Description
Enabled Bool read/

write
Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object
is filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

FillLevel UInt8 read/
write

Specifies the object fill in percent.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

RadiusX UInt32 read/
write

Specifies the X radius.

RadiusY UInt32 read/
write

Specifies the Y radius.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 605

Properties Type Access Description
ToolTipText String read/

write
Specifies the tooltip text.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Methods of "Ellipse" (RT Uni)

Overview (RT Uni)

Methods
The "Ellipse" object has the following methods:

Methods Description
-

"EllipseSegment" object (RT Uni)

"EllipseSegment" description (RT Uni)

Description
Represents the "EllipseSegment" object.

Type identifier in JavaScript
HMIEllipseSegment

Properties (RT Uni)

Properties
The "EllipseSegment" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

AlternateBorder‐
Color

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

AngleRange Int32 read/
write

Specifies the arc angle.

Authorization Object read
only

Returns the operator authorization.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
606 System Manual, 11/2019, Online help printout

Properties Type Access Description
BackColor UInt32 read/

write
Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the
fill.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CenterX Int32 read/
write

Specifies the X coordinate of the rotation
point.

CenterY Int32 read/
write

Specifies the Y coordinate of the rotation
point.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object
is filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

FillLevel UInt8 read/
write

Specifies the object fill in percent.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

RadiusX UInt32 read/
write

Specifies the X radius.

RadiusY UInt32 read/
write

Specifies the Y radius.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 607

Properties Type Access Description
RotationAngle Int16 read/

write
Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StartAngle Int32 read/
write

Specifies the angle by which the start point
deviates from the zero position (0°).

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Methods of "EllipseSegment" (RT Uni)

Overview (RT Uni)

Methods
The "EllipseSegment" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
608 System Manual, 11/2019, Online help printout

"EllipticalArc" object (RT Uni)

"EllipticalArc" description (RT Uni)

Description
Represents the "EllipticalArc" object.

Type identifier in JavaScript
HMIEllipticalArc

Properties (RT Uni)

Properties
The "Elliptical Arc" object has the following properties:

Properties Type Access Description
AlternateLineColor UInt32 read/

write
Specifies the second line color which is dis‐
played for line styles such as "Dash".

AngleRange Int32 read/
write

Specifies the arc angle.

Authorization Object read
only

Returns the operator authorization.

CapType HmiCapType read/
write

Specifies the shape of the line ends.
● Round (0): Round (line extends "Line

thickness/2" beyond the line end point)
● Square (256): Square (line extends "Line

thickness/2" beyond the line end point)
● Flat (512): Flat (line ends at the line end

point)
CenterX Int32 read/

write
Specifies the X coordinate of the rotation
point.

CenterY Int32 read/
write

Specifies the Y coordinate of the rotation
point.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 609

Properties Type Access Description
EndType HmiLineEndType read/

write
Specifies the type of line end.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

LineColor UInt32 read/
write

Specifies the line color.

LineWidth UInt8 read/
write

Specifies the line thickness.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

RadiusX UInt32 read/
write

Specifies the X radius.

RadiusY UInt32 read/
write

Specifies the Y radius.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

StartAngle Int32 read/
write

Specifies the angle by which the start point
deviates from the zero position (0°).

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
610 System Manual, 11/2019, Online help printout

Properties Type Access Description
StartType HmiLineEndType read/

write
Specifies the type of line start.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Methods of "EllipticalArc" (RT Uni)

Overview (RT Uni)

Methods
The "EllipticalArc" object has the following methods:

Methods Description
-

"FunctionTrendControl" object (RT Uni)

"FunctionTrendControl" description (RT Uni)

Description
Represents the "FunctionTrendControl" object.

Type identifier in JavaScript
HmiFunctionTrendControl

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 611

Properties (RT Uni)

Properties
The "FunctionTrendControl" object has the following properties:

Properties Type Access Description
AlwaysShow‐
Recent

Bool read/
write

Specifies whether the newest alarm is displayed at the be‐
ginning or end of the list based on the sorting.

AreaSpacing UInt16 read/
write

Specifies the distance between trend windows.

Authorization Object read on‐
ly

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

Caption String read/
write

Specifies the text to be displayed in the header.

CurrentQuality HmiQuality read on‐
ly

Returns the poorest quality code of all tags which influence
the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be operated in
runtime.

ExtendRuler‐
ToAxis

Bool read/
write

Specifies whether the ruler is extended.

Font Object read/
write

Specifies the font of the text.

FunctionTren‐
dAreas

Object read on‐
ly

Returns the "FunctionTrendControls" object.

HasFocus Bool read on‐
ly

Returns whether the object has the focus in runtime.

Height UInt32 read/
write

Specifies the height.

Icon String read/
write

Specifies the icon.

IsAuthorized Bool read on‐
ly

Returns whether the current user has sufficient rights.

Layer Object read on‐
ly

Returns the layer of the screen that contains the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Legend Object read/
write

Returns the "Legend" object.

Margin Object read/
write

Specifies the margin.

Name String read on‐
ly

Returns the object name.

Online Bool read/
write

Specifies the start and stop of the updating.

RenderingTem‐
plate

String read on‐
ly

Returns the "RenderingTemplate" property.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
612 System Manual, 11/2019, Online help printout

Properties Type Access Description
ShiftAxis Bool read/

write
Specifies whether the X axis and Y axis of the control are
exchanged.

ShowRuler Bool read/
write

Specifies whether a scale division (help line) is displayed
for an axis label of the object.

StatusBar Object read/
write

Returns the "StatusBar" object.

StyleItemClass String read/
write

Specifies the style which is applied to the object.

TabIndex UInt16 read on‐
ly

Specifies the position of the object in the tab order.

ToolBar Object read/
write

Returns the "ToolBar" object.
Specifies the toolbar of the window.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visible.

Width UInt32 read/
write

Specifies the width.

WindowFlags HmiWindow‐
Flag

read/
write

Specifies the properties of the window.
● None (0): Use default setting of the object
● ShowCaption (1): Show title
● ShowBorder (2): Show border
● AlwaysOnTop (4): Always on top
● CanSize (8): Can be sized
● CanMove (16): Can be positioned
● CanMaximize (32): Can be maximized
● CanClose (64): Can be closed

Methods of "FunctionTrendControl" (RT Uni)

Overview (RT Uni)

Methods
The "FunctionTrendControl" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 613

"Gauge" object (RT Uni)

"Gauge" description (RT Uni)

Description
Represents the "Gauge" object.

Type identifier in JavaScript
HMIGauge

Properties (RT Uni)

Properties
The "Gauge" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gra‐
dient.

AlternateBorderColor UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

ComputedMaxPeakVal‐
ue

Variant read
only

Returns the highest occurred process val‐
ue.

ComputedMinPeakVal‐
ue

Variant read
only

Returns the lowest occurred process val‐
ue.

ComputedValueTend‐
ency

HmiValueTendency read
only

Returns the change of the process value.
● Steady (0): None
● Upwards (1): Change upwards
● Downwards (2): Change downwards

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

CurvedScale Object read/
write

Specifies the curved scale of the display.

Enabled Bool read/
write

Specifies whether the specified object can
be operated in runtime.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
614 System Manual, 11/2019, Online help printout

Properties Type Access Description
Font Object read/

write
Specifies the font of the text.

HasFocus Bool read
only

Returns whether the object has the focus
in runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suf‐
ficient rights.

Layer Object read
only

Returns the layer of the screen that con‐
tains the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or speci‐
fies it.

NormalRangeColor UInt32 read/
write

Specifies the color of the normal range.

Opacity Float read/
write

Specifies the opacity.

OriginValue Float read/
write

Specifies the start value that is visualized.

OutputFormat String read/
write

Specifies the format for displaying values.

PeakIndicators HmiPeakIndicator read/
write

Specifies whether the highest and lowest
process value up to this time are dis‐
played.
● None (0): Not displayed
● Low (1): Only the highest process val‐

ue
● High (2): Only the lowest process value

ProcessValue Variant read/
write

Specifies the process value.

ProcessValueIndicator‐
BackColor

UInt32 read/
write

Specifies the background color for the
process value.

ProcessValueIndicator‐
ForeColor

UInt32 read/
write

Specifies the foreground color for the proc‐
ess value.

ProcessValueIndicator‐
Mode

HmiProcessIndicator‐
Mode

read/
write

Specifies the type of display of the current
process value.
● Bar (0): Bar graph
● Indicator (1): Hairline or needle. No nu‐

merical display of the process value.
● DetailedIndicator (2): Detailed display

with numerical value
● BarWithDetailedIndicator (3): Bar

graph with numerical value

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 615

Properties Type Access Description
RelativeToOrigin Bool read/

write
Specifies whether the start value is an ab‐
solute or a percentage value between min‐
imum and maximum value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" proper‐
ty.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenterPlace‐
ment

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around
which the specified object rotates.
● 0: Absolute distance from the object

center.
● 1: Relative distance from the object

center.
● 2: Absolute distance from the screen

origin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ScaleBackColor UInt32 read/
write

Specifies the background color of the
scale.

ScaleForeColor UInt32 read/
write

Specifies the foreground color of the scale.

ShowTrendIndicator Bool read/
write

Specifies whether the trend (rising or fall‐
ing) of the measured value to be moni‐
tored is indicated by means of a small ar‐
row.

StyleItemClass String read/
write

Specifies the style which is applied to the
object.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ThresholdIndicators HmiThresholdIndica‐
tor

read/
write

Specifies how parameterized limits are vi‐
sualized.
● None (0): None
● Lines (1): As line
● Markers (2): As selection

Thresholds Object read
only

Returns the "Thresholds" object.

Title Object read/
write

Specifies the labeling that is displayed as
the header.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
616 System Manual, 11/2019, Online help printout

Properties Type Access Description
TrendIndicatorColor UInt32 read/

write
Specifies the color of the trend view.
The trend view uses a small arrow to rep‐
resent the tendency (rising or falling) of the
measurement value to be monitored. To
activate the trend view, the "ShowTrendIn‐
dicator" property must have the value
"TRUE".

Unit Object read/
write

Specifies the unit of measurement.
Returns the "Unit" object.

Visible Bool read/
write

Specifies whether the selected object is
visible.

VisualizeQuality Bool read/
write

Specifies whether the quality of the proc‐
ess value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "Gauge" (RT Uni)

Overview (RT Uni)

Methods
The "Gauge" object has the following methods:

Methods Description
- -

"GraphicView" object (RT Uni)

"GraphicView" description (RT Uni)

Description
Represents the "GraphicView" object.

Type identifier in JavaScript
HMIGraphicView

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 617

Properties (RT Uni)

Properties
The "GraphicView" object has the following properties:

Properties Type Access Description
AlternateBackCol‐
or

UInt32 read/
write

Specifies the second color for a color gradient.

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the
fill.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object is
filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

FillLevel UInt8 read/
write

Specifies the object fill in percent.

Graphic String read/
write

Specifies the graphic.

GraphicHeight UInt32 read/
write

Specifies the height of the graphic.

GraphicStretch‐
Mode

HmiGraphicStretch‐
Mode

read/
write

Specifies the type of scaling of the graphic in
the screen.
● None (0): The graphic is shown in the orig‐

inal size and centered.
● Fill (1): Graphic is displayed in the availa‐

ble space. Aspect ratio is adjusted, but not
scaled.

● Uniform (2): Graphic is displayed in the
available space. Aspect ratio is not
changed.

● UniformToFill (3): Graphic is displayed in
the available space. The rest is truncated.
Aspect ratio is not changed.

● Tiled (4): The graphic is shown in the orig‐
inal size and repeated in tiles.

GraphicWidth UInt32 read/
write

Specifies the width of the graphic.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
618 System Manual, 11/2019, Online help printout

Properties Type Access Description
HasFocus Bool read

only
Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which the
specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen origin.

RotationCenterX Float read/
write

Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visible.

Width UInt32 read/
write

Specifies the width.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 619

Methods of "GraphicView" (RT Uni)

Overview (RT Uni)

Methods
The "GraphicView" object has the following methods:

Methods Description
-

"IOField" object (RT Uni)

"IOField" description (RT Uni)

Description
Represents the "I/O field" object.

Type identifier in JavaScript
HmiIOField

Properties (RT Uni)

Properties
The "IOField" object has the following properties:

Property Type Ac‐
cess

Description

AlternateBackColor UInt32 read/
write

Specifies the second color for a color gradient.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
620 System Manual, 11/2019, Online help printout

Property Type Ac‐
cess

Description

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

HorizontalTextA‐
lignment

HmiHorizontalAlign‐
ment

read/
write

Specifies the horizontal alignment of a text.

InputBehavior Object read/
write

Returns the "InputBehavior" object.

IOFieldType HmiIOFieldType read/
write

Specifies the input/output type.
● Output (0): Output
● InputOutput (2): Input and output

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

MeasurementUnit String read
only

Returns the displayed unit.

MeasurementUnit‐
Type

HmiMeasurementUnit read/
write

Specifies the display format of the unit.
● None (0): None
● Name (1): Name, e.g. "kilogram"
● Symbol (2): SI unit, e.g. "kg"

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

OutputFormat String read/
write

Specifies the format for displaying values.

Padding Object read/
write

Specifies the distance of the content from the
border.

ProcessValue Variant read/
write

Specifies the process value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 621

Property Type Ac‐
cess

Description

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Specifies the position of the object in the tab
order.

TextTrimming HmiTextTrimming read/
write

Specifies the type of trimming of a text if the
space is not sufficient.
● None (0): None
● Ellipsis (1): Abbreviation at the end of the

text
Thresholds Object read

only
Returns the "Thresholds" object.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

VerticalTextAlign‐
ment

HmiVerticalAlignment read/
write

Specifies the vertical alignment of a text.
● Top (0)
● Center (1)
● Bottom (2)
● Stretch (3)

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
622 System Manual, 11/2019, Online help printout

Methods of "IOField" (RT Uni)

Overview (RT Uni)

Methods
The "IOField" object has the following methods:

Methods Description
-

"Label" object (RT Uni)

"Label" description (RT Uni)

Description
Represents the "Editable text box" object.

Type identifier in JavaScript
HMILabel

Properties (RT Uni)

Properties
The "Label" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is dis‐
played for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 623

Properties Type Access Description
Enabled Bool read/

write
Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

HorizontalTextA‐
lignment

HmiHorizontalAlign‐
ment

read/
write

Specifies the horizontal alignment of a text.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Returns the position of the object in the tab
order.

Text String read/
write

Specifies the labeling.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
624 System Manual, 11/2019, Online help printout

Properties Type Access Description
TextTrimming HmiTextTrimming read/

write
Specifies the type of trimming of a text if the
space is not sufficient.
● None (0): None
● Ellipsis (1): Abbreviation at the end of the

text
TextWrapping HmiTextWrapping read/

write
Specifies how text is wrapped if there is insuf‐
ficient space.
● NoWrap (0): No wrap
● WordWrap (1): Wrap after the last fully dis‐

played value.
ToolTipText String read/

write
Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

VerticalTextAlign‐
ment

HmiVerticalAlignment read/
write

Specifies the vertical alignment of a text.
● Top (0)
● Center (1)
● Bottom (2)
● Stretch (3)

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "Label" (RT Uni)

Overview (RT Uni)

Methods
The "Label" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 625

"Line" object (RT Uni)

"Line" description (RT Uni)

Description
Represents the "Line" object.

Type identifier in JavaScript
HMILine

Properties (RT Uni)

Properties
The "Line" object has the following properties:

Properties Type Access Description
AlternateLineColor UInt32 read/

write
Specifies the second line color which is dis‐
played for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

CapType HmiCapType read/
write

Specifies the shape of the line ends.
● Round (0): Round (line extends "Line

thickness/2" beyond the line end point)
● Square (256): Square (line extends "Line

thickness/2" beyond the line end point)
● Flat (512): Flat (line ends at the line end

point)
CurrentQuality HmiQuality read

only
Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
626 System Manual, 11/2019, Online help printout

Properties Type Access Description
EndType HmiLineEndType read/

write
Specifies the type of line end.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

LineColor UInt32 read/
write

Specifies the line color.

LineWidth UInt8 read/
write

Specifies the line thickness.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 627

Properties Type Access Description
StartType HmiLineEndType read/

write
Specifies the type of line start.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Width UInt32 read/
write

Specifies the width.

X1 Int32 read/
write

Specifies the x coordinate of the start point of
the line.

X2 Int32 read/
write

Specifies the x coordinate of the end point of
the line.

Y1 Int32 read/
write

Specifies the y coordinate of the start point of
the line.

Y2 Int32 read/
write

Specifies the y coordinate of the end point of
the line.

Methods of "Line" (RT Uni)

Overview (RT Uni)

Methods
The "Line" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
628 System Manual, 11/2019, Online help printout

"ListBox" object (RT Uni)

"ListBox" description (RT Uni)

Description
Represents the "Listbox" object.

Type identifier in JavaScript
HMIListBox

Properties (RT Uni)

Properties
The "ListBox" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Content Object read/
write

Specifies the "Content" object.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 629

Properties Type Access Description
Layer Object read

only
Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

ProcessValue Variant read/
write

Specifies the process value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

SelectionItemHeight UInt16 read/
write

Specifies the height of a selected entry.
● 0 = Automatic

SelectionItems Object read
only

Returns the entries which can be selected.

SelectionMode HmiSelectionMode read/
write

Specifies whether one or more entries can be
selected in the selection list.
● NonExclusive (0): Multiple selection pos‐

sible
● Exclusive (1): Multiple selection not pos‐

sible
SelectorPosition HmiHorizontalAlign‐

ment
read/
write

Specifies the horizontal alignment of the en‐
tries.
● Left (0): Left
● Center (1)
● Right (2): Right
● Stretch (3)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
630 System Manual, 11/2019, Online help printout

Properties Type Access Description
StyleItemClass String read/

write
Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "ListBox" (RT Uni)

Overview (RT Uni)

Methods
The "ListBox" object has the following methods:

Methods Description
-

"Polygon" object (RT Uni)

"Polygon" description (RT Uni)

Description
Represents the "Polygon" object.

Type identifier in JavaScript
HMIPolygon

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 631

Properties (RT Uni)

Properties
The "Polygon" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the
fill.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object
is filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

FillLevel UInt8 read/
write

Specifies the object fill in percent.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
632 System Manual, 11/2019, Online help printout

Properties Type Access Description
JoinType HmiLineJoinType read/

write
Specifies the corner style of the polyline.
● Round (0): Round
● Bevel (1): Flat
● Miter (2): Miter

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Points Variant read/
write

Specifies the coordinates of the points of the
polyline.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Returns the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Width UInt32 read/
write

Specifies the width.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 633

Methods of "Polygon" (RT Uni)

Overview (RT Uni)

Methods
The "Polygon" object has the following methods:

Methods Description
-

"Polyline" object (RT Uni)

"Polyline" description (RT Uni)

Description
Represents the "Polyline" object.

Type identifier in JavaScript
HMIPolyline

Properties (RT Uni)

Properties
The "Polyline" object has the following properties:

Properties Type Access Description
AlternateLineColor UInt32 read/

write
Specifies the second line color which is dis‐
played for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

CapType HmiCapType read/
write

Specifies the shape of the line ends.
● Round (0): Round (line extends "Line thick‐

ness/2" beyond the line end point)
● Square (256): Square (line extends "Line

thickness/2" beyond the line end point)
● Flat (512): Flat (line ends at the line end

point)
CurrentQuality HmiQuality read

only
Returns the poorest quality code of all tags
which influence the object specified.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
634 System Manual, 11/2019, Online help printout

Properties Type Access Description
DashType HmiDashType read/

write
Specifies the dash type of the border or the line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

EndType HmiLineEndType read/
write

Specifies the type of line end.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has sufficient
rights.

JoinType HmiLineJoinType read/
write

Specifies the corner style of the polyline.
● Round (0): Round
● Bevel (1): Flat
● Miter (2): Miter

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

LineColor UInt32 read/
write

Specifies the line color.

LineWidth UInt8 read/
write

Specifies the line thickness.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Points Variant read/
write

Specifies the coordinates of the points of the
polyline.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 635

Properties Type Access Description
RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which the
specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object center.
● 2: Absolute distance from the screen origin.

RotationCenterX Float read/
write

Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

StartType HmiLineEndType read/
write

Specifies the type of line start.
● Line (0): Line
● EmptyArrow (1): Arrow
● Arrow (2): Arrow (filled)
● ReversedArrow (3): Arrow (reversed)
● EmptyCircle (5): Circle
● Circle (6): Circle (filled)

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex UInt16 read
only

Specifies the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visible.

Width UInt32 read/
write

Specifies the width.

Methods of "Polyline" (RT Uni)

Overview (RT Uni)

Methods
The "Polyline" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
636 System Manual, 11/2019, Online help printout

"PopupScreenWindow" object (RT Uni)

"PopupScreenWindow" description (RT Uni)

Description
Represents the "Popup screen window" object.

Type identifier in JavaScript
HMIPopupScreenWindow

Properties (RT Uni)

Properties
The "PopupScreenWindow" object has the following properties:

Properties Type Access Description
Adaption HmiScreenWindo‐

wAdaption
read/
write

Specifies how the window size is specified.
● None (0): No adaptation.
● WindowToScreen (1): Window size corre‐

sponds to screen size.
● ScreenToWindow(2): Screen is scaled.

Authorization Object read
only

Returns the operator authorization.

Caption String read/
write

Specifies the text to be displayed in the head‐
er. Type

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

CurrentZoomFactor Float read/
write

Specifies the zoom factor which is applied to
the displayed screen. The value 1.0 corre‐
sponds to a zoom factor of 100%.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

HardKeysEnabled Bool read/
write

Specifies whether the operation is possible via
keyboard or function keys.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

HorizontalScrollBar‐
Position

Int32 read/
write

Specifies the horizontal alignment for the
scroll bar.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 637

Properties Type Access Description
HorizontalScrollBar‐
Visibility

HmiScrollBarVisibili‐
ty

read/
write

Specifies the setting for the horizontal scroll
bar of the window.
● Automatic (0): Only visible if required
● Visible (1): Visible
● Collapsed (2): Not visible

Icon String read/
write

Specifies the icon.

InteractiveZooming Bool read/
write

Specifies whether zooming is supported.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Monitor UInt8 read
only

Specifies the monitor on which the window is
displayed.

Name String read
only

Returns the name of the object or specifies it.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

Screen String read/
write

Specifies the name of the screen
("HMIScreen" type) that is contained in the ref‐
erenced screen window. Loads a new screen
into the referenced screen window via its
name.
The "Screen" property returns a different value
than the "CurrentScreen" property when the
referenced screen is not yet loaded complete‐
ly or does not exist.

ScreenName String read
only

Returns the screen name.

ScreenNumber UInt16 read
only

Returns the screen number.

StartupPosition HmiWindowStartup‐
Position

read/
write

Specifies the position of the screen window in
case of a runtime start.
● None (0): Relative placement on the con‐

figured monitor via "Left" and "Top".
● CenteredMonitor (1): Centered on the con‐

figured monitor.
● Maximized (2): Maximized on the config‐

ured monitor.
● CenteredOwner (3): Centered on the dis‐

played screen.
StyleItemClass String read/

write
Specifies the style which is applied to the ob‐
ject.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
638 System Manual, 11/2019, Online help printout

Properties Type Access Description
System String read/

write
Specifies the server prefix.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

TabIntoWindow Bool read/
write

Specifies at activation via the tab order that the
configured tab order of the displayed screen is
resumed.

Top Int32 read/
write

Specifies the value of the Y coordinate.

VerticalScrollBarPo‐
sition

Int32 read/
write

Specifies the vertical alignment for the scroll
bar.

VerticalScrollBarVi‐
sibility

HmiScrollBarVisibili‐
ty

read/
write

Specifies the setting for the vertical scroll bar
of the window.
● Automatic (0): Only visible if required
● Visible (1): Visible
● Collapsed (2): Not visible

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Width UInt32 read/
write

Specifies the width.

WindowFlags HmiWindowFlag read/
write

Specifies the properties of the window.
● None (0): Use default setting of the object
● ShowCaption (1): Show title
● ShowBorder (2): Show border
● AlwaysOnTop (4): Always on top
● CanSize (8): Can be sized
● CanMove (16): Can be positioned
● CanMaximize (32): Can be maximized
● CanClose (64): Can be closed

Methods of "PopupScreenWindow" (RT Uni)

Overview (RT Uni)

Methods
The "PopupScreenWindow" object has the following methods:

Methods Description
- -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 639

"RadioButtonGroup" object (RT Uni)

"RadioButtonGroup" description (RT Uni)

Description
Represents the "Option buttons" object.

Type identifier in JavaScript
HMIRadioButtonGroup

Properties (RT Uni)

Properties
The "RadioButtonGroup" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorder‐
Color

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Content Object read/
write

Specifies the "Content" object.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height. The value "0" corre‐
sponds to a default setting, not the actual val‐
ue "0".

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
640 System Manual, 11/2019, Online help printout

Properties Type Access Description
IsAuthorized Bool read

only
Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

ProcessValue Variant read/
write

Specifies the process value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

SelectionItem‐
Height

UInt16 read/
write

Specifies the height of a selected entry.
● 0 = Automatic

SelectionItems Object read
only

Returns the entries which can be selected.

SelectorPosition HmiHorizontalAlign‐
ment

read/
write

Specifies the horizontal alignment of the en‐
tries.
● Left (0): Left
● Center (1)
● Right (2): Right
● Stretch (3)

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Returns the position of the object in the tab
order.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 641

Properties Type Access Description
ToolTipText String read/

write
Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "RadioButtonGroup" (RT Uni)

Overview (RT Uni)

Methods
The "RadioButtonGroup" object has the following methods:

Methods Description
-

"Rectangle" object (RT Uni)

"Rectangle" description (RT Uni)

Description
Represents the "Rectangle" object.

Type identifier in JavaScript
HMIRectangle

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
642 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "Rectangle" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

AlternateBorder‐
Color

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the
fill.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Corners Object read/
write

Specifies the rounding of corners of the rec‐
tangle.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

DashType HmiDashType read/
write

Specifies the dash type of the border or the
line.
● Solid (0): Solid Dash(1): Dashed
● Dot (2): Dotted
● Dash-Dot (3): Dash-dot
● Dash-Dot-Dot (4): Dash-dot-dot

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

FillDirection HmiFillDirection read/
write

Specifies the direction from which the object is
filled.
● BottomToTop (0): From bottom to top
● TopToBottom (1): From top to bottom
● LeftToRight (2): From left to right
● RightToLeft (3): From right to left

FillLevel UInt8 read/
write

Specifies the object fill in percent.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 643

Properties Type Access Description
Layer Object read

only
Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ShowFillLevel Bool read/
write

Specifies whether the fill level is displayed.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Specifies the position of the object in the tab
order.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Width UInt32 read/
write

Specifies the width.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
644 System Manual, 11/2019, Online help printout

Methods of "Rectangle" (RT Uni)

Overview (RT Uni)

Methods
The "Rectangle" object has the following methods:

Methods Description
-

"Slider" object (RT Uni)

"Slider" description (RT Uni)

Description
Represents the "Slider" object.

Type identifier in JavaScript
HMISlider

Properties (RT Uni)

Properties
The "Slider" object has the following properties:

Properties Type Ac‐
cess

Description

AlternateBackColor UInt32 read/
write

Specifies the second color for a color gra‐
dient.

AlternateBorderColor UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 645

Properties Type Ac‐
cess

Description

BarMode HmiBarMode read/
write

Specifies the color display of the bar graph.
● Segmented (0): Bar graph changes col‐

or according to the bar segments.
● Unicolor (1): Entire bar display has one

color.
● SegmentedStatic (2): Bar segments in

the background. Indicator for process
value runs in front of the bar segments.

● UnicolorStatic (3): Background color
changes according to the process value
and the limit colors. Indicator for proc‐
ess value runs in front of the bar seg‐
ments.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

ComputedMaxPeakVal‐
ue

Variant read
only

Returns the highest occurred process val‐
ue.

ComputedMinPeakValue Variant read
only

Returns the lowest occurred process value.

ComputedValueTenden‐
cy

HmiValueTendency read
only

Returns the change of the process value.
● Steady (0): None
● Upwards (1): Change upwards
● Downwards (2): Change downwards

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can
be operated in runtime.

Font Object read/
write

Specifies the font of the text.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that con‐
tains the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies
it.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
646 System Manual, 11/2019, Online help printout

Properties Type Ac‐
cess

Description

NormalRangeColor UInt32 read/
write

Specifies the color of the normal range.

Opacity Float read/
write

Specifies the opacity.

OriginValue Float read/
write

Specifies the start value that is visualized.

OutputFormat String read/
write

Specifies the format for displaying values.

PeakIndicators HmiPeakIndicator read/
write

Specifies whether the highest and lowest
process value up to this time are displayed.
● None (0): Not displayed
● Low (1): Only the highest process value
● High (2): Only the lowest process value

ProcessValue Variant read/
write

Specifies the process value.

ProcessValueIndicator‐
BackColor

UInt32 read/
write

Specifies the background color for the proc‐
ess value.

ProcessValueIndicator‐
ForeColor

UInt32 read/
write

Specifies the foreground color for the proc‐
ess value.

ProcessValueIndicator‐
Mode

HmiProcessIndica‐
torMode

read/
write

Specifies the type of display of the current
process value.
● Bar (0): Bar graph
● Indicator (1): Hairline or needle. No nu‐

merical display of the process value.
● DetailedIndicator (2): Detailed display

with numerical value
● BarWithDetailedIndicator (3): Bar graph

with numerical value
RelativeToOrigin Bool read/

write
Specifies whether the start value is an ab‐
solute or a percentage value between min‐
imum and maximum value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenterPlace‐
ment

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object

center.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen

origin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 647

Properties Type Ac‐
cess

Description

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

ScaleBackColor UInt32 read/
write

Specifies the background color of the scale.

ScaleForeColor UInt32 read/
write

Specifies the foreground color of the scale.

ShowTrendIndicator Bool read/
write

Specifies whether the trend (rising or fall‐
ing) of the measured value to be monitored
is indicated by means of a small arrow.

ShowValue Bool read/
write

Specifies that the position is output addi‐
tionally as a value.

StraightScale Object read/
write

Specifies the linear scale of the bar display.

StyleItemClass String read/
write

Specifies the style which is applied to the
object.

TabIndex Object read
only

Returns the position of the object in the tab
order.

ThresholdIndicators HmiThresholdIndi‐
cator

read/
write

Specifies how parameterized limits are vi‐
sualized.
● None (0): None
● Lines (1): As line
● Markers (2): As selection

Thresholds Object read
only

Returns the "Thresholds" object.

ThumbBackColor UInt32 read/
write

Specifies the background color of the slider.

ThumbForeColor UInt32 read/
write

Specifies the foreground color of the slider.

Title Object read/
write

Specifies the "Title" object.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

TrendIndicatorColor UInt32 read/
write

Specifies the color of the trend view.
The trend view uses a small arrow to repre‐
sent the tendency (rising or falling) of the
measurement value to be monitored. To ac‐
tivate the trend view, the "ShowTrendIndi‐
cator" property must have the value
"TRUE".

Unit Object read/
write

Specifies the "Unit" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
648 System Manual, 11/2019, Online help printout

Properties Type Ac‐
cess

Description

ValuePosition HmiSimplePosition read/
write

Specifies where the value of the current
slider position is additionally displayed nu‐
merically.
● LeftOrTop (0): Left for vertical align‐

ment, top for horizontal alignment
● RightOrBottom (1): Right for vertical

alignment, bottom for horizontal align‐
ment

Visible Bool read/
write

Specifies whether the selected object is
visible.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

WriteDuringChange Bool read/
write

Specifies when changes are transferred to
the PLC.
● 0: Only after the slider has been re‐

leased.
● 1: At every change of the slider.

Methods of "Slider" (RT Uni)

Overview (RT Uni)

Methods
The "Slider" object has the following methods:

Methods Description
- -

"SymbolicIOField" object (RT Uni)

"SymbolicIOField" description (RT Uni)

Description
Represents the "SymbolicIOField" object.

Type identifier in JavaScript
HMISymbolicIOField

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 649

Properties (RT Uni)

Properties
The "SymbolicIOField" object has the following properties:

Properties Type Access Description
AcceptExplicitely Bool read/

write
Specifies whether the process value is only
written by explicit triggering of double-click,
enter key or tab.

AcceptOnDeactiva‐
ted

Bool read/
write

Specifies whether the process value is written
when the object loses the input focus.

AlternateBackColor UInt32 read/
write

Specifies the second color for a color gradient.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

AutoTabOnAccept Bool read/
write

Specifies whether a switch to the next object
in the configured tab order occurs automati‐
cally after a value is entered.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

Content Object read/
write

Returns the "Content" object.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be
operated in runtime.

ExpandOnActivate Bool read/
write

Specifies whether the list drops down when it
receives the input focus.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

Graphic String read/
write

Specifies the graphic.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

IOFieldType HmiIOFieldType read/
write

Specifies the input/output type.
● Output (0): Output
● InputOutput (2): Input and output

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
650 System Manual, 11/2019, Online help printout

Properties Type Access Description
IsAuthorized Bool read

only
Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from the
border.

ProcessValue Variant read/
write

Specifies the process value.

RenderingTemplate String read
only

Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation point.

SelectionBackColor UInt32 read/
write

Specifies the background color of the selected
cells.

SelectionForeColor UInt32 read/
write

Specifies the foreground color of the selected
cells.

ShowDropDown‐
Button

Bool read/
write

Specifies whether a button for the selection
list is displayed.

StyleItemClass String read/
write

Specifies the style which is applied to the ob‐
ject.

TabIndex Object read
only

Specifies the position of the object in the tab
order.

Text String read/
write

Specifies the labeling.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 651

Properties Type Access Description
Visible Bool read/

write
Specifies whether the selected object is visi‐
ble.

VisualizeQuality Bool read/
write

Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "SymbolicIOField" (RT Uni)

Overview (RT Uni)

Methods
The "SymbolicIOField" object has the following methods:

Methods Description
-

"Text" object (RT Uni)

"Text" description (RT Uni)

Description
Represents the "Text box" object.

Type identifier in JavaScript
HMIText

Properties (RT Uni)

Properties
The "Text" object has the following properties:

Properties Text Access Description
Authorization Object read

only
Returns the operator authorization.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can
be operated in runtime.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
652 System Manual, 11/2019, Online help printout

Properties Text Access Description
Font Object read/

write
Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

HorizontalTextA‐
lignment

HmiHorizontalAlign‐
ment

read/
write

Specifies the horizontal alignment of a text.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

StyleItemClass String read/
write

Specifies the style which is applied to the
object.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

Text String read/
write

Specifies the labeling.

ToolTipText String read/
write

Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 653

Properties Text Access Description
VerticalTextAlign‐
ment

HmiVerticalAlignment read/
write

Specifies the vertical alignment of a text.
● Top (0)
● Center (1)
● Bottom (2)
● Stretch (3)

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Width UInt32 read/
write

Specifies the width.

Methods of "Text" (RT Uni)

Overview (RT Uni)

Methods
The "Text" object has the following methods:

Methods Description
-

"TextBox" object (RT Uni)

"TextBox" description (RT Uni)

Description
Represents the "Editable text box" object.

Type identifier in JavaScript
HMITextBox

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
654 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "TextBox" object has the following properties:

 Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradi‐
ent.

AlternateBorderCol‐
or

UInt32 read/
write

Specifies the second border color which is
displayed for line styles such as "Dash".

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BorderColor UInt32 read/
write

Specifies the line color.

BorderWidth UInt8 read/
write

Specifies the line thickness.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can
be operated in runtime.

Font Object read/
write

Specifies the font of the text.

ForeColor UInt32 read/
write

Specifies the font color.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

HorizontalTextA‐
lignment

HmiHorizontalAlign‐
ment

read/
write

Specifies the horizontal alignment of a text.

IsAuthorized Bool read
only

Returns whether the current user has suffi‐
cient rights.

Layer Object read
only

Returns the layer of the screen that contains
the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Opacity Float read/
write

Specifies the opacity.

Padding Object read/
write

Specifies the distance of the content from
the border.

ReadOnly Bool read/
write

Specifies whether the text box is write-pro‐
tected.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 655

 Properties Type Access Description
RenderingTemplate String read

only
Returns the "RenderingTemplate" property.

RotationAngle Int16 read/
write

Specifies the angle of rotation in degrees.

RotationCenter‐
Placement

HmiRotationCenter‐
Placement

read/
write

Specifies the reference point around which
the specified object rotates.
● 0: Absolute distance from the object cen‐

ter.
● 1: Relative distance from the object cen‐

ter.
● 2: Absolute distance from the screen ori‐

gin.
RotationCenterX Float read/

write
Specifies the X coordinate of the rotation
point.

RotationCenterY Float read/
write

Specifies the Y coordinate of the rotation
point.

StyleItemClass String read/
write

Specifies the style which is applied to the
object.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

Text String read/
write

Specifies the labeling.

TextTrimming HmiTextTrimming read/
write

Specifies the type of trimming of a text if the
space is not sufficient.
● None (0): None
● Ellipsis (1): Abbreviation at the end of the

text
TextWrapping HmiTextWrapping read/

write
Specifies how text is wrapped if there is in‐
sufficient space.
● NoWrap (0): No wrap
● WordWrap (1): Wrap after the last fully

displayed value.
ToolTipText String read/

write
Specifies the tooltip text.

Top Int32 read/
write

Specifies the value of the Y coordinate.

VerticalTextAlign‐
ment

HmiVerticalAlignment read/
write

Specifies the vertical alignment of a text.
● Top (0)
● Center (1)
● Bottom (2)
● Stretch (3)

Visible Bool read/
write

Specifies whether the selected object is visi‐
ble.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
656 System Manual, 11/2019, Online help printout

 Properties Type Access Description
VisualizeQuality Bool read/

write
Specifies whether the quality of the process
value is displayed.

Width UInt32 read/
write

Specifies the width.

Methods of "TextBox" (RT Uni)

Overview (RT Uni)

Methods
The "TextBox" object has the following methods:

Methods Description
-

"TouchArea" object (RT Uni)

"TouchArea" description (RT Uni)

Description
Displays the "TouchArea" object.

Type identifier in JavaScript
HMITouchArea

Properties (RT Uni)

Properties
The "TouchArea" object has the following properties:

Properties Type Access Description
- - - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 657

Methods of "TouchArea" (RT Uni)

Overview (RT Uni)

Methods
The "TouchArea" object has the following methods:

Methods Description
- -

"TrendCompanion" object (RT Uni)

"TrendCompanion" description (RT Uni)

Description
Represents the "TrendCompanion" object.

Type identifier in JavaScript
HmiTrendCompanion

Properties (RT Uni)

Properties
The "TrendCompanion" object has the following properties:

Properties Type Access Description
Authorization Object read

only
Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

Caption String read/
write

Specifies the text to be displayed in the
header.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags
which influence the object specified.

Enabled Bool read/
write

Specifies whether the specified object can
be operated in runtime.

HasFocus Bool read
only

Returns whether the object has the focus in
runtime.

Height UInt32 read/
write

Specifies the height.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
658 System Manual, 11/2019, Online help printout

Properties Type Access Description
Icon String read/

write
Specifies the icon.

IsAuthorized Bool read
only

Returns whether the current user has suf‐
ficient rights.

Layer Object read
only

Returns the layer of the screen that con‐
tains the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies
it.

RenderingTemplate String read
only

Returns the "RenderingTemplate" proper‐
ty.

ShowAlways Bool read/
write

Specifies whether the TrendCompanion
can be closed.

SnapToSourceControl Bool read/
write

Specifies whether the TrendCompanion
snaps to the window of the associated
TrendControls.

SourceTrendControl Object read
only

Returns the "SourceTrendControl" object.

StatusBar Object read
only

Returns the "StatusBar" object.

StyleItemClass String read/
write

Specifies the style which is applied to the
object.

TabIndex UInt16 read
only

Returns the position of the object in the tab
order.

TimeZone HmiTimeZone read/
write

Specifies the time zone.

ToolBar Object read
only

Returns the "ToolBar" object.

Top Int32 read/
write

Specifies the value of the Y coordinate.

TrendCompanionMode HmiTrendCompa‐
nionMode

read/
write

Specifies the window display of the Trend‐
Companion.
● Ruler (0): Reading aid
● StatisticArea (1): Statistics area
● StatisticResult (2): Statistics result

TrendRulerView Object read/
write

Specifies the ruler window of the Trend‐
Companion.

TrendStatisticAreaView Object read
only

Returns the "TrendStatisticAreaView" ob‐
ject.

TrendStatisticResult‐
View

Object read
only

Returns the "TrendStatisticResultView" ob‐
ject.

UseSourceControl‐
BackColor

Bool read/
write

Specifies whether the background color of
the table is taken from the associated
TrendControl.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 659

Properties Type Access Description
UseSourceControl‐
TrendColors

Bool read/
write

Specifies whether the font color of the table
is taken from the associated TrendControl.

Visible Bool read/
write

Specifies whether the selected object is
visible.

Width UInt32 read/
write

Specifies the width.

WindowFlags HmiWindowFlag read/
write

Specifies the properties of the window.
● None (0): Use default setting of the ob‐

ject
● ShowCaption (1): Show title
● ShowBorder (2): Show border
● AlwaysOnTop (4): Always on top
● CanSize (8): Can be sized CanMove

(16): Can be positioned
● CanMaximize (32): Can be maximized
● CanClose (64): Can be closed

Methods of "TrendCompanion" (RT Uni)

Overview (RT Uni)

Methods
The "TrendCompanion" object has the following methods:

Methods Description
-

"TrendControl" object (RT Uni)

"TrendControl" description (RT Uni)

Description
Represents the "Trend control" object.

Type identifier in JavaScript
HmiTrendControl

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
660 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "TrendControl" object has the following properties:

Properties Type Access Description
AlwaysShow‐
Recent

Bool read/
write

Specifies whether the newest alarm is displayed at the be‐
ginning or end of the list based on the sorting.

AreaSpacing UInt16 read/
write

Specifies the distance between trend windows.

Authorization Object read
only

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

Caption String read/
write

Specifies the text to be displayed in the header.

CurrentQuality HmiQuality read
only

Returns the poorest quality code of all tags which influence
the object specified.

Enabled Bool read/
write

Specifies whether the specified object can be operated in
runtime.

ExtendRuler‐
ToAxis

Bool read/
write

Specifies whether the ruler is extended.

Font Object read/
write

Specifies the font of the text.

HasFocus Bool read
only

Returns whether the object has the focus in runtime.

Height UInt32 read/
write

Specifies the height.

Icon String read/
write

Specifies the icon.

IsAuthorized Bool read
only

Returns whether the current user has sufficient rights.

Layer Object read
only

Returns the layer of the screen that contains the object.

Left Int32 read/
write

Specifies the value of the X coordinate.

Legend Object read/
write

Returns the "Legend" object.

Margin Object read/
write

Specifies the margin.

Name String read
only

Returns the name of the object or specifies it.

Online Bool read/
write

Specifies the start and stop of the updating.

Rendering‐
Template

String read
only

Returns the "RenderingTemplate" property.

ShiftAxis Bool read/
write

Specifies whether the X axis and Y axis of the control are
exchanged.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 661

Properties Type Access Description
ShowRuler Bool read/

write
Specifies whether a scale division (help line) is displayed for
an axis label of the object.

ShowStatis‐
ticRulers

Bool read/
write

Specifies whether the ruler is shown for the statistics area.

StatusBar Object read/
write

Returns the "StatusBar" object.

StyleItemClass String read/
write

Specifies the style which is applied to the object.

TabIndex UInt16 read
only

Specifies the position of the object in the tab order.

TimeZone HmiTime‐
Zone

read/
write

Specifies the time zone.

ToolBar Object read/
write

Returns the "ToolBar" object.

Top Int32 read/
write

Specifies the value of the Y coordinate.

TrendAreas Object read
only

Returns the "TrendAreas" object.

Visible Bool read/
write

Specifies whether the selected object is visible.

Width UInt32 read/
write

Specifies the width.

WindowFlags HmiWin‐
dowFlag

read/
write

Specifies the properties of the window.
● None (0): Use default setting of the object
● ShowCaption (1): Show title
● ShowBorder (2): Show border
● AlwaysOnTop (4): Always on top
● CanSize (8): Can be sized
● CanMove (16): Can be positioned
● CanMaximize (32): Can be maximized
● CanClose (64): Can be closed

Methods of "TrendControl" (RT Uni)

Overview (RT Uni)

Methods
The "TrendControl" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
662 System Manual, 11/2019, Online help printout

7.8.1.12 "SysFct" object (RT Uni)

"SysFct" description (RT Uni)

Description

The "SysFct" object ("HMISysFct" type) enables access to system functions.

Type identifier in JavaScript
HMISysFct

Properties (RT Uni)

Description
The "SysFct" object has the following properties:

Properties Type Access Description
-

Methods of "SysFct" (RT Uni)

Overview (RT Uni)

Methods
The "SysFct" object has the following methods:

Methods Description
StopRuntime Terminates runtime

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 663

"StopRuntime" method (SysFct.StopRuntime) (RT Uni)

"StopRuntime" method
Terminates runtime.

Member
Method of the "SysFct" object

Syntax
HMIRuntime.SysFct.StopRuntime();

Parameters
-

Return value
ErrorCode

7.8.1.13 "Tags" area (RT Uni)

"Tags" object (RT Uni)

"Tags" description (RT Uni)

Description

The "Tags" object ("HMITags" type) allows you access to tags in runtime. By default, you
reference a "Tag" object ("HMITag" type) through the "Tags" object. The "Tag" object gives you
access to all properties and methods of the tags.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
664 System Manual, 11/2019, Online help printout

Use

Note

The "Tags" object is not a listing like, for example the objects "TagSet" or "AlarmSet", but rather
a Factory. You therefore generate an instance of the "Tag" object through the tag name.

The "Tag" objects cannot be counted and enumerated like conventional lists.

The Tags object declares tags ("Tag" objects) for read and write access. The appropriate HMI
tags must exist for the read and write access to be executed without errors.

To reduce the use of the "Tags" object, you can also use the alias Tags for
HMIRuntime.Tags.

Type identifier in JavaScript
HMITags

Properties (RT Uni)

Properties
The "Tags" object has the following properties:

Properties Type Access Description
-

Methods of "Tags" (RT Uni)

Methods
The "Tags" object has the following methods:

Methods Description
CreateTagSet Creates a new "TagSet" object (type "HMITagSet").
Item Returns a new instance of a "Tag" object.

See also
"Item" method (Tags.Item) (Page 666)

"CreateTagSet" method (Tags.CreateTagSet) (Page 666)

"TagSet" description (Page 683)

Overview (Page 673)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 665

"CreateTagSet" method (Tags.CreateTagSet) (RT Uni)

Description
Creates a new "TagSet" object (type "HMITagSet"). The "TagSet" object can be filled with one
or multiple tags.

You use the returned "TagSet" object for optimized read and write access to multiple tags.

Member
Method of the "Tag" object

Syntax
[HMIRuntime.]Tags.CreateTagSet([tagNameArray]);

Note

The HMIRuntime. part of the expression is not required. The alias Tags stands
for HMIRuntime.Tags.

Parameter

tagNameArray
Optional, type: String or String[]

Name of a tag or array with names of multiple tags that are added to the "TagSet" object.
Without parameters, an empty "TagSet" object is created.

Return value
Object of the type "HMITagSet"

See also
Methods of "Tags" (Page 665)

"TagSet" description (Page 683)

"Item" method (Tags.Item) (RT Uni)

Description
Returns a new instance of a "Tag" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
666 System Manual, 11/2019, Online help printout

Member
Method of the "Tags" object

Syntax
[HMIRuntime.]Tags[.Item](tagName);

Note

The HMIRuntime. part of the expression is not required. The alias Tags stands
for HMIRuntime.Tags.

The .Item part of the expression is not required. The "Item" method is the standard method of
the "Tags" object.

Parameter

tagname
Type: String

Tag name of a "Tag" object.

Note

The "Tags" object is a Factory. Tags are only referenced through their configured name.

Return value
Object of the type "HMITag"

See also
Methods of "Tags" (Page 665)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 667

"Tag" object (RT Uni)

"Tag" description (RT Uni)

Description

The "Tag" object (type "HMITag") represents an HMI tag in runtime. A "Tag" object is returned
by the "Tags" object or the "TagSet" list. The "Tag" object gives you access to all properties and
methods of a tag.

Type identifier in JavaScript
HMITag

Properties (RT Uni)

Properties
The "Tag" object has the following properties:

Properties Type Access Description
ErrorDescription String read Returns a description of the error code for the

last faulty access.
LastError Error‐

Code
read Returns an error code for the last faulty read

or write operation.
Name String read Returns the name of the object or specifies it.
QualityCode (Page 670) UInt32 read/

write
Returns the quality level of a tag value after
reading a tag.

TimeStamp Date‐
Time

read/
write

Returns the time stamp of the last read oper‐
ation.
The value 0 is returned after writing or failed
reading.

Value Variant read/
write

Specifies a value for the object being used or
returns it.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
668 System Manual, 11/2019, Online help printout

Value after initialization
The properties of the "Tag" object include the following values after initialization of the object:

Property After successful initialization
Name Tag name (unchanged)
Value VT_EMPTY
QualityCode BAD NON-SPECIFIC
TimeStamp 0
LastError 0
ErrorDescription ""

Values after a read operation
The properties of the "Tag" object include the following values after the last read operation:

Property After successful read operation After unsuccessful read opera‐
tion

Name Tag name (unchanged)
Value Current tag value VT_EMPTY
QualityCode Quality level BAD OUT OF SERVICE
TimeStamp Current time stamp of tag 0
LastError 0 Error code of read operation
ErrorDescription "" Description of the error code

Values after a write operation
The properties of the "Tag" object include the following values after the last write operation:

Property After successful write operation After unsuccessful write opera‐
tion

Name Tag name (unchanged)
Value Current value of the "Tag" object (unchanged)
QualityCode BAD OUT OF SERVICE
TimeStamp 0
LastError 0 Error code of write operation
ErrorDescription "" Description of the error code

See also
"QualityCode" property (Page 670)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 669

Special properties (RT Uni)

"QualityCode" property (RT Uni)

Description
Returns the quality level of a tag value after reading a tag.

The quality code has the binary 8-bit structure QQSSSLL. The first two positions (QQ) of the
quality code define the quality of the tag value:

Quality Description Q Q S S S S L L
Bad Tag value cannot be used. 0 0 - - - - - -
Uncertain Quality of the tag value is worse than usual. However, it

might still be possible to use the tag value.
0 1 - - - - - -

Good (Non-Cas‐
cade)

Quality of the tag value is good. Attention should be paid
to substatus.

1 0 - - - - - -

Good (Cascade) Quality of the tag value is good. Tag value could be used. 1 1 - - - - - -

Positions 3 to 6 (SSSS) of the quality code specify the substatus of the quality. Positions 7 and
8 (LL) are optional and define possible limits.

Syntax
Object.QualityCode

Object
Required. An object from the "Availability" section.

Quality code of tags
The realized quality codes are listed in the following table. The table begins with the worst
quality code and ends with the best quality code. The best quality code has the lowest priority,
while the worst quality has the highest priority. If several statuses occur simultaneously for a tag
in the processing chain, the poorest code is passed on.

Code
(hex)

Quality Description Q Q S S S S L L

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3F Bad Function check - Local override 0 0 1 1 1 1 1 1
0x1C Bad Out of Service - The value is not reliable be‐

cause the block is not being evaluated, and
may be under construction by a configurer.
Set if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good (Non-Cas‐

cade)
Active Update event - Set if the value is good
and the block has an active Update event.

1 0 0 0 0 1 - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
670 System Manual, 11/2019, Online help printout

Code
(hex)

Quality Description Q Q S S S S L L

0x24 Bad Maintenance alarm - More diagnostics availa‐
ble.

0 0 1 0 0 1 - -

0x18 Bad No Communication, with no usable value - Set
if there has never been any communication
with this value since it was last "Out of Serv‐
ice".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value -
Set if this value had been set by communica‐
tion, which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value
is affected by a device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to

be connected and is not connected.
0 0 0 0 1 0 - -

0x04 Bad Configuration Error - Set if the value is not
useful because there is some inconsistency
regarding the parameterization or configura‐
tion, depending on what a specific manufac‐
turer can detect.

0 0 0 0 0 1 - -

0x00 Bad Non-specific - There is no specific reason why
the value is bad. Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value

is written by the operator while the block is in
manual mode.

0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the

value lies outside of the set of values defined
for this parameter. The Limits define which di‐
rection has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters dur‐

ing and after reset of the device or of a param‐
eter.

0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used in‐
stead of the calculated one. This is used for fail
safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this
value has stopped doing so. This is used for
fail safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why
the value is uncertain.

0 1 0 0 0 0 - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 671

Code
(hex)

Quality Description Q Q S S S S L L

0xE0 Good (Cascade) Initiate Fail Safe (IFS) - The value is from a
block that wants its downstream output block
(e.g. AO) to go to Fail Safe.

1 1 1 0 0 0 - -

0xD8 Good (Cascade) Local Override (LO) - The value is from a block
that has been locked out by a local key switch
or is a Complex AO/DO with interlock logic ac‐
tive. The failure of normal control must be
propagated to a function running in a host sys‐
tem for alarm and display purposes. This also
implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good (Cascade) Do Not Select (DNS) - The value is from a
block which should not be selected, due to
conditions in or above the block.

1 1 0 1 0 1 - -

0xCC Good (Cascade) Not Invited (NI) - The value is from a block
which does not have a target mode that would
use this input.

1 1 0 0 1 1 - -

0xC8 Good (Cascade) Initialization Request (IR) - The value is an in‐
itialization value for a source (back calculation
input parameter), because the lower loop is
broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good (Cascade) Initialization Acknowledge (IA) - The value is
an initialized value from a source (cascade in‐
put, remote-cascade in, and remote-output in
parameters).

1 1 0 0 0 1 - -

0xC0 Good (Cascade) OK - No error or special condition is associ‐
ated with this value.

1 1 0 0 0 0 - -

0xA0 Good (Non-Cas‐
cade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good (Non-Cas‐
cade)

Unacknowledged Critical Alarm - Set if the val‐
ue is good and the block has an unacknowl‐
edged Alarm with a priority greater than or
equal to 8.

1 0 0 1 1 0 - -

0x94 Good (Non-Cas‐
cade)

Unacknowledged Advisory Alarm - Set if the
value is good and the block has an unacknowl‐
edged Alarm with a priority less than 8.

1 0 0 1 0 1 - -

0x90 Good (Non-Cas‐
cade)

Unacknowledged Update event - Set if the val‐
ue is good and the block has an unacknowl‐
edged Update event.

1 0 0 1 0 0 - -

0x8C Good (Non-Cas‐
cade)

Active Critical Alarm - Set if the value is good
and the block has an active Alarm with a pri‐
ority greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good (Non-Cas‐
cade)

Active Advisory Alarm - Set if the value is good
and the block has an active Alarm with a pri‐
ority less than 8.

1 0 0 0 1 0 - -

0xA8 Good (Non-Cas‐
cade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good (Non-Cas‐
cade)

Maintenance required 1 0 1 0 0 1 - -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
672 System Manual, 11/2019, Online help printout

Code
(hex)

Quality Description Q Q S S S S L L

0xBC Good (Non-Cas‐
cade)

Function check - Local override 1 0 1 1 1 1 - -

0x80 Good (Non-Cas‐
cade)

OK - No error or special condition is associ‐
ated with this value.

1 0 0 0 0 0 - -

Limit
The quality codes can be further subdivided by limits. Limits are optional.

Description Q Q S S S S L L
O.K. - The value is free to move. - - - - - - 0 0
Low limited - The value has acceded its low limits. - - - - - - 0 1
High limited - The value has acceded its high limits. - - - - - - 1 0
Constant (high and low limited) - The value cannot move, no matter what the
process does.

- - - - - - 1 1

See also
Properties (Page 668)

Methods of "Tag" (RT Uni)

Overview (RT Uni)

Methods
The "Tag" object has the following methods:

Methods Description
Decrease Reduces the current tag value in the AS by the specified value.
Increase Increases the current tag value in the AS by the specified value.
Read Reads a tag ("Tag" object).
ResetBit Deletes a bit of the tag in the AS.
SetBit Sets a bit of the tag in the AS.
Write Write tag to AS.
WriteQCD Writes the values of the tag ("Tag" object).
WriteWithOperatorMessage Writes the values of the tag ("Tag" object) and subsequently trig‐

gers an operator input alarm.

See also
"Decrease" method (Tag.Decrease) (Page 674)

"Increase" method (Tag.Increase) (Page 675)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 673

"Read" method (Tag.Read) (Page 676)

"ResetBit" method (Tag.ResetBit) (Page 677)

"SetBit" method (Tag.SetBit) (Page 679)

"Write" method (Tag.Write) (Page 680)

"WriteQCD" method (Tag.WriteQCD) (Page 681)

"WriteWithOperatorMessage" method (Tag.WriteWithOperatorMessage) (Page 682)

"Decrease" method (Tag.Decrease) (RT Uni)

Description
Reduces the current tag value in the AS by the specified value. The value is written directly to
the AS and not returned to the "Tag" object. If you need the changed tag value, execute a
"Read" method.

The method prevents multiple transfer of the tag value for reading, calculating and writing.

The method executes an asynchronous write operation without blocking further script
execution. The method uses a Promise object to do this which has handlers for the successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern with the error code as parameter is called after
the execution. In case of a successful execution, the handler will always receive the error code
"0".

For the method to be executed, the value of the tags must be current and valid, which means
the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.Decrease(value)
.then(function(ErrorCode) {
 ...
})

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
674 System Manual, 11/2019, Online help printout

.catch(function(ErrorCode) {
 ...
});

Parameters

value
Type: Variant

Numerical value by which the current tag value is decreased in the AS.

Return value
Depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
Overview (Page 673)

"Increase" method (Tag.Increase) (RT Uni)

Description
Increases the current tag value in the AS by the specified value. The value is written directly to
the AS and not returned to the "Tag" object. If you need the changed tag value, execute a
"Read-" method.

The method prevents multiple transfer of the tag value for reading, calculating and writing.

The method executes an asynchronous write operation without blocking further script
execution. The method uses a Promise object to do this which has handlers for the successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern with the error code as parameter is called after
the execution. In case of a successful execution, the handler will always receive the error code
"0".

For the method to be executed, the value of the tags must be current and valid, which means
the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 675

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.Increase(value)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

value
Type: Variant

Numerical value by which the current tag value is increased in the AS.

Return value
Depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
Overview (Page 673)

"Read" method (Tag.Read) (RT Uni)

Description
Reads a tag ("Tag" object). The value, the Quality Code and the time stamp of the tag are
determined when the tag is read.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
676 System Manual, 11/2019, Online help printout

The tags are either read from the tag image (cache) or directly from the AS. When the tag image
is used, the method registers all tags that are not yet registered. You should use the tag image
for cyclic readout of tags. Use the direct readout (hmiReadDirect) only if you do not need the tag
value cyclically or if the update cycle of the tag is too large.

The method executes a synchronous read operation. When completed, you can use the ""
properties "LastError" and "ErrorDescription" to determine if the execution was successful.

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.Read([readType]);

Parameters

readType
Optional, type: hmiReadType

Origin of the tag values:

● 0 (hmiReadCache) or empty
Reads the tag value from the tag image. If no registration exists, the tag is registered. For
high-performance access you should define the utilized tags as triggers of the script.

● 1 (hmiReadDirect)
Reads the tag value directly from the AS. The tag image is not used.

Return value
Variant

See also
Overview (Page 673)

"ResetBit" method (Tag.ResetBit) (RT Uni)

Description
Deletes a bit of the tag in the AS. The bit of the tag is written directly to the AS and not returned
to the "Tag" object. If you need the changed tag value, execute a "Read" method.

The method prevents multiple transfer of the tag value for reading, calculating and writing.

The method executes an asynchronous write operation without blocking further script
execution. The method uses a Promise object to do this which has handlers for the successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, the

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 677

corresponding handler of the Promise pattern with the error code as parameter is called after
the execution. In case of a successful execution, the handler will always receive the error code
"0".

For the method to be executed, the value of the tags must be current and valid, which means
the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.ResetBit(BitNumber)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag

Bit of the tag that is set to "0" (FALSE).

Return value
Depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
678 System Manual, 11/2019, Online help printout

See also
Overview (Page 673)

"SetBit" method (Tag.SetBit) (RT Uni)

Description
Sets a bit of the tag in the AS. The bit of the tag is written directly to the AS and not returned to
the "Tag" object. If you need the changed tag value, execute a "Read" method.

The method prevents multiple transfer of the tag value for reading, calculating and writing.

The method executes an asynchronous write operation without blocking further script
execution. The method uses a Promise object to do this which has handlers for the successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern with the error code as parameter is called after
the execution. In case of a successful execution, the handler will always receive the error code
"0".

For the method to be executed, the value of the tags must be current and valid, which means
the quality code must correspond to Good (cascade).

For internal tags, either

● a start value must be configured, or

● the current value was written by an object, e.g. a script or an I/O field, or

● the current value was generated by tag retentivity.

The following conditions must be met for external tags:

● the connection to the PLC is set up and

● the acquisition mode of the tags is "Cyclic in operation" and

● the tag is used by an object, e.g. an I/O field.

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.SetBit(BitNumber)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 679

Parameters

BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag

Bit of the tag that is set to "1" (TRUE).

Return value
Depending on the status of the Promise object:

● Promise successful (fulfilled)
ErrorCode "0" as parameter of the "then()" handler

● Promise failed ("rejected")
ErrorCode as parameter of the "catch()" handler

See also
Overview (Page 673)

"Write" method (Tag.Write) (RT Uni)

Description
Writes the values of the tag ("Tag" object). You must first set the values of the individual tags
with the "Value" property. The value of the "Value" property must not correspond to the actual
value of the tag once the write operation is complete. If you want to update the information for
the tags, execute a "Read" method.

If the method waits for the write operation to be completed (hmiWriteWait), the properties
"LastError" and "ErrorDescription" are also written for each tag. This enables you to determine
if the execution was successful. If you need the result of the write operation without blocking the
script execution, use the "WriteAsync" method of the "TagSet" object.

The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.

The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.Write([value],[writeType]);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
680 System Manual, 11/2019, Online help printout

Parameters

value
Optional, type: Variant

Writes the tag value:

● Specify value
The specified value overwrites the current value of the "Value" property of the tag.

● Without value
The current value of the "Value" property of the tag is written.

writeType
Optional, type: hmiWriteType

Specifies if the method waits for the write operation to be completed:

● 0 (hmiWriteNoWait) or empty
Writes the tag value without waiting. Errors for the write operation are not detected.

● 1 (hmiWriteWait)
Waits until the tag value is written to the AS. The properties "LastError" and
"ErrorDescription" of the tags are written.

Return value
ErrorCode

See also
Overview (Page 673)

"WriteQCD" method (Tag.WriteQCD) (RT Uni)

Description
Writes the values of an internal tag (Tag object), including its quality code and time stamp, both
synchronously and asynchronously.

When you call the method for an external tag, it writes the quality code and time stamp
predefined by the system, not the one defined by the user.

Use this method to import already logged tag values from a third-party runtime system to
WinCC Unified.

Member
Method of the "Tag" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 681

Syntax
HMIRuntime.Tag.WriteQCD([value],[writeType],[TimeStamp],
[QualityCode]);

Parameters

value
Optional, type: Variant

Writes the tag value.

writeType
Optional, type: hmiWriteType

Specifies whether the method waits for the write operation to be completed (hmiWriteWait)
or not (hmiWriteNoWait, default).

TimeStamp
Optional, type: DateTime

Writes the time stamp.

QualityCode
Optional, type: UInt32

Writes this quality code.

Return value
ErrorCode

"WriteWithOperatorMessage" method (Tag.WriteWithOperatorMessage) (RT Uni)

Description
Writes the values of the tag ("Tag" object) and subsequently triggers an operator input alarm.
The value of the "Value" property must not correspond to the actual value of the tag once the
write operation is complete. If you want to update the information for the tags, execute a "Read"
method.

In addition to the reason, the triggered operation message contains the old and new value, the
user and host names and the unit.

Once the write operation is completed, the properties "LastError" and "ErrorDescription" are
also written for each tag. This enables you to determine if the execution was successful.

The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.

The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
682 System Manual, 11/2019, Online help printout

Member
Method of the "Tag" object

Syntax
HMIRuntime.Tag.WriteWithOperatorMessage(value,reason);

Parameters

value
Type: Variant

Tag value. The specified value overwrites the current value of the "Value" property of the tags.

reason
Type: String

Reason for the value change of the triggered message

Return value
ErrorCode

See also
Overview (Page 673)

"TagSet" object (RT Uni)

"TagSet" description (RT Uni)

Description

The "TagSet" object ("HMITagSet" type) is a list of "Tag" objects that gives you optimized
access to tags in Runtime. After initialization of the "TagSet" object, you can execute read and
write access to multiple tags in one call. Access demonstrates better performance and lower
communication load than single access to multiple tags.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 683

You reference a "TagSet" object through the "Tags" object or create a new "TagSet" object with
the "Tags.CreateTagSet" method.

By default, you access a "Tag" object (type "HMITag") through the "TagSet" object. The "Tag"
object gives you access to all properties and methods of the tags.

Use
The "TagSet" object is a list and can be counted and enumerated. You can access the "TagSet"
list using the index or the tag name.

The appropriate HMI tags must exist for the read and write access to tags ("Tag" objects) of the
list to be executed without errors. If a read or write access error has occurred, can be read out
with the properties "LastError" and "ErrorDescription" once the methods have been executed.

Type identifier in JavaScript
HMITagSet

See also
"Add" method (TagSet.Add) (Page 685)

"Item" method (TagSet.Item) (Page 687)

"Remove" method (TagSet.Remove) (Page 691)

"Clear()" method (TagSet.Clear) (Page 686)

"Read" method (TagSet.Read) (Page 688)

"ReadMaxAge" method (TagSet.ReadMaxAge) (Page 689)

"ReadAsync" method (TagSet.ReadAsync) (Page 690)

"Write" method (TagSet.Write) (Page 692)

"WriteWithOperatorMessage" method (TagSet.WriteWithOperatorMessage) (Page 694)

"WriteAsync" method (TagSet.WriteAsync) (Page 693)

Methods of "Tags" (Page 665)

"CreateTagSet" method (Tags.CreateTagSet) (Page 666)

Overview (Page 673)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
684 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "TagSet" object has the following properties:

Properties Type Access Description
Count UInt32 read Returns the number of elements in the specified list.
ErrorDescription String read Returns a description of the error code for the last faulty ac‐

cess.
LastError Error‐

Code
read Returns an error code for the last faulty read or write opera‐

tion.

Methods (RT Uni)

Overview (RT Uni)

Methods
The "TagSet" object has the following methods:

Methods Description
Add Adds a tag ("Tag" object) to the "TagSet" list.
Clear Removes all tags ("Tag" objects) from the "TagSet" list.
Item Returns a "Tag" object of the "TagSet" list.
Read Reads in all tags ("Tag" objects) of the "TagSet" list.
ReadAsync Reads in all tags ("Tag" objects) of the "TagSet" list.
ReadMaxAge Reads in all tags ("Tag" objects) of the "TagSet" list and ensures

that these are not older than the specified time period (maxAge).
Remove Removes a tag ("Tag" object) from the "TagSet" list using its tag

name.
Write Writes the values of all tags ("Tag" objects) of the "TagSet" list.
WriteAsync Writes the values of all tags ("Tag" objects) of the "TagSet" list.
WriteWithOperatorMessage Writes the values of all tags ("Tag" objects) of the "TagSet" list and

then triggers an operator input alarm for each tag.

"Add" method (TagSet.Add) (RT Uni)

Description
Adds a tag ("Tag" object) to the "TagSet" list. The tags are referenced by the name.

Member
Method of the "TagSet" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 685

Syntax
HMIRuntime.TagSet.Add(tag);

Parameters

tag
Type: String

Names of "Tag" objects that are added to the list.

The following data types are supported:

● Tag name

● Array with tag names

● Two-dimensional array with tag name/value pairs

Note

No "Tag" object can be transferred as a parameter. A "Tag" object is referenced using the name.

Return value
Array with objects of type "HMITag"

See also
"TagSet" description (Page 683)

"Clear()" method (TagSet.Clear) (RT Uni)

Description
Removes all tags ("Tag" objects) from the "TagSet" list.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.Clear();

Parameter
--

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
686 System Manual, 11/2019, Online help printout

Return value
--

See also
"TagSet" description (Page 683)

"Item" method (TagSet.Item) (RT Uni)

Description
Returns a "Tag" object of the "TagSet" list.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet[.Item](name);

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "TagSet" object.

Parameter

name
Type: String

Tag name or index number (1...n) of a "Tag" object in the list

Note

The index number of a "Tag" object does not represent the order in which the "Tag" objects
were added to the TagSet list.

Return value
Object of the type "HMITag"

See also
"TagSet" description (Page 683)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 687

"Read" method (TagSet.Read) (RT Uni)

Description
Reads in all tags ("Tag" objects) of the "TagSet" list. The value, the Quality Code and the time
stamp of all tags are determined when the tag is read.

The tags are either read from the tag image (cache) or directly from the AS. When the tag image
is used, the method registers all tags that are not yet registered. You should use the tag image
for cyclic readout of tags. Use the direct readout (hmiReadDirect) only if you do not need the tag
value cyclically or if the update cycle of the tag is too large.

The method executes a synchronous read operation. When completed, you can use the
"TagSet" properties "LastError" and "ErrorDescription" to determine if the execution was
successful.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.Read([readType]);

Parameter

readType
Optional, type: hmiReadType

Origin of the tag values:

● 0 (hmiReadCache) or empty
Reads the tag value from the tag image. If no registration exists, the tag is registered. For
high-performance access you should define the utilized tags as triggers of the script.

● 1 (hmiReadDirect)
Reads the tag value directly from the AS. The tag image is not used.

Return value
--

See also
"TagSet" description (Page 683)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
688 System Manual, 11/2019, Online help printout

"ReadMaxAge" method (TagSet.ReadMaxAge) (RT Uni)

Description
Reads in all tags ("Tag" objects) of the "TagSet" list and ensures that these are not older than
the specified time period (maxAge). The value, the Quality Code and the time stamp of all tags
are determined when the tag is read.

The tags are read either from the process image (maxAge>0) or directly from the AS
(maxAge=0). The method does not use the tag image and does not register tags. You should
not use this method for cyclic readout of tags.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"TagSet" object or the error code as parameter.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.ReadMaxAge(maxAge)
.then(function(HMITagSet) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

maxAge
Type: UInt32

Time interval in milliseconds after which a tag value must be updated.

● maxAge = 0
Read tag value immediately directly from the AS.

● maxAge > 0
Read tag value from process image according to time stamp.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 689

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMITagSet" as parameter of the "then()" handler.

● Promise rejected
Error code as parameter of the "catch()" handler. This status only exists when all tags of the
"TagSet" object could not be read.

See also
"TagSet" description (Page 683)

"ReadAsync" method (TagSet.ReadAsync) (RT Uni)

Description
Reads in all tags ("Tag" objects) of the "TagSet" list. The value, the Quality Code and the time
stamp of all tags are determined when the tag is read.

The tags are either read from the tag image (cache) or directly from the AS. When the tag image
is used, the method registers all tags that are not yet registered. You should use the tag image
for cyclic readout of tags. Use the direct readout (hmiReadDirect) only if you do not need the tag
value cyclically or if the update cycle of the tag is too large.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"TagSet" object or the error code as parameter.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.ReadAsync([readType])
.then(function(HMITagSet) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

readType
Optional, type: hmiReadType

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
690 System Manual, 11/2019, Online help printout

Origin of the tag values:

● 0 (hmiReadCache) or empty
Reads the tag value from the tag image. If no registration exists, the tag is registered. For
high-performance access you should define the utilized tags as triggers of the script.

● 1 (hmiReadDirect)
Reads the tag value directly from the AS. The tag image is not used.

Return
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMITagSet" as parameter of the "then()" handler.

● Promise rejected
Error code as parameter of the "catch()" handler. This status only exists when all tags of the
"TagSet" object could not be read.

See also
"TagSet" description (Page 683)

"Remove" method (TagSet.Remove) (RT Uni)

Description
Removes a tag ("Tag" object) from the "TagSet" list using its tag name.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.Remove(tag);

Parameters

tag
Type: String

Removes a "Tag" object from the "TagSet" list.

The following data types are supported:

● Tag name

● Array with tag names

● Two-dimensional array with tag name/value pairs

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 691

Note

No "Tag" object can be transferred as a parameter. A "Tag" object is referenced using the name.

Return value
--

See also
"TagSet" description (Page 683)

"Write" method (TagSet.Write) (RT Uni)

Description
Writes the values of all tags ("Tag" objects) of the "TagSet" list. You must first set the values of
the individual tags with the "Value" property. The value of the "Value" property must not
correspond to the actual value of the tag once the write operation is complete. If you want to
update the information for the tags, execute a "Read" method.

If the method waits for the write operation to be completed (hmiWriteWait), the properties
"LastError" and "ErrorDescription" are also written for each tag. This enables you to determine
if the execution was successful. If you need the result of the write operation without blocking the
script execution, use the "WriteAsync" method.

The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.

The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.Write([writeType]);

Parameter value

writeType
Optional, type: hmiWriteType

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
692 System Manual, 11/2019, Online help printout

Specifies if the method waits for the write operation to be completed:

● 0 (hmiWriteNoWait) or empty
Writes the tag value without waiting. Errors for the write operation are not detected.

● 1 (hmiWriteWait)
Waits until the tag value is written to the AS. The properties "LastError" and
"ErrorDescription" of the tags are written.

Return
--

See also
"TagSet" description (Page 683)

"WriteAsync" method (TagSet.WriteAsync) (RT Uni)

Description
Writes the values of all tags ("Tag" objects) of the "TagSet" list. You must first set the values of
the individual tags with the "Value" property. The value of the "Value" property must not
correspond to the actual value of the tag once the write operation is complete. If you want to
update the information for the tags, execute a "Read" method.

If the method waits for the write operation to be completed (hmiWriteWait), the properties
"LastError" and "ErrorDescription" are written for each tag. This enables you to determine if the
execution was successful.

The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.

The tags are written directly to the AS. The tag image and the process image are not used by
the method.

The method executes an asynchronous write operation without blocking further script
execution. The method uses a Promise object to do this which has handlers for the successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result, once
execution is complete the corresponding handler of the Promise pattern is called with the
"TagSet" object or the error code as parameter. An execution is only faulty ("Promise rejected")
when none of the tags of the "TagSet" object could be written.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.WriteAsync([writeType])
.then(function(HMITagSet) {
 ...
})

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 693

.catch(function(ErrorCode) {
 ...
});

Parameters

writeType
Optional, type: hmiWriteType

Specifies if the method waits for the write operation to be completed:

● 0 (hmiWriteNoWait) or empty
Writes the tag value without waiting. Errors for the write operation are not detected.

● 1 (hmiWriteWait)
Waits until the tag value is written to the AS. The properties "LastError" and
"ErrorDescription" of the tags are written.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMITagSet" as parameter of the "then()" handler.

● Promise rejected
Error code as parameter of the "catch()" handler. This status only exists when none of the
tags of the "TagSet" object could be written.

See also
"TagSet" description (Page 683)

"WriteWithOperatorMessage" method (TagSet.WriteWithOperatorMessage) (RT Uni)

Description
Writes the values of all tags ("Tag" objects) of the "TagSet" list and then triggers an operator
input alarm for each tag. You must first set the values of the individual tags with the "Value"
property. The value of the "Value" property must not correspond to the actual value of the tag
once the write operation is complete. If you want to update the information for the tags, execute
a "Read" method.

In addition to the reason, the triggered operation messages contain the old and new value, the
user and host names and the unit.

Once the write operation is completed, the properties "LastError" and "ErrorDescription" are
also written for each tag. This enables you to determine if the execution was successful. If you
need the result of the write operation without blocking the script execution, use the
"WriteAsync" method.

The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
694 System Manual, 11/2019, Online help printout

The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Member
Method of the "TagSet" object

Syntax
HMIRuntime.TagSet.WriteWithOperatorMessage(reason);

Parameters

reason
Type: String

Reason for the value change of the triggered messages

Return value
ErrorCode

See also
"TagSet" description (Page 683)

7.8.1.14 "TagLogging" area (RT Uni)

"TagLogging" object (RT Uni)

"TagLogging" description (RT Uni)

Description

The "TagLogging" object ("HMITagLogging" type) enables access to the logging tags of a
logging system.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 695

Type identifier in JavaScript
HMITagLogging

Properties (RT Uni)

Properties
The "TagLogging" object has the following properties:

Properties Type Access Description
-

Methods of "TagLogging" (RT Uni)

Overview (RT Uni)

Methods
The "TagLogging" object has the following methods:

Methods Description
CreateLoggedTagSet Creates a new "LoggedTagSet" object (type "HMILoggedTagSet").
LoggedTags References a logging tag ("LoggedTag" object) of a logging system.

"CreateLoggedTagSet" method (TagLogging.CreateLoggedTagSet) (RT Uni)

Description
Creates a new "LoggedTagSet" object (type "HMILoggedTagSet"). The "LoggedTagSet"
object can be filled with one or more logging tags.

You use the returned "LoggedTagSet" object for optimized read and write access to multiple
logging tags.

Member
Method of the "TagLogging" object

Syntax
[HMIRuntime.]TagLogging.CreateLoggedTagSet([loggedTagNameArray]);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
696 System Manual, 11/2019, Online help printout

Parameter

loggedTagNameArray
Optional, type: String or String[]

Logging tag name or array with names of multiple logging tags that are added to the
"LoggedTagSet" object. Without parameters, an empty "LoggedTagSet" object is created.

Return value
Object of the type "HMILoggedTagSet"

"LoggedTags" method (TagLogging.LoggedTags) (RT Uni)

Description
References a logging tag ("LoggedTag" object) of a logging system.

Member
Method of the "TagLogging" object

Syntax
[HMIRuntime.]TagLogging.LoggedTags(loggedTagName);

Parameter

loggedTagName
Type: String

Logging tag name of a "LoggedTag" object.

Return value
Object of the type "HMILoggedTag"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 697

"LoggedTagSet" object (RT Uni)

"LoggedTagSet" description (RT Uni)

Description

The "LoggedTagSet" object ("HMILoggedTagSet" type) is a list of "LoggedTag" objects that
gives you optimized access to logging tags. After initialization of the "LoggedTagSet" object,
you have read access to multiple logging tags in one call. Simultaneous access takes place with
better performance and lower communication load than single access to multiple logging tags.

You create a new "LoggedTagSet" object with the "TagLogging.CreateLoggedTagSet"
method.

Use
The "LoggedTagSet" object is a list and can be counted and enumerated. You can access the
"LoggedTagSet" list using the index or the tag name.

Type identifier in JavaScript
HMILoggedTagSet

Properties (RT Uni)

Properties
The "LoggedTagSet" object has the following properties:

Properties Type Access Description
Count UInt32 read

only
Returns the number of elements in the specified list.

Error Error‐
Code

read
only

Returns an error code for the last faulty read or write opera‐
tion. After a successful read or write operation, the value 0 is
returned. The error code always relates to the last method call
of the object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
698 System Manual, 11/2019, Online help printout

Methods of "LoggedTagSet" (RT Uni)

Overview (RT Uni)

Methods
The "LoggedTagSet" object has the following methods:

Methods Description
Add Adds logging tags ("LoggedTag" objects) to the "LoggedTagSet" list.
Clear Removes all tags ("LoggedTag" objects) from the "LoggedTagSet" list.
Item Returns a "LoggedTag" object of the "LoggedTagSet" list.
Read Reads out all logging tags ("LoggedTag" objects) of the "LoggedTag‐

Set" list.
Remove Removes logging tags ("LoggedTag" objects) using their names from

the "LoggedTagSet" list.

"Add" method (LoggedTagSet.Add) (RT Uni)

Description
Adds logging tags ("LoggedTag" objects) to the "LoggedTagSet" list. The logging tags are
referenced using the name.

Member
Method of the "LoggedTagSet" object

Syntax
[HMIRuntime.]TagLogging.LoggedTagSet.Add(loggedTags);

Parameters

loggedTags
Type: String or String[]

Names of "LoggedTag" objects that are added to the list.

The following data types are supported:

● Logging tag name

● Array with logging tag names

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 699

Note

No "LoggedTag" object can be transferred as a parameter. A "LoggedTag" object is referenced
using the name.

Return value
Array with objects of type "HMILoggedTag"

"Clear" method (LoggedTagSet.Clear) (RT Uni)

Description
Removes all tags ("LoggedTag" objects) from the "LoggedTagSet" list.

Member
Method of the "LoggedTagSet" object

Syntax
[HMIRuntime.]TagLogging.LoggedTagSet.Clear();

Parameter
--

Return value
--

"Item" method (LoggedTagSet.Item) (RT Uni)

Description
Returns a "LoggedTag" object of the "LoggedTagSet" list.

Member
Method of the "LoggedTagSet" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
700 System Manual, 11/2019, Online help printout

Syntax
[HMIRuntime.]TagLogging.LoggedTagSet[.Item](name);

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "LoggedTagSet" object.

Parameter

name
Type: String or Int32

Logging tag name or index number (1...n) of a "LoggedTag" object in the list

Note

The index number of a "LoggedTag" object does not describe the order in which the
"LoggedTag" objects were added to the "LoggedTagSet" list.

Return
Object of type "HMILoggedTag"

"Read" method (LoggedTagSet.Read) (RT Uni)

Description
Reads out all logging tags ("LoggedTag" objects) of the "LoggedTagSet" list. The value, the
Quality Code, the time stamp and context information of all logging tags are determined when
the logging tag is read.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, after
execution is complete, the corresponding handler of the Promise pattern is called with an array
with "LoggedTagResult" object or an error code as parameter.

Member
Method of the "TagSet" object

Syntax
[HMIRuntime.]TagLogging.LoggedTagSet.Read(dateFrom,dateTo,boundingVa
lue)
.then(function(HMILoggedTagResult) {

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 701

 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

dateFrom
Type: DateTIme

Start date of the time period

dateTo
Type: DateTIme

End date of the time period

boundingValue
Type: Bool

Specifies whether the limit values of the time period are transferred.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMILoggedTagResult" as parameter of the "then()" handler.

● Promise rejected
ErrorCode as parameter of the "catch()" handler. This status only exists when all logging
tags of the "LoggedTagSet" object could not be read.

"Remove" method (LoggedTagSet.Remove) (RT Uni)

Description
Removes logging tags ("LoggedTag" objects) using their names from the "LoggedTagSet" list.

Member
Method of the "LoggedTagSet" object

Syntax
[HMIRuntime.]TagLogging.LoggedTagSet.Remove(loggedTags);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
702 System Manual, 11/2019, Online help printout

Parameters

loggedTags
Type: String or String[]

Removes a "LoggedTag" object from the "LoggedTagSet" list.

The following data types are supported:

● Logging tag name

● Array with logging tag names

Note

No "LoggedTag" object can be transferred as a parameter. A "LoggedTag" object is referenced
using the name.

Return value
--

"LoggedTag" object (RT Uni)

"LoggedTag" description (RT Uni)

Description

The "LoggedTag" object ("HMILoggedTag" type) represents a logging tag of a logging system.
A "LoggedTag" object is returned by the "TagLogging" object or the "LoggedTagSet" list.

Type identifier in JavaScript
HMILoggedTag

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 703

Properties (RT Uni)

Properties
The "LoggedTag" object has the following properties:

Table 7-1 Properties

Properties Type Access Description
Name String read on‐

ly
Returns the name of the object or specifies it.

Methods of "LoggedTag" (RT Uni)

Overview (RT Uni)

Methods
The "LoggedTag" object has the following methods:

Methods Description
Read Reads out a logging tag ("LoggedTag" object) of a time period from a

logging system.

"Read" method (LoggedTag.Read) (RT Uni)

Description
Reads out a logging tag ("LoggedTag" object) of a time period from a logging system. The
value, the Quality Code, the time stamp and context information of the logging tag are
determined when the logging tag is read.

The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result, after
execution is complete, the corresponding handler of the Promise pattern is called with a
"LoggedTagResult" object or an error code as parameter.

Member
Method of the "LoggedTag" object

Syntax
[HMIRuntime.]TagLogging.LoggedTag.Read(dateFrom,dateTo,boundingValue
)
.then(function(HMILoggedTagResult) {

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
704 System Manual, 11/2019, Online help printout

 ...
})
.catch(function(ErrorCode) {
 ...
});

Parameters

dateFrom
Type: DateTIme

Start date of the time period

dateTo
Type: DateTIme

End date of the time period

boundingValue
Type: Bool

Specifies whether the limit values of the time period are transferred.

Return value
Depending on the status of the Promise object:

● Promise fulfilled
Object of type "HMILoggedTagResult" as parameter of the "then()" handler.

● Promise rejected
ErrorCode as parameter of the "catch()" handler.

"LoggedTagResult" object (RT Uni)

"LoggedTagResult" description (RT Uni)

Description

The "LoggedTagResult" object ("HMILoggedTagResult" type) enables access to the process
values of a logging tag.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 705

Use
The "LoggedTagResult" object is returned by a read operation of objects "LoggedTag" and
"LoggedTagSet" in the logging system. You have access to the process values of logging tags
and errors of read operations in the logging system.

Type identifier in JavaScript
HMILoggedTagResult

Properties (RT Uni)

Properties
The "LoggedTagResult" object has the following properties:

Properties Type Access Description
Error Error‐

Code
read/
write

Returns an error code for the last faulty read or write opera‐
tion. After a successful read or write operation, the value 0 is
returned. The error code always relates to the last method call
of the object.

Name String read/
write

Returns the name of the object or specifies it.

Values Object read/
write

Returns an array of process values including the quality code.

Methods of "LoggedTagResult" (RT Uni)

Overview (RT Uni)

Methods
The "LoggedTagResult" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
706 System Manual, 11/2019, Online help printout

"LoggedTagValueResult" object (RT Uni)

"LoggedTagValueResult" description (RT Uni)

Description

The "LoggedTagValueResult" object ("HMILoggedTagValueResult" type) represents the
process values of a logging tag.

Use
The "LoggedTagValueResult" object is referenced using the "LoggedTagResult.Values"
property. The object represents the process value with all associated context information.

Type identifier in JavaScript
HMILoggedTagValueResult

Properties (RT Uni)

Properties
The "LoggedTagValueResult" object has the following properties:

Properties Type Access Description
Flags (Page 708) HmiTagLoggingVa‐

lueFlags
read/
write

Returns context information on the process val‐
ue:

Quality
(Page 709)

UInt16
UInt32

read/
write

Returns the quality level.

TimeStamp DateTime read/
write

Returns the time stamp of the last read opera‐
tion.
The value 0 is returned after writing or failed
reading.

Value Variant read/
write

Specifies a value for the object being used or
returns it.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 707

See also
"Flags" property (Page 708)

"Quality" property (Page 709)

Special properties (RT Uni)

"Flags" property (RT Uni)

Description
Returns context information on the process value:

● extra (0): There are still additional values at the time of the process value.

● calculated (2): Process value is calculated.

● bounding (16): Process value is a limit value.

● noData (32): No additional information available

● firstStored (64): Process value is the first value stored in the logging system.

● lastStored (128): Process value is the last value stored in the logging system.

Type
HmiTagLoggingValueFlags

Access
Access depends on the object.

Availability
The property is available for the following objects:

● LoggedTagValueResult

Syntax
Object.Flags

Object
Required. An object from the "Availability" section.

See also
Properties (Page 707)

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
708 System Manual, 11/2019, Online help printout

"Quality" property (RT Uni)

Description
Returns the quality level.

● For "AlarmResult" and "LoggedAlarmStateResult" objects:
Returns the level for the data quality of the alarm state. The quality can have the values
"good", "uncertain" or "bad".
A valid alarm has the following properties:

– Quality = "good"

– InvalidFlags = 0

● For "LoggedTagValueResult" objects:
Returns the level for the quality of a process value of a logging tag.
For further information, see also property "QualityCode".

Type
● "AlarmResult" or "LoggedAlarmStateResult" objects: UInt16

● "LoggedTagValueResult" object: UInt32

Syntax
Object.Quality

Object
Required. An object from the "Availability" section.

See also
Properties (Page 707)

Methods of "LoggedTagValueResult" (RT Uni)

Overview (RT Uni)

Methods
The "LoggedTagValueResult" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 709

7.8.1.15 "Timers" object (RT Uni)

"Timers" description (RT Uni)

Description

The "Timers" object (type "HMITimers") allows you to control the script execution time through
one-time or cyclic timers. You can execute individual functions delayed or repeatedly.

Type identifier in JavaScript
HMITimers

Example
The execution of the "alertFunc" function is delayed:

Copy code
function setDelay() {
 var timerId = Timers.SetTimeout(alertFunc, 5000);
 function alertFunc() {
 alert("SetTimeout triggered");
 }
}

Properties (RT Uni)

Properties
The "Timers" object has the following properties:

Properties Type Access Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
710 System Manual, 11/2019, Online help printout

Methods of "Timers" (RT Uni)

Overview (RT Uni)

Methods
The "Timers" object has the following methods:

Methods Description
ClearInterval Deletes a timer object for cyclic execution of a function.
ClearTimeout Deletes a timer object for delayed execution of a function.
SetInterval Creates a timer object for cyclic execution of a function.
SetTimeout Creates a timer object for one-time, delayed execution of a function.

"ClearInterval" method (Timers.ClearInterval) (RT Uni)

Description
Deletes a timer object for cyclic execution of a function. You can delete a timer object at any
time prior to the next execution.

The method requires an ID for referencing the timer object. The ID is returned during the
creation of the timer object by the "SetInterval" method.

Member
Method of the "Timers" object

Syntax
HMIRuntime.Timers.ClearInterval(TimerID);

Parameters

TimerID
Type: Int32

ID of the timer object that is deleted. ID is returned by the "SetInterval" method during creation
of the timer object.

Return value
--

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 711

See also
"SetInterval" method (Timers.SetInterval) (Page 712)

"ClearTimeout" method (Timers.ClearTimeout) (RT Uni)

Description
Deletes a timer object for delayed execution of a function. You can delete a timer object at any
time prior to the execution.

The method requires an ID for referencing the timer object. The ID is returned during the
creation of the timer object by the "SetTimeout" method.

Member
Method of the "Timers" object

Syntax
HMIRuntime.Timers.ClearTimeout(TimerID);

Parameters

TimerID
Type: Int32

ID of the timer object that is deleted. ID is returned by the "SetTimeout" method during creation
of the timer object.

Return value
--

See also
"SetTimeout" method (Timers.SetTimeout) (Page 713)

"SetInterval" method (Timers.SetInterval) (RT Uni)

Description
Creates a timer object for cyclic execution of a function.

When a time interval has expired, a function is started and scheduled for a new execution
according to the time interval.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
712 System Manual, 11/2019, Online help printout

Member
Method of the "Timers" object

Syntax
HMIRuntime.Timers.SetInterval(CallbackFunction,DelayInMillisecs);

Parameters

CallbackFunction
Type: Function

Function that is executed cyclically.

DelayInMillisecs
Type: UInt32

Time interval in milliseconds after which the function is executed cyclically. When the interval
is < 10 ms, the value is reset to 10 ms.

Return value
TimerID as Int32

See also
"ClearInterval" method (Timers.ClearInterval) (Page 711)

"SetTimeout" method (Timers.SetTimeout) (RT Uni)

Description
Creates a timer object for one-time, delayed execution of a function. A function is executed in
this case when a specified time interval has expired.

Member
Method of the "Timers" object

Syntax
HMIRuntime.Timers.SetTimeout(CallbackFunction,DelayInMillisecs);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 713

Parameters

CallbackFunction
Type: Function

Function that is executed delayed once.

DelayInMillisecs
Type: UInt32

Time interval in milliseconds after which the function is executed delayed.

Return value
TimerID as Int32

See also
"ClearTimeout" method (Timers.ClearTimeout) (Page 712)

7.8.1.16 "UI" area (RT Uni)

"UI" object (RT Uni)

"UI" description (RT Uni)

Description

The "UI" object ("HMIUI" type) represents the user interface of the graphical runtime system.
You use the "UI" object to directly reference the currently active screen or the listing of the
screen windows on the highest level.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
714 System Manual, 11/2019, Online help printout

Application
The "UI" object is used to reference the configured elements of the graphical runtime system,
such as screen windows, screens or screen objects. This means that you have access to all the
properties and methods of these elements.

To simplify the use of the "UI" object, you can also use the alias UI for HMIRuntime.UI.

Note

Several screens can be opened simultaneously in runtime. These screens are displayed in
screen windows. Each screen window contains exactly one screen (Screen) that can contain
any number of further screen windows (Screen Window). The resulting hierarchy can be
mapped by using an object path, which is used in the "FindItem" method for addressing.

You can specify one top level screen window (Top Level Screen Window) for each monitor in
the window layout of the Runtime system (Screen Window Layout).

Type identifier in JavaScript
HMIUI

Example
Modify the screen of the own screen window on the highest level:

UI.RootWindow.Screen = 'NewScreen';

or with the "FindItem" method and relative addressing:

UI.FindItem('~').Screen = 'NewScreen';

Reference and modify the screen of a screen window in absolute terms on the highest level
outside of the own screen hierarchy:

UI.FindItem('/TopLevelWindow2').Screen = 'NewScreen';

Properties (RT Uni)

Properties
The "UI" object has the following properties:

Properties Type Access Description
ActiveScreen Object read only Returns the screen that has the input focus.
RootWindow Object read only Returns the screen window of the highest level (Top Level

Screen Window) of the screen in which the script is being
executed.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 715

Properties Type Access Description
Style String read/

write
Specifies the style of the display and operating objects.

Windows Object read only Returns the "Windows" object with the list of the screen
windows.

Methods of "UI" (RT Uni)

Overview (RT Uni)

Methods
The "UI" object has the following methods:

Table 7-2 Methods

Methods Description
FindItem Searches for and references screen windows or screen items through their

object path.
OpenFaceplateInPopup Opens a Faceplate in a popup window and sets the values of the faceplate

interface.

See also
"OpenFaceplateInPopup" method (HMIUI.OpenFaceplateInPopup) (Page 718)

"FindItem" method (UI.FindItem, ScreenInterface.FindItem) (RT Uni)

Description
Searches for and references screen windows or screen objects through their object path.

Member
Method of the following objects:

● UI

● ScreenInterface

Syntax
Object.FindItem(ScreenItemPath);

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
716 System Manual, 11/2019, Online help printout

Parameter

ScreenItemPath
Type: String

Object path of the searched screen window or screen object.

Note

The "UI.FindItem" method has a global search context and requires absolute object paths. The
"Screen.FindItem" method has the current screen as the search context and can also use
relative object paths.

Formulation of the object path
The syntax of the object path orients itself to the notation of tile system paths. The object path
consists of the names of the screen windows (Screen Windows) and screen objects (Screen
Items). The names are connected via a slash ("/") according to the hierarchical positioning.
Screens (Screens) and their names are not used in the formulation.

Relative and absolute objects paths are distinguished by the prefix of the object path. The
following prefixes can be used:

● Relative object path

– "..": References the higher level screen window (parent) in the context of the current
screen window.

– ".": References the own screen window (self).

– "": A screen object of the current screen window is referenced without prefix.

● Absolute object path

– "/": References a screen window on the highest level, whose name must follow.

– "~": References the screen window on the highest level in the own screen hierarchy.

Further rules for formulating an object path:

● The string ".." may be used several times in the object path, but only together at the
beginning of the object path, for example, "../../Window5".

● If the object path does not end with a screen object name, a screen window is referenced.

● An automatic search is performed for screen objects of the object path in the screens of the
referenced screen window. It is not permitted to specify a screen name.

Examples of object paths
The following window / screen object hierarchy is adopted for the following examples:

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 717

Current script context/screen window of the current screen

The following objects paths for addressing the object result from this:

Object path Referenced object
ItemX "ItemX" screen object
. "Window1" screen window
./ItemX "ItemX" screen object
.. "WindowA" screen window
../ItemZ "ItemZ" screen object
../ItemZ/Axes/5 5th element of the axis list of the screen object "ItemZ"
../Window2 "Window2" screen window
../.. Screen windows "TopLevelWindow1" on the highest level
/TopLevelWindow1 Screen windows "TopLevelWindow1" on the highest level
~ Screen windows "TopLevelWindow1" on the highest level
/TopLevelWindow1/WindowB "WindowB" screen window
~/WindowB "WindowB" screen window
/ Invalid as the name of a screen window is missing on the

highest level.

Return value
HmiScreenObjectBase

See also
"ScreenItem" object (Page 730)

"OpenFaceplateInPopup" method (HMIUI.OpenFaceplateInPopup) (RT Uni)

Description
Opens a Faceplate in a popup window and sets the values of the faceplate interface.

Member
Method of the "HMIUI" object

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
718 System Manual, 11/2019, Online help printout

Syntax
HMIRuntime.HMIUI.OpenFaceplateInPopup(faceplateType, title,
parenScreen, invisible);

Parameters

faceplateType
Type: String, HmiFaceplateType

Faceplate type

title
Type: String

Faceplate title

interface
Type: Object

Faceplate interface

parentScreen
Type: Object, HmiScreen

Parent screen or screen item of the faceplate

invisible
Type: Bool

Causes the faceplate to be configured so that it is not visible to the operator.

To display the faceplate, set the property visible=true.

Return value
Object, HmiPopupScreenWindow

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 719

"Windows" object (RT Uni)

"Windows" description (RT Uni)

Description

The "Windows" object ("HMIWindows" type) is a list of "Window" objects that enables you to
access all screen windows in runtime.

You reference the "Windows" object via the property of the "UI" or "Screen" object.

By default, you access a "Window" object ("HMIWindow" type) through the "Windows" object.
The screen with all the contained elements is available through the "Window" object.

Use
The "Windows" object is a list and can be counted and enumerated. You can access the
"Windows" list using the index or the screen window name.

Note

If UI.Windows is used, the list contains all the screen windows on the highest level.

If Screen.Windows is used, the list contains all the screen windows of the screen.

Note

Several screens can be opened simultaneously in runtime. These screens are displayed in
screen windows. Each screen window contains exactly one screen (Screen) that can contain
any number of further screen windows (Screen Window). The resulting hierarchy can be
mapped by using an object path, which is used in the "FindItem" method for addressing.

You can specify one top level screen window (Top Level Screen Window) for each monitor in
the window layout of the Runtime system (Screen Window Layout).

You can use the "this" and "Item" objects in scripts. The "this" object refers in this case to the
screen ("Screen" object) and the "item" object to the screen object ("ScreenItem" object), in
which the script is created. For better clarity, you can also use the Screen alias for the "this"
object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
720 System Manual, 11/2019, Online help printout

Type identifier in JavaScript
HMIWindows

Example
The screen of the top level screen window "TopLevelWindowName" is assigned to the "Screen"
tag:

var Screen = UI.Windows('TopLevelWindowName').CurrentScreen;

The screen of the first top level screen window is assigned to the "Screen" tag:

var Screen = UI.Windows(0).CurrentScreen;

The screen of the top level screen window of the screen's own screen hierarchy is assigned to
the "Screen" tag:

var Screen = UI.FindItem('~').CurrentScreen;

Change the screen in the adjacent screen window "Window2":

Screen.ParentScreen.Windows('Window2').Screen = 'NewScreen';

or with the "FindItem" method and relative addressing:

Screen.FindItem('../Window2').Screen = 'NewScreen';

Properties (RT Uni)

Properties
The "Windows" object has the following properties:

Properties Type Access Description
Count UInt32 read on‐

ly
Returns the number of elements in the specified list.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 721

Methods of "Windows" (RT Uni)

Overview (RT Uni)

Methods
The "Windows" object has the following methods:

Methods Description
Item Returns a "Window" object of the "Windows" list.

"Item" method (Windows.Item) (RT Uni)

Description
Returns a "Window" object of the "Windows" list.

Member
Method of the "Windows" object

Syntax
HMIRuntime.UI.Windows[.Item](WindowName);

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "Windows" object.

Note

If UI.Windows is used, the list contains all the screen windows on the highest level.

If Screen.Windows is used, the list contains all the screen windows of the screen.

Parameter

WindowName
Type: String

Name of a screen window

Return value
Object of the type "HmiWindow"

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
722 System Manual, 11/2019, Online help printout

"Window" object (RT Uni)

"Window" description (RT Uni)

Description

The "Window" object ("HMIWindow" type) represents a screen window in runtime. A screen
window contains exactly one screen ("Screen" object).

The "Window" object is returned by the "Windows" list, the "FindItem" method or the
"Screen.CurrentWindow" property.

Use
You use the "Window" object to reference a "Screen" object and have access to all the objects
and properties of a screen.

Note

Several screens can be opened simultaneously in runtime. These screens are displayed in
screen windows. Each screen window contains exactly one screen (Screen) that can contain
any number of further screen windows (Screen Window). The resulting hierarchy can be
mapped by using an object path, which is used in the "FindItem" method for addressing.

You can specify one top level screen window (Top Level Screen Window) for each monitor in
the window layout of the Runtime system (Screen Window Layout).

You can use the "this" and "Item" objects in scripts. The "this" object refers in this case to the
screen ("Screen" object) and the "item" object to the screen object ("ScreenItem" object), in
which the script is created. For better clarity, you can also use the Screen alias for the "this"
object.

Type identifier in JavaScript
HMIScreenWindowInterface

Example
Change the screen in the adjacent screen window "Window2":

Screen.ParentScreen.Windows('Window2').Screen = 'NewScreen';

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 723

or with the "FindItem" method and relative addressing:

Screen.FindItem('../Window2').Screen = 'NewScreen';

Properties (RT Uni)

Properties
The "Window" object has the following properties:

Properties Type Access Description
CurrentScreen Object read on‐

ly
Returns the screen of the current screen window.

Parent Object read on‐
ly

Returns the higher-level object instance (Parent) that con‐
tains the current object instance as child.

Path String read on‐
ly

Returns the absolute object path of a screen window in run‐
time starting from the screen window on the highest level.

Screen String read/
write

Specifies the name of the screen ("HMIScreen" type) that is
contained in the referenced screen window. Loads a new
screen into the referenced screen window via its name.
The "Screen" property returns a different value than the
"CurrentScreen" property when the referenced screen is not
yet loaded completely or does not exist.

Methods of "Window" (RT Uni)

Overview (RT Uni)

Methods
The "Window" object has the following methods:

Methods Description
-

"PopupScreenWindowAddProps" object (RT Uni)

"PopupScreenWindowAddProps" object (RT Uni)

Description
Assigns parameters for the screen window.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
724 System Manual, 11/2019, Online help printout

Type identifier in JavaScript
HMIPopupScreenWindowAddProps

Abbreviation Access in runtime
R Read
RW Read and write
- No access

Table 7-3 Properties

Properties Access Description
Monitor R Specifies the monitor on which the window is displayed.
StartupPosition RW Specifies the position of the screen window at runtime start.

Table 7-4 Methods

Methods Description
-

Properties (RT Uni)

Properties
The "PopupScreenWindowAddProps" object has the following properties

Properties Type Access Description
Monitor UInt8 read Specifies the monitor on which the window is dis‐

played.
StartupPosition HmiWindowStar‐

tupPosition
read/
write

Specifies the position of the screen window at run‐
time start.

"PopupScreenWindowAddProps" methods (RT Uni)

Overview (RT Uni)

Methods
The "PopupScreenWindowAddProps" object has the following methods

Methods Description
- -

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 725

"Screen" object (RT Uni)

"Screen" description (RT Uni)

Description

Represents a screen in runtime.

Type identifier in JavaScript
HmiScreen

Properties (RT Uni)

Properties
The "Screen" object has the following properties:

Properties Type Access Description
AlternateBackColor UInt32 read/

write
Specifies the second color for a color gradient.

Authorization Object read on‐
ly

Returns the operator authorization.

BackColor UInt32 read/
write

Specifies the background color.

BackFillPattern HmiFillPattern read/
write

Specifies the pattern of the background or the fill.

BackGraphic String read/
write

Specifies the graphic for the image background.

BackGraphic‐
StretchMode

HmiGraphic‐
StretchMode

read/
write

Specifies the type of scaling of the background
graphic in the screen.

BackgroundFill‐
Mode

HmiBackground‐
FillMode

read/
write

Specifies the fill area of the background fill.

DisplayName String read/
write

Specifies the display name.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
726 System Manual, 11/2019, Online help printout

Properties Type Access Description
Enabled Bool read/

write
Specifies whether the specified object can be op‐
erated in runtime.

Height UInt32 read/
write

Specifies the height.

HorizontalAlign‐
ment

HmiHorizontalA‐
lignment

read/
write

Specifies the horizontal alignment:
● Left (0):
● Center (1)
● Right (2):
● Stretch (3)

IsAuthorized Bool read on‐
ly

Returns whether the current user has sufficient
rights.

Layers Object read on‐
ly

Returns the list of the "Layers" type.

Name String read on‐
ly

Returns the name of the object or specifies it.

ScreenMaster Object read/
write

Returns the "ScreenMaster" object.

ScreenNumber UInt16 read on‐
ly

Returns the screen number.

VerticalAlignment HmiVerticalAlign‐
ment

read/
write

Specifies the vertical alignment:
● Top (0)
● Center (1)
● Bottom (2)
● Stretch (3)

Width UInt32 read/
write

Specifies the width.

Methods of "Screen" (RT Uni)

Overview (RT Uni)

Methods
The "Screen" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 727

"Screenitems" object (RT Uni)

"ScreenItem" description (RT Uni)

Description

The "ScreenItems" object ("HMIScreenItems" type) is a list of "ScreenItem" objects of a screen.
The "ScreenItem" objects enable you to access all configured screen objects in runtime, such
as text boxes, buttons or graphical objects.

By default, you reference a "ScreenItem" object ("HMIScreenItem" type) through the
"ScreenItems" object.

Use
The "ScreenItems" object is a list and can be enumerated. You can access the "ScreenItems"
list using the index or the screen window name.

Note

The list cannot be counted.

You can use the "this" and "Item" objects in scripts. The "this" object refers in this case to the
screen ("Screen" object) and the "item" object to the screen object ("ScreenItem" object), in
which the script is created. For better clarity, you can also use the Screen alias for the "this"
object.

Type identifier in JavaScript
HMIScreenItems

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
728 System Manual, 11/2019, Online help printout

Properties (RT Uni)

Properties
The "Screenitems" object has the following properties:

Properties Type Access Description
-

Methods of "Screenitems" (RT Uni)

Overview (RT Uni)

Methods
The "Screenitems" object has the following methods:

Methods Description
Item Returns a "ScreenItem" object of the "ScreenItems" list.

"Item" method (ScreenItems.Item) (RT Uni)

Description
Returns a "ScreenItem" object of the "ScreenItems" list.

Member
Method of the "ScreenItems" object

Syntax
Object.ScreenItems[.Item](ScreenItemName);

Object
Required. An object of the type "HMIScreen"

Note

The .Item part of the expression is not required. The "Item" method is the standard method of
the "Windows" object.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 729

Parameter

ScreenItemName
Type: String

Name of a screen object of the "ScreenItems" list.

Return value
Object of the type "HmiScreenItemBase"

"ScreenItem" object (RT Uni)

Description

The "ScreenItem" object ("HMIScreenIterm" type) represents the configured screen objects in
runtime, such as text fields, buttons or graphical objects. The screen objects have different
object types depending on their characteristics; for example, a "GaugeControl" screen object
is an object of type "HMIGauge". Depending on the characteristics of the "ScreenItem" object
you can access different properties of a screen object.

Object properties
In addition to standard properties, each "ScreenItem" object has specific properties that
depend on the respective object type.

Note

An overview of the "ScreenItem" objects and their properties is available in the screen object
model.

Use
You reference a "ScreenItem" object and have access to all the properties of this screen object
through the "ScreenItems" list or the "FindItem" method.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
730 System Manual, 11/2019, Online help printout

You can use the "this" and "Item" objects in scripts. The "this" object refers in this case to the
screen ("Screen" object) and the "item" object to the screen object ("ScreenItem" object), in
which the script is created. For better clarity, you can also use the Screen alias for the "this"
object.

Example
Change the color of the screen object "ItemX" of screen item's own screen. If defined in the
"ItemX" screen object:

item.BackColor = 0;

Or if defined in another screen object of the screen:

item.Parent.Items('ItemX').BackColor = 0;

or more simply with "Screen" as the current screen:

Screen.Items('ItemX').BackColor = 0;

or with the "FindItem" method from the current screen:

Screen.FindItem('ItemX').BackColor = 0;

"ScreenItemInterface" object (RT Uni)

"ScreenItemInterface" description (RT Uni)

Description
Internal use only.

Type identifier in JavaScript
HMIScreenItemInterface

Properties (RT Uni)

Properties
The "ScreenItemInterface" object has the following properties:

Properties Type Access Description
Parent Object read on‐

ly
Returns the higher-level object instance (parent), which con‐
tains the current object instance as child.

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 731

Methods of "ScreenItemInterface" (RT Uni)

Overview (RT Uni)

Methods
The "ScreenItemInterface" object has the following methods:

Methods Description
- -

"ScreenObjectBase" object (RT Uni)

"ScreenObjectBase" description (RT Uni)

Description
Internal use only.

Type identifier in JavaScript
HMIScreenObjectBase

Properties (RT Uni)

Properties
The "ScreenObjectBase" object has the following properties:

Properties Type Access Description
-

Methods of "ScreenObjectBase" (RT Uni)

Methods (RT Uni)

Methods
The "ScreenObjectBase" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
732 System Manual, 11/2019, Online help printout

"ScreenObjectBaseInterface" object (RT Uni)

"ScreenObjectBaseInterface" description (RT Uni)

Description
Internal use only.

Type identifier in JavaScript
HMIScreenObjectBaseInterface

Properties (RT Uni)

Properties
The "ScreenObjectBaseInterface" object has the following properties:

Table 7-5 Properties

Properties Type Access Description
Parent Object readonly Returns the higher-level object instance (parent), which con‐

tains the current object instance as child.

Methods of "ScreenObjectBaseInterface" (RT Uni)

Overview (RT Uni)

Methods
The "ScreenObjectBaseInterface" object has the following methods:

Methods Description
-

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 733

Programming scripts (RT Uni)
7.8 WinCC Unified object model (RT Uni)

WinCC Engineering V16 - Runtime Unified
734 System Manual, 11/2019, Online help printout

Configuring text lists and graphic lists (RT Uni) 8
8.1 Configuring text lists (RT Uni)

8.1.1 Basics of text lists (RT Uni)

Introduction
Texts are assigned to the values of a tag in a text list. During configuration, you assign the text
list to a text field, for example. This supplies the text to be displayed to the object.

You create and edit the text list in the "Text and graphic list" editor. You configure the interface
between the text list and a tag at the object that uses the text list.

The selection of objects that can have a text list assigned depends on the runtime.

Application
You use the text list to output texts depending on the tag value, for example, or to display a
selection list in a list box. The associated texts are displayed in the list box depending on the
value of the configured tags.

Note
Display of tag values without text

The display of tag values to which no text has been assigned depends on the runtime:
● The display and operating element remains empty.
● Three asterisks *** are displayed.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 735

Ranges for the text list
Three types are available for the text lists:

● Value/Range
This setting assigns text entries from the text list to integer values or value ranges of a tag.
You can select the number of text entries as needed. The maximum number of entries
depends on the HMI device you are using.
You specify a default value which is shown if the value of the tag lies outside the defined
range.

● Bit (0, 1)
This setting assigns text entries from the text list to two states of a binary tag. You can create
a text entry for each state of the binary tag.

● Bit number (0 - 31)
This setting assigns a text entry from the text list to each bit of a tag. The maximum number
of text entries is 32. This form of text list can be used, for example, in a sequential control
chart when processing a sequencer in which only one bit of the used tag may be set. You
influence the behavior of the bit number (0 - 31) with the set bit of the least significance and
a default value.

Multilingual texts
You can configure multiple languages for the texts in a text list. The texts will then be displayed
in the set language in runtime. To this purpose you set the languages in the Project window
under "Languages & Resources > Project languages."

Configuration steps
The following steps are necessary to display texts in a screen object:

1. Creating the text list

2. Assignment of the texts to values or value ranges of a text list

3. Assigning a text list in the display object

4. Assigning a tag

8.1.2 Creating a text list (RT Uni)

Introduction
The text list allows you to assign specific texts to values and to output these in runtime, for
example, in an I/O field. The type of I/O field can be specified, for example, as a pure input field.

The following types of list are available:

● Value/Range

● Bit

● Bit Number

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
736 System Manual, 11/2019, Online help printout

Procedure
1. Double-click "Text and graphic lists" in the project window.

2. Open the "Text lists" tab.

3. Click "Add" in the "Text lists" table.
The Inspector window of the text list is open.

4. Assign a name to the text list that indicates its function.

5. Select the text list type under "Selection":

– Value/Range: Text from the text list is displayed when the tag has a value that lies within
the specified range.

– Bit (0,1): A text from the text list is displayed when the tag has the value 0. A different text
from the text list is displayed when the tag has the value 1.

– Bit number (0-31): Text from the text list is displayed when the tag has the value of the
assigned bit number.

6. Enter a comment for the text list.

Result
A text list is created.

8.1.3 Assigning texts and values to an area text list (RT Uni)

Introduction
For each area text list you specify which texts are displayed at which value range.

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 737

Requirement
● The "Text and graphic list" editor is open.

● The "Text lists" tab is open.

● An area text list has been created and selected.

Procedure
1. Click "Add" in the "Text list entries" table.

The Inspector window for this list entry opens.

2. Select one of the following settings in the Inspector window under "Properties > Properties
> General > Value".

– "Range": Minimum to maximum tag value, for example 1 ≦ Value ≦ 21

– "To": Maximum tag value, e.g. value ≦ 13

– "Individual value": Exactly one tag value, for example Value = 21

– "From": Minimum tag value, e.g. value ≧ 2

3. Enter the text that is displayed in runtime when the tag has the specified value or lies within
the specified range of values under "Text."

4. If required, activate the "default entry".
The entered text is always displayed when the tag has an undefined value. Only one default
entry is possible per list.

5. Create further corresponding list entries for additional value ranges of the same text list.

Result
An area text list is created. Texts that appear in runtime are assigned to the possible values.

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
738 System Manual, 11/2019, Online help printout

8.1.4 Assigning texts and values to a bit text list (RT Uni)

Introduction
For each text list, you specify which text is displayed at which bit value.

Requirement
● The "Text and graphic list" editor is open.

● The "Text lists" tab is open.

● A bit text list has been created and selected.

Procedure
1. Click "Add" in the "Text list entries" table.

The Inspector window for this list entry opens.

2. Select the setting "Single value" in "Properties > Properties > General > Value" in the
Inspector window.

– Enter "0" for "Value."

– Enter the text which is displayed in runtime under "Text" if the bit tag is set to "0".

3. Click "Add" in the "Text list entries" table. A second list entry is created.

4. Select the setting "Single value" in "Properties > Properties > General > Value" in the
Inspector window.

– Enter "1" under "Value."

– Enter the text which is to be displayed in runtime under "Text" if the bit tag is set to "1".

Result
A bit text list is created. Texts that appear in runtime are assigned to the possible values "0" and
"1".

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 739

8.1.5 Assigning texts and values to a bit number text list (RT Uni)

Introduction
For each bit number text list you specify which texts are displayed at which bit number.

Requirement
● The "Text and graphic list" editor is open.

● The "Text lists" tab is open.

● A bit number text list has been created and selected.

Procedure
1. Click "Add" in the "Text list entries" table.

The Inspector window for this list entry opens.

2. Select the setting "Single value" in "Properties > Properties > General > Value" in the
Inspector window.

– Enter "10", for example, for "Value".

– Under "Text", enter the text that is displayed in runtime when the tag has the value "10".

3. If required, activate the "default entry".
The entered text is always displayed when the tag has an undefined value. Only one default
entry is possible per list.

4. Create further list entries for additional bit numbers of the same text list.

Result
A bit number text list is created. Texts that appear in runtime are assigned to the specified bit
numbers.

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
740 System Manual, 11/2019, Online help printout

8.1.6 Notes for bit number text list (RT Uni)

Introduction
The bit number (0 - 31) range assigns a text entry from the list to each bit of a tag.

If only 1 bit is configured of all set bits, the stored text is displayed for the configured bit.
In the following example, only the set bit with significance "4" is configured. Text 2 is displayed.

Significance 7 6 5 4 3 2 1 0
Set bits 0 0 1 1 0 1 0 0
Configured - Text 3 - Text 2 Text 1 - - -

If no bit is set or when several configured bits are set, no text is displayed.

Default value
Define a default value to prevent an empty display. A configured default value is displayed in
the following cases:

● Unified Comfort:

– The option "Bit selection for text and graphic lists" is disabled. No bit is set in the tag or
several configured bits are set.

– The option "Bit selection for text and graphic lists" is enabled and no bit is set or a text is
not configured for the set bit with the least significance.

● Unified PC based: No bit is set in the tag or several configured bits are set.

Displaying the default value
1. Enable the text for the default entry in the "Default" column of the "Text list entries" table.

The value "Default entry" appears in the "Value" column of the text entry.

2. You can also select the "Default" option under "Properties > General" in the inspector
window.

Set bit with the least significance
For Unified Comfort, you have the option of displaying only the text of the set bit with the lowest
value. To do this, activate the option "Bit selection for text and graphic lists" under "Screens" in
the "Runtime settings" editor.

If no text is configured for the set bit with the least significance and if no default value is
configured, nothing is displayed. If a default value is configured, the default value is displayed.

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 741

This setting is deselected by default to maintain downward compatibility. The setting is valid for
all text lists of the HMI device.

Note
Setting for PC-based

This option is not available for Unified PC-based. If several configured bits are set, the
configured default value is displayed. If no default value is configured, nothing is displayed.

Multiline text list entries
Use the <SHIFT>+<RETURN> shortcut to enter a line break in the text entry. Line breaks are
represented by the "¶" paragraph mark.

Multiline text list entries are only output in symbolic output fields as well as on buttons with
multiple lines. In all other cases, multiline texts are displayed with the paragraph mark.

8.1.7 Configuring object with a text list (RT Uni)

Introduction
The output value and value application for text lists are specified in the display and operating
object that displays the texts of the text list in runtime. The properties of these objects are
configured as required.

Requirement
● A text list is created.

● You have created a tag.

● The "Screens" editor is open.

● A screen with an text field is open. The object is edited.

Procedure
1. In the Inspector window under "Properties > Text" select the entry "Resource list" in the

"Dynamization" column.

2. Select the tag whose values determine the display in the screen object under "Resource list
> Tag".

3. Select the text list which you want to have displayed in runtime under "Resource list >
Resource list".

Configuring text lists and graphic lists (RT Uni)
8.1 Configuring text lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
742 System Manual, 11/2019, Online help printout

Result
The defined texts of the text list are displayed in the text field in runtime when the tag has the
specified value.

8.2 Configuring graphic lists (RT Uni)

8.2.1 Basics of graphic lists (RT Uni)

Introduction
The possible values of a tag are assigned to specific graphics in a graphic list. During
configuration, assign the graphic list to a button or a graphic view. This supplies the graphics
to be displayed to the object.

The graphic lists are created with the "Text and graphic list" editor. You configure the interface
between the graphic list and a tag at the object that uses the graphic list. The availability of the
graphic list is determined by the HMI device used.

Application
You can configure the graphic list for the following situations:

● Selection list with a graphic display

● State-specific graphic for a button

The graphics in a graphic list can be configured as multilingual. The graphics will then be
displayed in the set runtime language.

Graphic sources
Graphics can be added to the graphic list from the following sources:

● By selecting from the project graphics

● Selection of an existing file
You can use the following file types:
*.bmp, *.ico, *.emf, *.wmf, *.gif, *.tiff, *.png, *.svg, *.jpeg and *.jpg.

● By creating a new file

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 743

Ranges for the graphic list
Three types are available for the graphic lists:

● Value/Range
This setting assigns graphic entries from the graphic list to integer values or value ranges
of a tag. You can select the number of graphic entries as needed. The maximum number of
entries depends on the HMI device you are using.
You specify a default value which is shown if the value of the tag lies outside the defined
range.

● Bit (0, 1)
This setting assigns graphic entries from the graphic list to two states of a binary tag. You
can create a graphic entry for each state of the binary tag.

● Bit number (0 - 31)
This setting assigns a graphic entry from the graphic list to each bit of a tag. The maximum
number of graphic entries is 32. This form of graphic list can be used, for example, in a
sequence control when processing a sequence in which only one bit of the used tag may be
set. You influence the behavior of the bit number (0 - 31) with the set bit of the least
significance and a default value.

Configuration steps
The following steps are required to display graphics, for example, in a graphic view:

1. Creating the graphic list

2. Assignment of the graphics to values or value ranges of a graphic list

3. Assigning a graphic list in the display object

4. Assigning a tag

8.2.2 Creating a graphic list (RT Uni)

Introduction
The graphic list allows you to assign specific graphics to variable values and to output these in
a graphic IO field in runtime. You can specify the type of graphic IO field, for example as a pure
output field.

Procedure
1. Double-click "Text and graphic lists" in the project navigation.

2. Open the "Graphic lists" tab.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
744 System Manual, 11/2019, Online help printout

3. Click "Add" in the "Graphic lists" table.
The Inspector window of the graphic list will open up.

4. Assign a name to the graphic list that indicates its function.

5. Select the "Value/Range" graphic list type under "Selection."

6. Enter a comment for the graphic list.

Result
An area graphic list is created.

8.2.3 Assigning graphics and values to an area graphic list (RT Uni)

Introduction
For each area graphic list you specify which graphics are displayed at which value range. The
selected graphic is only displayed when the value is within the permitted range.

The following options are available:

● "Individual value": When the specified bit is set, the selected graphic is displayed in runtime.

● "Range": You enter the minimum value and maximum value for the range.

● "From": You enter the minimum value for the permitted range.

● "To": You enter the maximum value for the permitted range.

Requirement
● The "Text and graphic list" editor is open.

● The "Graphic list" tab is open.

● An area graphic list has been created and selected.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 745

Procedure
1. Click "Add" in the "Graphic list entries" table.

The Inspector window for this list entry opens.

2. Select the settings "Single value" in "Properties > Properties > General > Value" in the
Inspector window:

– Enter the value "0" for example.

– Select a graphic which is displayed in runtime when the bit "0" is set.

3. If required, activate the "default entry".
The graphic is always displayed when the tag has an undefined value. Only one default
entry is possible per list.

4. Create further list entries for additional bit numbers of the same graphic list.

Result
An area graphic list is created. Graphics that appear in runtime are assigned to the specified bit
numbers.

8.2.4 Assigning graphics and values to a bit graphic list (RT Uni)

Introduction
For each graphic list you specify which graphic is displayed at which bit value.

Requirement
● The "Text and graphic list" editor is open.

● The "Graphic list" tab is opened.

● A bit graphic list has been created and selected.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
746 System Manual, 11/2019, Online help printout

Procedure
1. Click "Add" in the "Graphic list entries" table.

The Inspector window for this list entry opens.

2. Select the settings "Single value" in the inspector window "Properties > Properties >
General > Value":

– Enter "0" as the value.

– Select a graphic which is displayed in runtime if the bit "0" is set in the tag.

Note

As an alternative to the drop-down menu, you can insert graphics from libraries or from
your file system:
1. Select a graphic in the library or in your file system.
2. Drag-and-drop the graphic into the "Graphic list entries > Graphic" table.

3. Click "Add" in the "Graphic list entries" table. A new list entry is created.

4. Select "Properties > Properties > General > Value > Single value": in the Inspector window.

– Enter "1" as the value.

– Select a graphic which is displayed in runtime if the bit "1" is set in the tag.

Result
A bit graphic list is created. Graphics that appear in runtime are assigned to the values "0" and
"1".

8.2.5 Assigning graphics and values to a bit number graphic list (RT Uni)

Introduction
For each bit number graphic list you specify which graphics are displayed at which bit number.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 747

Requirement
● The "Text and graphic list" editor is open.

● The "Graphic list" tab is open.

● A bit number graphic list has been created and selected.

Procedure
1. Click "Add" in the "Graphic list entries" table.

The Inspector window for this list entry opens.

2. Select the settings "Single value" in the Inspector window "Properties > Properties >
General > Value":

– Enter the value "1" for example.

– Select a graphic which is displayed in runtime if the bit "0" is set in the tag.

Note

As an alternative to the drop-down menu, you can insert graphics from libraries or from
your file system:
1. Select a graphic in the library or in your file system.
2. Drag-and-drop the graphic into the "Graphic list entries > Graphic" table.

3. If required, activate the "default entry".
The graphic is always displayed when the tag has an undefined value. Only one default
entry is possible per list.

4. Create further list entries for additional bit numbers of the same graphic list.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
748 System Manual, 11/2019, Online help printout

Result
A bit number graphic list is created. Graphics that appear in runtime are assigned to the
specified bit numbers.

8.2.6 Notes for bit number graphic list (RT Uni)

Introduction
The bit number (0 - 31) range assigns a graphic entry from the list to each bit of a tag.

If only 1 bit is configured of all set bits, the stored graphic is displayed for the configured bit.
In the following example, only the set bit with significance "4" is configured. Graphic 2 is
displayed.

Significance 7 6 5 4 3 2 1 0
Set bits 0 0 1 1 0 1 0 0
Configured - Graphic

3
- Graphic

2
Graphic
1

- - -

If no bit is set or when several bits are set that are also configured, only the placeholder is
displayed.

Default value
Define a default value to prevent an empty display. A configured default value is displayed in
the following cases:

● The option "Bit selection for text and graphic lists" is disabled. No bit or several configured
bits are set in the tag.

● The option "Bit selection for text and graphic lists" is enabled and no bit is set or a graphic
is not configured for the set bit with the least significance.

Displaying the default value
1. Enable the graphic for the default entry in the "Default" column of the "Graphic list entries"

table.
The value "Default entry" appears in the "Value" column of the entry.

2. You can also select the "Default" option under "Properties > General" in the inspector
window.

Set bit with the least significance
When "Bit selection for text and graphic lists" is enabled, the graphic displayed is the one
configured for the set bit with the least significance.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 749

If no graphic is configured for the set bit with the least significance and if no default value is set,
the placeholder is displayed. If a default value is configured, the graphic configured for the
default value is displayed.

To only display the graphic for the set bit with the least significance, enable the "Bit selection for
text and graphic lists" option in the "Runtime settings" editor.

This setting is deselected by default to maintain downward compatibility. The setting is valid for
all graphic lists of the HMI device.

8.2.7 Configuring objects with a graphic list (RT Uni)

Introduction
The output value and value application for graphic list are specified in the display and operating
object that displays the graphics of the graphic list in runtime. The properties of these objects
are configured as required.

Requirement
● A graphic list is created. The values have been defined. Graphics have been assigned to the

values.

● You have created a tag.

● The "Screens" editor is open.

● A screen with a graphic view is displayed. The object is edited.

Procedure
1. In the Inspector window under "Properties > Graphic" select the entry "Resource list" in the

"Dynamization" column.

2. Select the tag whose values determine the display in the screen object under "Resource list
> Tag".

3. Select the graphic list which you want to have displayed in runtime under "Resource list >
Resource list".

Result
The defined graphics are displayed in the graphic view in runtime when the tag has the
specified value.

Configuring text lists and graphic lists (RT Uni)
8.2 Configuring graphic lists (RT Uni)

WinCC Engineering V16 - Runtime Unified
750 System Manual, 11/2019, Online help printout

Planning tasks (RT Uni) 9
9.1 Basic of the scheduler (RT Uni)

Definition
In the Scheduler, you configure tasks which are only to be executed cyclically or at a specific
condition. Each task has a trigger and an action.

Triggers
You use the triggers to define when and how often the task is to be processed during runtime.
The following triggers are supported:

Triggers Type Description
Time Cyclic Executed cyclically at the set

time from runtime start, for exam‐
ple, every 2 seconds with "T2s".

Daily, weekly, monthly, yearly Cyclic Is executed in cycles starting
from runtime start, in each case
at the configured time, for exam‐
ple "Daily, 12:00:00 h".

Once Acyclic Is executed exactly once at the
configured time.

Tags Acyclic Executed when the value of one
of the projected tags changes.

Alarms Acyclic Executed when the state of one
of the following alarm properties
changes:
● Alarm class, for example

"Warning"
● Alarm state, for example "In‐

coming"
● Priority, for example "4"

Trigger an action
If the configured trigger condition is fulfilled, the event "Update" is triggered. You configure a
local script, which triggers one or more actions.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 751

See also
Creating tasks with the "Time" trigger (Page 752)

Creating tasks with the "Tags" trigger (Page 752)

Creating tasks with the "Alarms" trigger (Page 753)

9.2 Creating tasks with the "Time" trigger (RT Uni)

Requirement
● The "Scheduler" editor is open.

Procedure
Follow these steps to create a task with the trigger "Time":

1. Create a new task with "Add".

2. Select the required cycle as the "Trigger", for example "T250ms" for 250 ms.

Result
The task with the "Time" trigger has been created.

See also
Basic of the scheduler (Page 751)

Creating tasks with the "Tags" trigger (Page 752)

Creating tasks with the "Alarms" trigger (Page 753)

9.3 Creating tasks with the "Tags" trigger (RT Uni)

Requirement
● The "Scheduler" editor is open.

● You have created a tag that is monitored for changes in value.

Planning tasks (RT Uni)
9.3 Creating tasks with the "Tags" trigger (RT Uni)

WinCC Engineering V16 - Runtime Unified
752 System Manual, 11/2019, Online help printout

Procedure
Follow these steps to create a task with the trigger "Tags":

1. Create a new task with "Add".

2. Select the option "Tags" as the "Trigger."

3. Select "Properties > Properties > General" in the Inspector window to select the tag.

Result
The task with the "Tags" trigger has been created.

See also
Basic of the scheduler (Page 751)

Creating tasks with the "Time" trigger (Page 752)

Creating tasks with the "Alarms" trigger (Page 753)

9.4 Creating tasks with the "Alarms" trigger (RT Uni)

Requirement
● The "Scheduler" editor is open.

Procedure
Follow these steps to create a task with the trigger "Alarms":

1. Create a new task with "Add".

2. Select the option "Alarms" as the "Trigger".

3. Configure the trigger under "Properties > Properties > General" in the Inspector window.

– Select the "Criterion", for example "Alarm class".

– Select the "Condition", for example "Not equal".

– Select the "Operand", for example "Alarm".

Result
The task with the "Alarms" trigger has been created.

Planning tasks (RT Uni)
9.4 Creating tasks with the "Alarms" trigger (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 753

See also
Basic of the scheduler (Page 751)

Creating tasks with the "Time" trigger (Page 752)

Creating tasks with the "Tags" trigger (Page 752)

Planning tasks (RT Uni)
9.4 Creating tasks with the "Alarms" trigger (RT Uni)

WinCC Engineering V16 - Runtime Unified
754 System Manual, 11/2019, Online help printout

Configuring in multiple languages (RT Uni) 10
10.1 Languages in WinCC (RT Uni)

User interface language and project languages
A distinction is drawn between two different language levels in WinCC:

● User interface language
During configuration, the text in the WinCC menus and dialogs is displayed in the user
interface language. The user interface language also affects the labeling of operating
elements, the parameters of the system functions, the online help, etc.

● Project languages
Project languages are all languages in which a project will later be used. Project languages
are used to create a project in multiple languages.

The two language levels are completely independent of one another. For example, you can
create English projects at any time using a German user interface and vice versa.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 755

Project languages
The following languages are differentiated within the project languages:

● Reference language
The reference language is the language that you use to configure the project initially.
During configuration, you select one of the project languages as the reference language.
You use the reference language as a template for translations. All of the texts for the project
are first created in the reference language and then translated. While you are translating the
texts, you can have them displayed simultaneously in the reference language.

● Editing language
You produce translations of the texts in the editing language.
Once you have created your project in the reference language, you can translate the texts
into the remaining project languages. Select a project language respectively as an edit
language and edit the texts for the appropriate language variant. You can change the editing
language at any time.

Note

When switching the project languages, the assignment to the keys on the keyboard also
changes. For some languages (for example, Spanish), the operating system does not allow
you to switch to the corresponding keyboard assignment. In this case, the keyboard
assignment is switched to English.

● Runtime languages
Runtime languages are those project languages that are transferred to the HMI device. You
decide which project languages to transfer to the HMI device depending on your project
requirements.
You must provide appropriate controls so that the operator can switch between languages
in runtime.

10.2 Settings for languages in the operating system (RT Uni)

Introduction
The configuration PC operating system settings influence WinCC language management in the
following areas:

● Selection of project languages

● Regional format of dates, times, currency, and numbers

● Displaying ASCII characters

Project language selection
A language is not available as a project language unless it is installed in the operating system.

Configuring in multiple languages (RT Uni)
10.2 Settings for languages in the operating system (RT Uni)

WinCC Engineering V16 - Runtime Unified
756 System Manual, 11/2019, Online help printout

Regional format of dates, times, currency, and numbers
WinCC specifies a fixed date and time format in the Date - Time field for the selected project
language and runtime language.

In order for dates, times, and numbers to be presented correctly in the selected editing
language, this language must be set in the Regional Options in the Control Panel.

Displaying ASCII characters
With text output fields, the display of ASCII characters as of 128 depends on the set language
and the operating system being used.

If the same special characters are to be displayed on different PCs, the PCs must use the same
operating system and regional settings.

10.3 Settings for Asian languages in the operating system (RT Uni)

Settings on Western operating systems
If you want to enter Asian characters, you must activate the support for this language in the
operating system.

The Input Method Editor (IME) is available in Windows for configuring Asian texts. Without this
editor, you can display Asian text but not edit it. For more information on the Input Method
Editor, refer to the documentation for Windows. To enter Asian characters when configuring,
switch to the Asian entry method in the "Input Method Editor".

Switch the operating system to the appropriate language to have language-specific project
texts, such as alarm texts, displayed in the simulator in Asian characters.

Settings on Asian operating systems
If you are configuring on an Asian operating system, you must switch to the English default input
language to enter ASCII characters, for example, for object names. As the English default input
language is included in the basic installation of the operating system, you do not need to install
an additional input locale.

Enabling language support
1. Open the system controller.

2. Select "Regional and Language Options".

3. On the "Languages" tab, activate the check box "Install files for East Asian languages".

4. Then click on "Details" under "Text Services and Input Languages". The dialog "Text
Services and Input Languages" is opened.

Configuring in multiple languages (RT Uni)
10.3 Settings for Asian languages in the operating system (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 757

5. On the "Settings" tab add the required default input language under the "Installed
Services".

6. Select the language of the operating system in the "Language for non-Unicode programs"
area in the "Advanced" tab.

10.4 Setting project languages (RT Uni)

10.4.1 Selecting the user interface language (RT Uni)

Introduction
The user interface language is used for displaying menu entries, title bars, infotexts, dialog
texts and other designations in the WinCC user interface.

You can switch between the installed user interface languages during configuration. The
labeling of the operating elements remains in the language you set when you added the object
even if you change the user interface language.

Procedure
1. Select "Options > Settings" in the menu.

The "Settings" dialog box is opened.

2. Select the desired user interface language under "General > General settings".

Result
WinCC will use the selected language as user interface language.

10.4.2 Enabling project languages (RT Uni)

Introduction
The project languages are set in the "Project languages" editor. You define which project
language is to be the reference language and which the editing language.

Configuring in multiple languages (RT Uni)
10.4 Setting project languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
758 System Manual, 11/2019, Online help printout

Enabling project languages
1. Click on the arrow to the left of "Languages & resources" in the project tree.

The lower-level elements will be displayed.

2. Double-click on "Project languages".
The possible project languages will be displayed in the working area.

3. Enable the relevant project languages.

Note
Copying multilingual objects

The copies of multilingual objects to a different project only include text objects in the project
languages which are activated in the target project. Activate all project languages in the
target project to include the corresponding text objects when transferring the copy.

Disabling project languages
1. Disable the languages which are not relevant for the project.

NOTICE

If you disable a project language, all text and graphic objects you have already created in
this language will be deleted from the current project.

10.4.3 Selecting the reference language and editing language (RT Uni)

Introduction
The project languages are set in the "Project languages" editor. You define which project
language is to be the reference language and which the editing language. You can change the
editing language at any time.

Requirements
The "Project languages" editor is open.

Several project languages have been activated.

Selecting the reference language and editing language
1. Click the arrow in the drop-down list in the "General > Editing language" section.

2. Click the required language in the drop-down list, for example, German.

3. Click on the arrow in the drop-down list in the "General > Reference language" section.

4. Click the required language in the drop-down list, for example, English.

The language selection is displayed in the list box.

Configuring in multiple languages (RT Uni)
10.4 Setting project languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 759

Result
You have now selected the editing and reference languages.

If you change the editing language, all future text input will be stored in the new editing
language.

See also
Configuring multilingual alarm texts (Page 247)

Configuring in multiple languages (RT Uni)
10.4 Setting project languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
760 System Manual, 11/2019, Online help printout

10.5 Creating one project in multiple languages (RT Uni)

10.5.1 Working with multiple languages (RT Uni)

Multilingual configuration in WinCC
You can configure your projects in multiple languages using WinCC. There are various reasons
for creating a project in multiple languages:

● You would like to use a project in more than one country.
You create the project in multiple languages but when the HMI device is commissioned, only
the language spoken by the operators at the respective site will be transferred to the HMI
device.

● The operators of a system speak a range of different languages.
Example: An HMI device is used in China, but the service personnel understand only
English.

Translating project texts
With WinCC, you can enter project texts directly in several languages in various different
editors, for example, in the "Project texts" editor. WinCC also allows you to export and import
your configuration for translation purposes. This is particularly advantageous if you configure
projects containing a large amount of text and want to have it translated.

Language management and translation in WinCC
The following editors are used to manage languages and translate texts in WinCC:

Editor Short description
Project languages Selection of project languages, editing language and reference lan‐

guage.
Languages and fonts Management of runtime languages and fonts used on the HMI device.
Project texts Central management of configured texts in all project languages.
Graphics Project graphics for managing graphics and their language-specific

versions.

See also
Configuring multilingual alarm texts (Page 247)

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 761

10.5.2 Basics of project texts (RT Uni)

Texts in different languages in the project
Texts that are output on display devices during processing are typically entered in the language
in which the automation solution is programmed. Comments and the names of objects are also
entered in this language.

If operators do not understand this language, they require a translation of all operator-relevant
texts into a language they understand. You can therefore translate all the texts into any
language. In this way, you can ensure that anyone who is subsequently confronted with the
texts in the project sees the texts in his/her language of choice.

User texts and system texts
In the interests of clarity, a distinction is drawn between user texts and system texts:

● User texts are texts created by the user.

● System texts are texts created automatically and which are a product of configuration in the
project.

The project texts are managed in the project text editor. This can be found in the project tree
under "Languages & Resources > Project texts".

Examples of multilingual project texts
You can, for example, manage the following types of text in more than one language:

● Display texts

● Alarm texts

● Comments in tables

● Labels of screen objects

● Text lists

Translating texts
There are two ways of translating texts.

● Translating texts directly
You can enter the translations for the individual project languages directly in the "Project
texts" editor.

● Translating texts using reference texts
You can change the editing language for shorter texts. You can enter the new texts in the
editing language while the texts of the reference language are displayed.

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
762 System Manual, 11/2019, Online help printout

Missing translation for texts of screen elements

Note

If a text of a screen element has no translation in the current user interface language, the text
entered for the default language is displayed.

See also
Configuring multilingual alarm texts (Page 247)

10.5.3 Translating texts directly (RT Uni)

Translating texts
If you use several languages in your project, you can translate individual texts directly. As soon
as you change the language of the software user interface, the translated texts are available in
the selected language.

Requirements
● You are in the project view.

● A project is open.

● You have selected at least two further project languages.

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 763

Procedure
Proceed as follows to translate individual texts:

1. Click on the arrow to the left of "Languages & resources" in the project tree.
The elements below this are displayed.

2. Double-click on "Project texts".
A list with the texts in the project is displayed in the work area. There is a separate column
for each project language.

3. To group identical texts and translate them simultaneously, click " " in the toolbar.

4. To hide texts that do not have a translation, click in the toolbar.

5. Click on an empty column and enter the translation.

Result
You have translated individual texts in the "Project texts" editor. The texts will then be displayed
in the runtime language.

See also
Configuring multilingual alarm texts (Page 247)

Configuring optional parameters for discrete alarms and analog alarms (Page 244)

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
764 System Manual, 11/2019, Online help printout

10.5.4 Translating texts using reference texts (RT Uni)

Introduction
After changing the editing language, all texts are shown in input boxes in the new editing
language. If there is not yet a translation available for this language, the input boxes are empty
or filled with default values.

If you enter text again in an input field, this is saved in the current editing language. Following
this, the texts exist in two project languages for this input field, in the previous editing language
and in the current editing language. This makes it possible to create texts in several project
languages.

You can display existing translations for an input box in other project languages. These serve
as a comparison for text input in the current editing language and they are known as the
reference language.

Requirement
There is at least one translation into a different project language for an input field.

Procedure
To display the translation of an input cell in a reference language, follow these steps:

1. Select "Tasks > Languages & resources" in the task card.

2. Select a reference language from the "Reference language" drop-down list.

Result
The reference language is preset. If you click in a text block, translations that already exist in
other project languages are shown in the "Tasks > Reference text" task card.

10.5.5 Exporting project texts (RT Uni)
Project texts are exported for translation. Texts are exported to Office Open XML files ending
in ".xlsx". These files can be edited in Microsoft Excel, for example.

You can exchange the file with the translators and import it back to the project as soon as it has
been translated.

Requirements
● At least two languages have been enabled in the "Project languages" editor, for example,

Italian and French.

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 765

Exporting project texts
To export individual project texts, proceed as follows:

1. Click on the arrow to the left of "Languages & resources" in the project tree.
The child elements are displayed.

2. Double-click on "Project texts". The "Project texts" editor will open.

3. Select the texts you want to export.

4. Click . The "Export" dialog opens.

5. From the "Source language" drop-down list, select the language from which you wish to
translate, for example Italian.

6. From the "Target language" drop-down list, select the language into which the texts are to
be translated, for example, French.

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
766 System Manual, 11/2019, Online help printout

7. Enter a file path and a file name for the export file in the "Export file" input field.

8. Click "Export".

Result
The texts selected in the "Project texts" editor are written to an xlsx file. The xlsx file will be
stored in the specified folder.

You can alternatively select and export all project texts from categories. Select "User texts" or
"System texts" in the "Export" dialog in line with the type of texts you wish to export. In this case,
export can additionally be limited by categories.

Note

Project texts in library objects cannot be exported.

See also
Configuring optional parameters for discrete alarms and analog alarms (Page 244)

10.5.6 Importing project texts (RT Uni)
Edit the xlsx file or send it to a translator. Import the texts once they have been translated. The
foreign languages will be imported to the relevant object in the project.

Note

In WinCC, you only import the previously exported project texts into the same project. Importing
into a different project is not supported.

Requirements
● At least two languages have been enabled in the "Project languages" editor, for example,

Italian and French.

Importing project texts
To import a project text file, proceed as follows:

1. Click on the arrow to the left of "Languages & resources" in the project tree.
The lower-level elements will be displayed.

2. Double-click on "Project texts". The "Project texts" editor will open.

3. Click . The "Import" dialog opens.

4. Select the path and file name of the import file from the "Import file" field.

Configuring in multiple languages (RT Uni)
10.5 Creating one project in multiple languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 767

5. Activate the "Import source language" check box if you have made changes to the source
language in the export file and would like to overwrite the entries in the project with the
changes.

6. Click on "Import".

Result
You have imported the project texts.

See also
Configuring multilingual alarm texts (Page 247)

10.6 Using language-specific graphics (RT Uni)

10.6.1 "Project graphics" editor (RT Uni)

Introduction
You use the "Project graphics" editor to manage the configured graphic objects in different
language versions. Multilingual projects sometimes also require language-specific versions of
the graphics, for example, if

● The graphics contain text;

● Cultural aspects play a role in the graphics.

Opening the "Project graphics" editor
Double-click in the project tree on "Languages and resources > Project graphics".

Work area
The work area displays all configured graphic objects in a table. There is a separate column in
the table for each project language. Each column in the table contains the versions of the
graphics for one particular language.

In addition, you can specify a default graphic for each graphic to be displayed whenever a
language-specific graphic for a project language does not exist.

Preview
The preview shows you how the graphics will look on various devices.

Configuring in multiple languages (RT Uni)
10.6 Using language-specific graphics (RT Uni)

WinCC Engineering V16 - Runtime Unified
768 System Manual, 11/2019, Online help printout

10.6.2 Storing an image in the project graphics (RT Uni)

Introduction
You use the "Graphics" editor to import graphics you want to use in screens in the "Screens"
editor. It also allows you to manage language-specific versions of graphics. A preview shows
the graphic displays on various HMI devices.

Note
File names for language-dependent graphics

Case is relevant in the file names of language-dependent graphics. Make sure that the format
is consistent for all languages.

Note
File format of language-dependent graphics

In the language dependent versions of a graphic, only use the graphic files with the same
format. The graphic versions with different file formats are not supported.

Requirement
● The language-dependent versions of a graphic are available.

● Multiple languages have been enabled in the "Project languages" editor.

● The "Graphics" editor is open.

Inserting graphics
1. Click "Add" in the "Project graphics" table. A dialog opens.

2. Select the required graphic file.

3. Click "Open" in the dialog box.
The graphic will be imported to the project and displayed in all cells in this row in the
"Graphics" editor.

4. Click in the corresponding cell of a language for which a language-dependent version of this
graphic exists.

5. Select "Add graphic" from the shortcut menu. A dialog box opens.

6. Select the desired graphic file and click "Open."
The language-dependent version is inserted in the table in place of the reference language
graphic.

7. Then, in the "Default graphic" column, import a graphic to be displayed in runtime for those
languages for which there is no language-specific graphic.

Configuring in multiple languages (RT Uni)
10.6 Using language-specific graphics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 769

You can also drag&drop a graphic from Windows Explorer to the relevant position in the
"Project graphics" table.

Displaying graphics in the HMI device preview
1. Click on a graphic in the table.

2. Select the required HMI device under "Properties > Graphics settings > Device preview" in
the Inspector window.
The graphic will then be displayed as it will appear in runtime on the selected HMI device.

Result
The graphics added are available in the "Graphics" editor. The graphic assigned to the
respective editing language will be displayed during editing. The default screen will be
displayed in all editing languages for which no screen has been imported.

The screens assigned to the respective runtime language are displayed during runtime. The
default screen is displayed in all runtime languages for which a screen has not been imported.

Note

If you disable a project language, all of the graphic objects you have already created in this
language will be deleted from the current project.

10.6.3 Storing an external image in the project graphics (RT Uni)

Introduction
To display graphics that have been created in an external graphics program in your screens,
you will first have to store these graphics in the project graphics of the WinCC project.

Requirement
● Multiple languages have been enabled in the "Project languages" editor.

● The "Graphics" editor is open.

● There is a graphic in the "Graphics" editor.

Creating and adding a new graphic as an OLE object
1. Click "Add" in the "Project graphics" table. A dialog box opens.

2. Navigate to the folder in which the graphic is stored.

3. Click "Open" in the dialog box.
The graphic will be imported to the project and displayed in all cells in this row in the
"Graphics" editor.

Configuring in multiple languages (RT Uni)
10.6 Using language-specific graphics (RT Uni)

WinCC Engineering V16 - Runtime Unified
770 System Manual, 11/2019, Online help printout

4. Click in the corresponding cell of a language for which a language-dependent version of this
graphic exists.

5. Select "Insert object" from the shortcut menu. The "Insert object" dialog box opens.

Note

In addition, the dialog "External application running..." will open. The dialog will not close
until you exit the external application.

6. Select "Insert object > Create new" and an object type in the dialog.

7. Click "OK." The associated graphic program is opened.

8. Close the graphics program once you have created the graphic.
The graphic will be stored in the graphic programming software standard format and added
to the project graphics.

Inserting created graphics in WinCC
1. Click in the corresponding cell of a language for which a language-dependent version of this

graphic exists.

2. Select "Insert object" from the shortcut menu. The "Insert object" dialog box opens.

Note

In addition, the dialog "External application running..." will open. The dialog will not close
until you exit the external application.

3. From the "Insert object" dialog box, select "Create from file."

4. Click "Browse".

5. Navigate to the created graphic and select it.

Note

To import graphics files, note the following size restrictions:

*.bmp, *.tif, *.emf, *.wmf ≤4 MB

*.jpg, *.jpeg, *.ico, *.gif "*≤1 MB

Result
The OLE objects added are available in the "Graphics" editor.

Versions of the graphics for the current editing language are displayed in the "Screens" editor.
The default graphic is displayed in all editing languages for which no screen has been imported.

The graphic is displayed in runtime in the set runtime language. The default graphic is displayed
in all runtime languages for which no graphic has been imported.

You can double-click OLE objects in your project graphics to open them for editing in the
corresponding graphic editor.

Configuring in multiple languages (RT Uni)
10.6 Using language-specific graphics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 771

10.7 Languages in runtime (RT Uni)

10.7.1 Languages and fonts in runtime (RT Uni)

Using multiple runtime languages
You can decide which project languages are to be used in runtime on a particular HMI device.
The number of runtime languages that are available at one time on the HMI device depends on
the device. To enable the operator to switch between languages in runtime, you need to
configure a corresponding operator control.

When runtime starts, the project is displayed according to the most recent language setting.
When runtime starts the first time, the language with the lowest number in the "Order for
language setting" is displayed.

"Language & font" runtime setting
Configure the following under "Language & font":

● Project languages available as runtime languages for the relevant device

● The order in which the languages are switched.

Note
Post installing fonts

When a configured font on the configuration computer is missing, the project is not compiled.
Re-installation is required.

After installing a font, restart the TIA Portal and completely re-compile your project. Only then
can the HMI device be compiled without errors.

Note
Runtime language in controls

If you have configured a control in a specific runtime language that is not a user-interface
language, it can happen that some texts, for example, system texts in the status bar, appear in
the English language.

Note
Specify runtime languages as input languages

To enter and edit data in runtime, configure the specified runtime languages also as input
languages for the keyboard of your PC.

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
772 System Manual, 11/2019, Online help printout

10.7.2 Methods for language switching (RT Uni)

Introduction
You need to configure language switching if you want to have multiple runtime languages
available on the HMI device. This is necessary to enable the operator to switch between the
various runtime languages.

Methods for language switching
You can configure the following methods for language switching:

● Direct language selection
Each language is set by means of a separate button. In this case, you create a button for
each runtime language.

● Language switching
The operator switches the languages using a button.

Regardless of the method used, the button names must be translated into each of the
languages used. You can also configure an output field that displays the current language
setting.

10.7.3 Enabling the runtime language (RT Uni)

Introduction
The "Language & Font" editor shows all project languages available in the project. Here you
select which project languages are to be available as runtime languages on the HMI device.

Requirements
Multiple languages have been selected in the "Project languages" editor.

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 773

Procedure
1. Double-click on "Runtime settings" in the project tree.

2. Click on "Language & Font".

3. Select the following languages:

– English

– French

– Italian

Result
You have now set three runtime languages. A number is automatically assigned to each
language in the "Order" column. The enabled runtime languages are transferred with the
compiled project to the HMI device.

If the number of languages selected exceeds the number that can be transferred to the HMI
device, the table background changes color.

10.7.4 Setting the runtime language order for language switching (RT Uni)

Introduction
You specify the language order for runtime language switching. The first time runtime starts, the
project is displayed in the language with the lowest number in the "Order" column.

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
774 System Manual, 11/2019, Online help printout

Requirements
● Multiple languages have been enabled in the "Project languages" editor.

● The "Language & Font" editor is open and three runtime languages have been set in the
following order:
1. English
2. Italian
3. French

Procedure
1. Select the runtime language "English".

2. Click . The runtime language "English" is moved down a place. The number will
automatically be changed to "1" in the "Order" column.

Result
You have changed the order of runtime languages. The first time runtime starts, the project will
be displayed in the language with the lowest number. If the language is switched, this will
happen in numerical order.

10.7.5 Setting the default font for a runtime language (RT Uni)

Introduction
You can specify the font used to display the texts for each runtime language on the device in
the "Language & Font" editor. The default font is used in all texts, such as dialog texts, for which
you cannot define a specific font.

WinCC offers only fonts supported by the HMI device.

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 775

Requirements
● Multiple languages have been enabled in the "Project languages" editor.

● Three runtime languages have been enabled in the "Language & Font" editor.
1. Chinese
2. German
3. French

Procedure
1. Double-click on "Runtime settings" in the project tree.

2. Click on "Language & Font". The table shows the runtime languages and fonts set.

3. Click in the "French" row in the "Default font" column.

4. Select the font to be used by default if a font cannot be selected for a given text.

Result
The project texts for the runtime language "French" are displayed on the device in the selected
font.

The default font is also used for the display of dialogs in the operating system of the device.
Select a smaller font as default if the full length of the dialog texts or headers is not displayed.

10.7.6 Standardizing font for all languages (RT Uni)

Introduction
You can standardize the font for all project languages during configuration with the "Use same
font for all languages" option.

Requirement
● Multiple languages have been selected in the "Project languages" editor.

● Multiple languages have been selected in the "Language & font" editor.

● The same font is defined for the selected runtime languages under "Configured font".

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
776 System Manual, 11/2019, Online help printout

Procedure
1. In the "Options > Settings > Visualization > General" menu, select the "Use same font for all

languages" option.

Result
You have enabled the option "Use same font for all languages". If you change the font of an
object in one language during configuration, this font will be applied to all active languages.

10.7.7 Specific features of Asian and Eastern languages in runtime (RT Uni)

Introduction
Note the following special considerations for the operation in runtime of projects for Asian
languages.

Note

During configuration, only use the Asian fonts that your configuration computer supports.

Memory requirement for Asian character sets
The memory requirement is greater when using Asian languages. Therefore look out for
corresponding error messages when compiling the project.

Font size for Asian character sets
Use at least a font size of 10 points to display the text of projects created for Asian languages
in runtime. Asian characters will become illegible if smaller font sizes are used. This also
applies to the default font in the runtime settings under "Language & font".

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 777

Text field length for Asian languages
Make allowances for an appropriate length of the text fields when working on multilingual
projects with Asian languages. Field contents may be partially hidden, depending on the font
and the font size.

1. Open the "Properties > Appearance" text box in the Inspector window.

2. Under "Fit to size", disable the "Auto-size" option.

3. Verify the proper display in runtime.

Configuring in multiple languages (RT Uni)
10.7 Languages in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
778 System Manual, 11/2019, Online help printout

Configuring parameter sets (RT Uni) 11
11.1 Basics (RT Uni)

11.1.1 Basics of parameter control (RT Uni)

Introduction
The parameter control is a comprehensive function for the control of parameter sets for
configuration engineers, operators and recipe creators. The parameter control brings you the
following benefits:

● You can apply the structure of a user data type for one or more parameter set types.

● You can change the structure of one or more parameter set types automatically via a new
user data type version.

● You can exchange a large number of parameters manually or automatically between HMI
device and control system to set up a machine for a production.

● You can create parameter sets simply and uniformly for products to be manufactured in the
works during engineering or during ongoing operation.

● You can transfer parameters by simple means through the structuring of the associated
parameters/setpoint values.

Elements of the parameter control
● Parameter set type

A parameter set type with parameter set type items determines the structure that is used for
parameter sets on a machine. You create a parameter set type with parameter set type
items on the basis of a released HMI or PLC user data type that has user data type elements.

● Parameter set type item
Element of a parameter set type that is based on a user data type element. A parameter set
type item has the same name and data type as the corresponding user data type element.

● Parameter record
Set of parameters with concrete values that can be activated on a machine.

● Parameters
Element of a parameter set that is based on a parameter set type item. A parameter has the
same display name and data type as well as the same unit of measure as the corresponding
parameter set type item. A parameter has a concrete value that can be activated on a
machine.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 779

Tools of the parameter control
● "Parameter set types" editor

In the "Parameter set types" editor, you create parameter set type items on the basis of an
HMI or PLC application data type. In addition, you configure the properties of parameter set
types and parameter set type items in the editor.

● Parameter set control
The parameter set type display is a control with which you can display and manage
parameter sets in runtime and exchange them with the control system.

Note

The parameters set view is only supported for Unified PC. If you have configured a
parameter set view on a Unified Comfort Panel, you must delete the control before
compiling.

Parameter set memory
Part of the parameter control is the parameter set memory which is the internal memory of the
HMI device for parameter sets. The parameter set memory is located locally on the computer
in runtime.

Parameter control in the Engineering System
Perform the following tasks in Engineering System for the parameter control:

● You create a parameter set type with elements to specify the structure of parameter sets.

● You change the parameter set type with elements to change the structure of parameter sets.

● You assign a tag of the data type user data type to a parameter set type to transfer
parameter sets between HMI device and control system in runtime.

● You create local scripts in image objects or tasks to transfer parameter sets in runtime
between the HMI device and control system.

● You assign control tags to a parameter set type to automatically transfer or delete parameter
sets between HMI device and control system in runtime.

● You configure a parameter set control to display parameter sets, manage them and
exchange them with the control system through the Control in runtime.

Parameter control in runtime
The following options are available in runtime with the parameter control:

● You create, change and delete parameter sets in a parameter set control to manage
parameter sets for different productions.

● You export parameter sets from the parameter set memory into a "*.tsv" file to edit them in
a text editor.

Note

A "*.tsv" file is a text file that uses the tabulator as a list separator.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
780 System Manual, 11/2019, Online help printout

● You import parameter sets from a "*.tsv" file into the parameter set memory.

● You transfer parameter sets manually or automatically to the control system to set up
machines with values for different productions.

● You read parameter sets manually or automatically from the control system to call up
currently used values of production machines for later use.

● You automatically delete parameter sets from the parameter set memory.

See also
Configuring parameter sets (Page 788)

Using parameter sets in runtime (Page 807)

11.1.2 "Parameter set types" editor (RT Uni)

Introduction
In the "Parameter set types" editor, you create a parameter set type with elements on the basis
of an HMI or PLC application data type. In addition, you configure the properties of parameter
set types and parameter set type items in the editor.

Note

Alternatively create the parameter set type items on the basis of a user data type in the
Inspector window. In addition, you configure the properties of parameter set types and
parameter set type items also alternatively in the Inspector window.

Structure of the "Parameter set types" editor
The "Parameter set types" editor is a tabular editor. The editor always contains only a single
parameter set type and, if applicable, its elements. To view hidden columns, activate the
column titles using the shortcut menu.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 781

Properties of parameter set types
In the "Parameter set types" editor, you can configure the following properties:

Property Description
ID Number of a parameter set type. The ID uniquely identifies a parameter set

type within the HMI device. The ID appears in the parameter set control in
runtime.

Name Name of a parameter set type. The name uniquely identifies a parameter set
type within the HMI device.

Display name Display name of a parameter set type. The display name appears in the pa‐
rameter set control in runtime. You can configure display names in multiple
languages. The property is optional. If you do not set a display name, the value
from the "Name" property appears in the parameter set control in runtime.

Data type Enabled HMI or PLC user data type with which you define the structure of a
parameter set type.

Tag External HMI tag of the data type HMI or PLC user data type. In runtime you
transfer parameter sets between HMI device and control system via the HMI
tag.

Parameter ID Control tag with numerical data type. The control tag is used to define an ID of
a parameter set which is the target of one of the following control jobs in
runtime:
● Control job with job ID "6": Reading a parameter set from the PLC and

storing it in the parameter set memory.
● Control job with job ID "7": Loading a parameter set from the parameter set

memory and writing it to the PLC.
● Control job with job ID "8": Deleting a parameter set from the parameter set

memory.
The property is optional.

Job ID Control tag with numerical data type. The control tag is used to define a control
job which is applied to a parameter set in runtime. In runtime, you can apply
the following control jobs to a parameter set:
● Control job with job ID "6": Reading a parameter set from the PLC and

storing it in the parameter set memory.
● Control job with job ID "7": Loading a parameter set from the parameter set

memory and writing it to the PLC.
● Control job with job ID "8": Deleting a parameter set from the parameter set

memory.
The property is optional.

Author Author of a parameter set type. The property is optional. By default, the prop‐
erty is pre-assigned with the logged-on Windows user. By default, the column
is hidden.

Version Version of a parameter set type. The property is optional. By default, the
property is pre-assigned with the date and time of creation of the parameter
set type. By default, the column is hidden.

Path System standard path in runtime, in which the parameter set memory is loca‐
ted. The path refers to the path of the runtime project. The property is write-
protected. By default, the column is hidden.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
782 System Manual, 11/2019, Online help printout

Properties of parameter set type items
In the "Parameter set types" editor, you can configure the following properties for parameter set
type items:

Property Description
Name Name of a parameter set type item. The name uniquely identifies a

parameter set type item. The name is write-protected and identical to
the name of the corresponding user data type element.

Display name Display name of a parameter set type item and a corresponding pa‐
rameter in a parameter set. The display name appears in the table of the
parameter set control in runtime. You can configure display names in
multiple languages. The property is pre-assigned with the value from
the "Name" property.

Data type Data type of a parameter set type item and a corresponding parameter
in a parameter set. The name is write-protected and identical to the data
type of the corresponding user data type element.

Start value Start value of a parameter set type item. The start value is used to pre-
assign a corresponding parameter in a newly created parameter set in
runtime.
If you have set a start value in a user data type element with numerical
data type, bit sequence data type or string data type, the corresponding
parameter set type item receives this start value. If you have not set a
start value in a user data type element with numerical data type or bit
sequence data type, the corresponding parameter set type item re‐
ceives "0" as the start value. If you have not set a start value in a user
data type element with string data type, the corresponding parameter
set type item does not receive a start value. A parameter set type item
which is based on a user data type element with date/time data type
receives the creation time as start value by default.
The property is optional for parameter set type items with string data
types.

Minimum value Minimum permissible value of a parameter set type item and a corre‐
sponding parameter in a parameter set.
If you have set a minimum value in a user data type element with nu‐
merical data type, the corresponding parameter set type item receives
this minimum value. Otherwise, the corresponding parameter set type
item does not receive a minimum value.
The minimum value of a parameter set type item may not be below the
minimum value of the data type of the parameter set type item. In ad‐
dition, the minimum value of a parameter set type item may not be
below the minimum value of the corresponding user type element.
The property is optional and is disabled for parameter set type items
with string data types and bit sequence data types.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 783

Property Description
Maximum value Maximum permissible value of a parameter set type item and a corre‐

sponding parameter in a parameter set.
If you have set a maximum value in a user data type element with
numerical data type, the corresponding parameter set type item re‐
ceives this maximum value. Otherwise, the corresponding parameter
set type item does not receive a maximum value. The maximum value
of a parameter set type item may not be above the maximum value of
the data type of the parameter set type item. In addition, the maximum
value of a parameter set type item may not be above the maximum
value of the corresponding user data type element.
The property is optional and is disabled for parameter set type items
with string data types and bit sequence data types.

Value required If the check box of the property "Value required" is selected in a pa‐
rameter set type item, a corresponding parameter must have a value in
a parameter set. Otherwise, a corresponding parameter must have no
value in a parameter set. The check box of the property is selected by
default for parameter set type items with numerical data types. In this
case, you cannot clear the check box. The check box of the property is
cleared by default for parameter set type items with string data types. In
this case, however, you can select the check box if required.

Unit of measure Unit of measure of a parameter set type item and a corresponding pa‐
rameter in a parameter set. The unit of measure appears in the table of
the parameter set control in runtime. The property is optional.

See also
Creating a parameter set type with elements via an HMI user data type (Page 788)

Creating a parameter set type with elements via a PLC user data type (Page 791)

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
784 System Manual, 11/2019, Online help printout

11.1.3 Parameter set control (RT Uni)

Use
The parameter set control is used to display parameter sets in runtime, to manage them and to
exchange them with the control system.

Note

The "Parameter set control" object is supported with version V16 exclusively for Unified PC. If
the user uses the object under Unified Comfort Panel, an error message of the compiler is
returned. Existing projects under Unified Comfort Panel that have configured the object, must
delete the object before compiling to version V16.

Layout
You change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. You can adapt the following properties in particular:

● Display selection list: If you clear the check box of the property, the Parameter set type field
and the Parameter set type ID field with the associated labels are hidden.

Note

If you hide the two fields and do not select a parameter set type under "Properties > Fixed
parameter set type", the Parameter set type field is disabled in runtime. In addition, no
parameter set ID is displayed in the Parameter set ID field in runtime.

● "Parameter view": Defines the display of the parameter table in the control.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 785

● "Toolbar": Defines the operator controls of the parameter set control.

● "Status bar": Specifies the display of the status line.

Note

The "Status Text" element is the only status line element of the parameter set display.
Status messages are displayed in this element in runtime.

Using a parameter set type.
If you only want to use a particular parameter set type with its parameter sets in runtime, select
the desired parameter set type under "Properties > Fixed parameter set type".

Operator controls
You define the operator controls for the parameter set control in runtime, and their operator
authorizations, under "Properties > Toolbar" in the Inspector window. By default, all buttons are
displayed in the toolbar. To hide specific buttons, deactivate the "Visibility" property in the
settings of the corresponding button.

The following operator controls are available for the parameter set control:

 Button Function
Create Creates a new parameter set.

Save Saves a parameter set.

Save as Saves an existing parameter set under a new name and new ID.

Rename Renames the selected parameter set.

Write to PLC Writes the values of the selected parameter set to the PLC.

Read from PLC Writes the values of the selected parameter set from the PLC.

Import Imports parameter sets from a "*.tsv" file.

Export Exports parameter sets to a "*.tsv" file.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
786 System Manual, 11/2019, Online help printout

 Button Function
Cancel Cancels the process.

Delete Deletes the selected parameter set.

Note

A "*.tsv" file is a text file that uses the tabulator as a list separator.

Enabling/disabling operator controls
In "Properties > Editing mode", configure the activation status of the toolbar buttons "Create",
"Save", "Save as", "Rename" and "Delete". These toolbar buttons are used to edit parameter
sets.

You can select between the following settings:

● "None": Deactivates all buttons.

● "Update": Activates the "Save" and "Rename" buttons.

● "Create": Activates the "Create" and "Save as" buttons

● "Delete": Activates the "Delete" button

Configuring a status bar
1. Configure the general properties of the status bar such as the font or the background color

under "Properties > Status bar".

2. To adjust the size of the "Status Text" element, activate the "Customized" property under
"Properties > Status bar > Elements > Control bar label [0]".

3. You can enter a pixel value for the width and height.

Note

Status messages are displayed in runtime in the "Status text" element.

Configuring a time zone
Under "Properties > Time zone", you set the desired time zone in which you enter a numerical
value.

Configuring parameter sets (RT Uni)
11.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 787

The numerical value stands for a time zone, for example:

● "-1" stands for UTC-1h (Central European Time, standard time)

● "1" stands for UTC-12h (International Date Line West)

● "2" stands for UTC-11h (Hawaii)

See also
Configuring the parameter set view (Page 805)

11.2 Configuring parameter sets (RT Uni)

11.2.1 Creating a parameter set type with elements via an HMI user data type (RT Uni)

Introduction
You have created an HMI user data type with elements. You can assign the user data type to
one or more parameter set types and this way apply the elements of the user data type for the
parameter set type or types. A parameter set type with elements determines the structure that
is used for parameter sets on a machine. Since you do not have to create the elements of the
user data type again separately for the parameter set type or types, engineering efficiency and
reusability.

Note

Observe the following restrictions when creating the HMI user data type:
● The user data type may have a maximum of 1000 elements.
● No user data type element may have the data type TEXTREF or RAW.

Note

You can also create a parameter set type with elements via a PLC user data type that is created
in a SIMATIC S7-1500 control system.

Requirement
● The HMI device WinCC Unified Scada RT has been created.

● An HMI user data type with user data type elements has been created for the HMI device.

● The HMI user data type is enabled.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
788 System Manual, 11/2019, Online help printout

Creating a parameter set type with elements via an HMI user data type
Proceed as follows to create a parameter set type with elements via an HMI user data type:

1. Open the "Parameter set types" folder in the project tree.

2. Double-click "Add new parameter set type".
A parameter set type with unique standard name and unique ID is created. The "Parameter
set types" editor opens.

3. Select the released HMI user data type in the "Data type" column in the "Parameter set
types" editor.
In the editor, parameter set elements which are based on the user data type elements are
added to the parameter set type.

Note

The parameter set type items have the same name and data type as the user data type
elements. The name and data type of the parameter set type items are write-protected in the
editor.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 789

Configuring a parameter set type
To configure the created parameter set type, proceed as follows:

1. Enter a meaningful name for the parameter set type in the "Name" column in the "Parameter
set types" editor
The name uniquely identifies the parameter set type within the HMI device.

2. Enter a language-dependent name for the parameter set type in the "Display name" column.
The display name appears in the parameter set control in runtime.

3. If required, enter an own number for the parameter set type in the "ID" column.
The ID uniquely identifies the parameter set type within the HMI device. The ID appears in
the parameter set control in runtime.

Configuring parameter set type items
To configure the created parameter set type items, proceed as follows:

1. In the "Display name" column of the "Parameter set types" editor configure a language-
dependent name for the parameter set type items and corresponding parameters in a
parameter set.
The display name appears in the table of the parameter set control in runtime.

2. Configure a unit of measure In the "Unit of measure" column for parameter set type items
and corresponding parameters in a parameter set.
The unit of measure appears in the table of the parameter set control in runtime.

3. Configure a start value in the "Start value" column for parameter set type items.
The start value is used to pre-assign the corresponding parameters in a newly created
parameter set in runtime.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
790 System Manual, 11/2019, Online help printout

Result
You have created a parameter set type with elements via an HMI user data type.

See also
Configuring user data types (Page 166)

"Parameter set types" editor (Page 781)

Changing a parameter set type with elements (Page 795)

Configuring the parameter set view (Page 805)

Assigning a tag of the data type HMI user data type to a parameter set type (Page 798)

11.2.2 Creating a parameter set type with elements via a PLC user data type (RT Uni)

Introduction
You have created a PLC user data type with elements. You can assign the user data type to one
or more parameter set types and this way apply the elements of the user data type for the
parameter set type or types. A parameter set type with elements determines the structure that
is used for parameter sets on a machine. Since you do not have to create the elements of the
user data type again separately for the parameter set type or types, engineering efficiency and
reusability.

Note

Observe the following restrictions when creating the PLC user data type:
● The user data type may have a maximum of 1000 elements.
● No user data type element may have the data type ARRAY or STRUCT.

Note

You can also create a parameter set type with elements via an HMI user data type for which the
communications driver SIMATIC S7-300/400 or SIMATIC S7-1500 is set.

Requirement
● The HMI device WinCC Unified Scada RT has been created.

● A PLC user data type with user data type elements is created in a SIMATIC S7-1500 PLC.

● The "Libraries" task card is open.

● The project library is open.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 791

Adding a PLC user data type to the project library
To add a PLC user data type to the project library, follow these steps:

1. Open the PLC's folder in the project navigation.

2. Open the folder "PLC data types" in the folder of the controller.
The created PLC user data type is displayed in the "PLC data types" folder.

3. Move the PLC user data type to the "Types" folder in the project library.
The "Add type" dialog opens.

4. Make the following settings in the dialog:

– Enter a unique name for the PLC user data type under "Type name".

– Enter a valid version number for the PLC user data type under "Version".

– Enter the author responsible for the PLC user data type under "Author".

– Enter a comment for the PLC user data type under "Comment".

5. Click the "OK" button.
The PLC user data type is added with a released version to the "Types" folder in the project
library.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
792 System Manual, 11/2019, Online help printout

Creating a parameter set type with elements via a PLC user data type
Proceed as follows to create a user data type with elements via a PLC user data type:

1. Open the "Parameter set types" folder in the project tree.

2. Double-click "Add new parameter set type".
A parameter set type with unique standard name and unique ID is created. The "Parameter
set types" editor opens.

3. Select the released PLC user data type in the "Data type" column in the "Parameter set
types" editor.
In the editor, parameter set elements which are based on the user data type elements are
added to the parameter set type.

Note

The parameter set type items have the same name and data type as the user data type
elements. The name and data type of the parameter set type items are write-protected in the
editor.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 793

Configuring a parameter set type
To configure the created parameter set type, proceed as follows:

1. Enter a meaningful name for the parameter set type in the "Name" column in the "Parameter
set types" editor
The name uniquely identifies the parameter set type within the HMI device.

2. Enter a language-dependent name for the parameter set type in the "Display name" column.
The display name appears in the parameter set control in runtime.

3. If required, enter an own number for the parameter set type in the "ID" column.
The ID uniquely identifies the parameter set type within the HMI device. The ID appears in
the parameter set control in runtime.

Configuring parameter set type items
To configure the created parameter set type items, proceed as follows:

1. In the "Display name" column of the "Parameter set types" editor configure a language-
dependent name for the parameter set type items and corresponding parameters in a
parameter set.
The display name appears in the table of the parameter set control in runtime.

2. Configure a unit of measure In the "Unit of measure" column for parameter set type items
and corresponding parameters in a parameter set.
The unit of measure appears in the table of the parameter set control in runtime.

3. Configure a start value in the "Start value" column for parameter set type items.
The start value is used to pre-assign the corresponding parameters in a newly created
parameter set in runtime.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
794 System Manual, 11/2019, Online help printout

Result
You have created a parameter set type with elements via a PLC user data type.

See also
Configuring user data types (Page 166)

"Parameter set types" editor (Page 781)

Changing a parameter set type with elements (Page 795)

Configuring the parameter set view (Page 805)

Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 800)

11.2.3 Changing a parameter set type with elements (RT Uni)

Introduction
You have created one or more parameter set types with elements via a user data type. A
parameter set type with elements determines the structure that is used for parameter sets on
a machine. You have the following options to change parameter set types with elements:

● You can change one or more parameter set types automatically via a new version of the
user data type.

● You can change a parameter set type manually via a new version of the user data type.

● You can change a parameter set type via another user data type.

Requirement
● One or more parameter set types with elements are created on the basis of an HMI or PLC

user data type.

Changing parameter set types automatically via a new version of the user data type
To change parameter set types with elements automatically via a new version of the user data
type, follow these steps:

1. Select the released user data type in the project library.

2. Select "Edit type" in the shortcut menu.
In the case of an HMI user data type the "HMI user data types" editor is opened and a new
user data type version with the "In process" status is generated in the project library. In the
case of a PLC user data type the "Edit type" dialog is opened.

3. In the case of a PLC user data type click "OK" in the "Edit type" dialog.
The "PLC data type" editor opens. A new user data type version with the "Testing" status is
generated in the project library.

4. Change the user data type in the case of an HMI user data type in the "HMI user data types"
editor and in the case of a PLC user data type in the "PLC data types" editor.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 795

5. Select the new user data type version in the project library.

6. Select "Release version" in the shortcut menu.
The "Release type version" dialog box opens.

7. If necessary, change the properties of the version:

– Enter a unique name for the user data type in the "Type name" field.

– Enter a valid version number for the version to be released in the "Version" field.

– Under "Author" enter the editor of the version to be released.

– Under "Comment" enter a comment on the version to be released.

8. If you want to revise the version management of the user data type, enable the "Delete
unused type versions from the library".

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
796 System Manual, 11/2019, Online help printout

9. To automatically change the parameter set type or types via the new user data type version,
activate the option "Update instances in the project".

10.Click the "OK" button.
The parameter set type or types are changed in the following way via the user data type
version:

– An element that you have not changed in the user data type, also remains in the
parameter set type with all its settings.

– An element that you have added new to the user data type is also added to the parameter
set type.

– The element that you have deleted from the user data type is also deleted from the
parameter set type.

– If you have changed the name of an element in the user data type, the parameter set type
of the element's name is changed as well. All other properties of the element remain
unchanged such as the start value or the display name.

– If you have changed the data type of an element in the user data type, the parameter set
type of the element's data type is changed as well. Other properties of the elements
remain unchanged.

Note

An element whose data type you have changed is treated like a new element in runtime.
Consequently the values of the element are deleted in the existing parameter sets and
the start values are assigned as default to the element.

– If you have changed a numerical data type of an element into a string data type in the
user data type, the minimum and maximum values previously specified of the element
are also removed.

Changing the parameter set type manually via a new version of the user data type
Proceed as follows to change a parameter set type with elements manually via a new version
of the user data type:

1. Execute Steps 1 to 8 and 10 of the description above.

2. Open the "Parameter set types" folder in the project navigation.

3. Double-click a created parameter set type.
The "Parameter set types" editor opens.

4. Select the new user data type version in the "Data type" column in the "Parameter set types"
editor.
The parameter set type is changed via the new user data type version as described in Step
10 of the above description.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 797

Changing parameter set type via another user data type
Proceed as follows to change a parameter set type with elements manually via another user
data type:

1. Open the "Parameter set types" folder in the project navigation.

2. Double-click a created parameter set type.
The "Parameter set types" editor opens.

3. Select another released user data type in the "Data type" column in the "Parameter set
types" editor.
The structure of the parameter set type is created completely new in accordance with the
structure of the other user data types.

See also
Creating a parameter set type with elements via an HMI user data type (Page 788)

Creating a parameter set type with elements via a PLC user data type (Page 791)

11.2.4 Assigning a tag of the data type HMI user data type to a parameter set type (RT
Uni)

Introduction
To exchange parameter sets between the HMI device and control system in runtime, assign an
external HMI tag to a parameter set type created via an HMI user data type in the Engineering
System. To this purpose the HMI tag uses the HMI user data type as the data type with which
you created the parameter set type.

Note

You can also assign an external HMI tag to a parameter set type that was created via a PLC
user data type. In doing so the HMI tag uses the PLC user data type as the data type with which
you created the parameter set type.

Requirement
● An HMI user data type has been created in the HMI device WinCC Unified Scada RT.

● The communication driver SIMATIC S7-300/400 or SIMATIC S7-1500 is set for the HMI
user data type.

● User data type elements are added to the HMI user data type.

● The HMI user data type is enabled.

● A parameter set type with elements is created on the basis of the HMI user data type.

● An external HMI tag is created that uses the HMI user data type as the data type.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
798 System Manual, 11/2019, Online help printout

Procedure
To assign an external HMI tag of the data type HMI user data type to a parameter set type,
proceed as follows:

1. Open the "Parameter set types" folder in the project navigation.

2. Double-click the created parameter set type.
The "Parameter set types" editor opens. The Inspector window opens.

3. Select the created HMI tag of the data type "HMI user data type" in the column "Tag" in the
"Parameter set types" editor.

Result
You have assigned an external HMI tag of the data type "HMI user data type" to a parameter
set type.

See also
Creating a parameter set type with elements via an HMI user data type (Page 788)

Creating tags with a user data type data type (Page 170)

Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 800)

Transferring and deleting parameter sets automatically (Page 801)

Transferring parameter sets (Page 816)

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 799

11.2.5 Assigning a tag of the data type "PLC user data type" to a parameter set type (RT
Uni)

Introduction
To exchange parameter sets between an HMI device and control system in runtime, assign an
external HMI tag to a parameter set type created via a PLC user data type in the Engineering
System. In doing so the HMI tag uses the PLC user data type as the data type with which you
created the parameter set type.

Note

You can also assign an external HMI tag to a parameter set type which was created via a HMI
user data type. To this purpose the HMI tag uses the HMI user data type as the data type with
which you created the parameter set type.

Requirement
● The HMI device WinCC Unified Scada RT has been created.

● A PLC user data type with user data type elements is created in a SIMATIC S7-1500 control
system.

● A parameter set type with elements is created on the basis of the PLC user data type.

● An external HMI tag is created that uses the PLC user data type as the data type.

Note

You have the following possibilities to create an external HMI tag of the data type "PLC user
data type":
● Assign a PLC tag to an HMI tag, whereby the PLC tag is based on a PLC user data type.
● Assign a PLC data block that is based on a PLC user data type to an HMI tag.
● Assign a PLC data block element that is based on a PLC user data type to an HMI tag.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
800 System Manual, 11/2019, Online help printout

Procedure
To assign an external HMI tag of the data type "PLC user data type" to a parameter set, follow
these steps:

1. Open the "Parameter set types" folder in the project navigation.

2. Double-click the created parameter set type.
The "Parameter set types" editor opens. The Inspector window opens.

3. Select the created HMI tag of the data type "PLC user data type" in the "Tag" column in the
"Parameter set types" editor.

Result
You have assigned an external HMI tag of the data type "PLC user data type" to a parameter
set type.

See also
Creating a parameter set type with elements via a PLC user data type (Page 791)

External tags (Page 140)

Creating external tags (Page 152)

Assigning a tag of the data type HMI user data type to a parameter set type (Page 798)

Transferring and deleting parameter sets automatically (Page 801)

Transferring parameter sets (Page 816)

11.2.6 Transferring and deleting parameter sets automatically (RT Uni)

Introduction
In the Engineering System you assign control tags to a parameter set type with elements. The
control tags serve to automatically transfer or delete parameter sets between an HMI device
and control system in runtime. In the process either the control program or the HMI device
controls the automatic transfer or deleting via control requests.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 801

Requirement
● A parameter set type with elements is created on the basis of an HMI or PLC user data type.

● An external HMI tag that uses the HMI or PLC user data type as the data type is assigned
to the parameter set type.

● 2 control tags with numerical data type by the name of "ParameterSetIDTag" and
"JobIDTag" are created.

Note

If you want to automatically transfer or delete parameter sets by means of the control
program, create 2 external control tags. If you want to automatically transfer or delete
parameter sets by means of the HMI device, however, create 2 internal control tags.

● The "Toolbox" task card is open.

Assigning control tags to a parameter set type with elements
Proceed as follows to assign control tags to a parameter set type with elements in the
Engineering System:

1. Open the "Parameter set types" folder in the project tree.

2. Double-click on the created parameter set type.
The "Parameter set types" editor opens. The Inspector window opens.

3. Select the control tag "ParameterSetIDTag" in the "Parameter set ID" column in the
"Parameter set types" editor.

4. Select the "JobIDTag" control tag in the "Job ID" column.

Note

Please observe each of the following rules to not obtain any errors when compiling the project:
● If you set a control tag in the "Parameter set ID" column of the "Parameter set types" editor,

you also set a control tag in the "Job ID" column.
● Do not set the same control tag in the columns "Parameter set ID" and "Job ID" in the

"Parameter set types" editor.
● If you assign a control tag to a parameter set type in the "Parameter set types" editor, do not

assign the same control tag to another parameter set type.

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
802 System Manual, 11/2019, Online help printout

Reading a parameter set from the control system
Proceed as follows to automatically read a parameter set from the control system and store it
in the parameter set memory in runtime:

1. Automatically set the control tag "ParameterSetIDTag" to an ID of an existing parameter set.

2. Automatically set the control tag "JobIDTag" to the control job ID "6".
The control job is executed. In the case of success the control tag "JobIDTag" is set to the
value "0", otherwise to the value "-1".

Note

If you set a non-existing parameter set ID and the control job ID to "6", a new parameter set is
created with the parameter set values available in the control system.

Writing a parameter set to the control system
To automatically load a parameter set from the parameter set memory and write it into the
control system, follow these steps:

1. Automatically set the control tag "ParameterSetIDTag" to an ID of an existing parameter set.

2. Set the control tag "JobIDTag" automatically to the control job ID "7".
The control job is executed. In the case of success the control tag "JobIDTag" is set to the
value "0", otherwise to the value "-1".

Deleting a parameter set
To automatically delete a parameter set from the parameter set memory, follow these steps:

1. Automatically set the control tag "ParameterSetIDTag" to an ID of an existing parameter set.

2. Set the control tag "JobIDTag" automatically to the control job ID "8".
The control job is executed. In the case of success the control tag "JobIDTag" is set to the
value "0", otherwise to the value "-1".

Result
You have assigned control tags to a parameter set type with elements in the Engineering
Systems and automatically transferred and deleted parameter sets between the HMI device
and control system via the control tags in runtime.

See also
Assigning a tag of the data type HMI user data type to a parameter set type (Page 798)

Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 800)

External tags (Page 140)

Creating external tags (Page 152)

Configuring the parameter set view (Page 805)

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 803

Transferring parameter sets via scripts (Page 804)

Managing parameter sets (Page 807)

Transferring parameter sets (Page 816)

11.2.7 Transferring parameter sets via scripts (RT Uni)

Introduction
In runtime, you can transfer parameter sets via local scripts between the HMI device and control
system. To do so configure the local scripts in the Engineering Systems at events of screen
objects or at the "Update" event of tasks.

Code examples for transferring parameter sets
To load a parameter set from the parameter set memory and write it into the control system, use
the following code example:

let ps1 = ParameterSetTypes('MyPST1').ParameterSets(1);
ps1.LoadAndWrite(true);

To read a parameter set from the control system and store it in the parameter set memory, use
the following code example:

let ps1 = ParameterSetTypes('MyPST1').ParameterSets(1);
ps1.ReadAndSave(HMIRuntime.ParameterSetTypes.Enums.hmiOverwrite.Disabled, true);

See also
Local scripts (Page 361)

Transferring and deleting parameter sets automatically (Page 801)

Transferring parameter sets (Page 816)

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
804 System Manual, 11/2019, Online help printout

11.2.8 Configuring the parameter set view (RT Uni)

Introduction
To display, manage and exchange parameter sets with the control system in runtime, use a
parameter set control. You configure a parameter set control in the engineering system.

Note

The parameters set view is only supported for Unified PC. If you have configured a parameter
set view on a Unified Comfort Panel, you must delete the control before compiling.

Requirement
● At least one parameter set type with elements has been created.

● A screen is open.

● The "Toolbox" task card is open.

Procedure
To configure a parameter set control, proceed as follows:

1. Insert the "Parameter set control" object from the "Tools" task card into the screen.

2. Go to "Properties" in the Inspector window and set the required height, width and position
for the parameter set control.

3. If you only want to use a particular parameter set type with its parameter sets in runtime,
select the desired parameter set type under "Properties > Fixed parameter set type".

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 805

4. If you want to hide the parameter set type field and the parameter set type ID field with the
associated labels, clear the check box under "Properties > Display selection list".

Note

If you hide the two fields and do not select a parameter set type under "Properties > Fixed
parameter set type", the Parameter set type field is disabled in runtime. In addition, no
parameter set ID is displayed in the Parameter set ID field in runtime.

5. Change the labels of the fields, if required.

6. If required, change the display of the parameter table under "Properties > Parameter view".

7. In "Properties > Editing mode", configure the activation status of the toolbar buttons
"Create", "Save", "Save as", "Rename" and "Delete" as required.
These toolbar buttons are used to edit parameter sets.

8. If you want to hide specific buttons in the toolbar, deactivate the "Visibility" property under
"Properties > Toolbar > Elements" in the settings of the corresponding button.

9. Under "Properties > Time zone", change the time zone as required by entering a different
numerical value.
The numerical value stands for a time zone, for example:

– "-1" stands for UTC-1h (Central European Time, standard time)

– "1" stands for UTC-12h (International Date Line West)

– "2" stands for UTC-11h (Hawaii)

See also
Parameter set control (Page 785)

Creating a parameter set type with elements via an HMI user data type (Page 788)

Creating a parameter set type with elements via a PLC user data type (Page 791)

Transferring and deleting parameter sets automatically (Page 801)

Managing parameter sets (Page 807)

Exporting and importing parameter sets (Page 813)

Transferring parameter sets (Page 816)

Configuring parameter sets (RT Uni)
11.2 Configuring parameter sets (RT Uni)

WinCC Engineering V16 - Runtime Unified
806 System Manual, 11/2019, Online help printout

11.3 Using parameter sets in runtime (RT Uni)

11.3.1 Managing parameter sets (RT Uni)

Introduction
You manage parameter sets for different productions in a parameter set control in runtime. You
have the following options for managing parameter sets:

● Create new parameter sets

● Copy parameter sets

● Change parameter sets

● Delete parameter sets

● Rename parameter sets

Requirement
● At least one parameter set type with elements has been created.

● A parameter set control has been configured.

● The project is in runtime.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 807

Creating a new parameter set
To create a new parameter set, proceed as follows:

1. In the "Parameter set type" field, select the parameter set type for which you want to create
a new parameter set.
The elements of the selected parameter set type are displayed in the table.

2. Click the "Create" button.
The "Create parameter set" dialog opens.

3. Enter a unique parameter set name under "Parameter set name".

4. Enter a unique parameter set ID under "Number".

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
808 System Manual, 11/2019, Online help printout

5. Confirm the dialog.
A new parameter set has been created and saved. The parameters of the new parameter
set are displayed in the table. The parameters have the same values in the columns
"Name", "Value" and "Unit of measure" as the elements of the previously selected
parameter set type.

Note

If you do not make any entries in the "Create parameter set" dialog and confirm the dialog,
a new parameter set is also created and saved. In this case the new parameter set,
however, has a unique parameter set name and a unique parameter set ID which were both
automatically assigned by the system.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 809

6. Enter values for the parameters in the "Value" column.
Depending on the configuration, the parameters already contain start values.

7. Click the "Save" button.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
810 System Manual, 11/2019, Online help printout

Copying a parameter set
To copy a parameter set, proceed as follows:

1. In the "Parameter set type" field, select the parameter set type in which you want to copy an
existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to copy.
The parameters of the selected parameter set are displayed in the table.

3. Click the "Save as" button.
The "Save parameter set" dialog opens. A unique parameter set name is pre-assigned to
the "Parameter set name" field.

4. Enter a different unique parameter set name under "Parameter set name" as required.

5. Enter a unique parameter set ID under "Number" as required.

6. Confirm the dialog.

Note

If you do not enter a parameter set ID in the "Save parameter set" dialog and confirm the
dialog, a unique parameter set ID is automatically assigned to the new parameter set.

Changing the parameter set
To change a parameter set, proceed as follows:

1. In the "Parameter set type" field, select the parameter set type in which you want to change
an existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to change.
The parameters of the selected parameter set are displayed in the table.

3. Edit the values of the parameters in the "Value" column.

4. Click the "Save" button.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 811

Deleting a parameter set
To delete a parameter set, proceed as follows:

1. In the "Parameter set type" field select the parameter set type in which you want to delete
an existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to delete.
The parameters of the selected parameter set are displayed in the table.

3. Click "Delete".

Renaming a parameter set
To rename a parameter set, proceed as follows:

1. In the "Parameter set type" field, select the parameter set type in which you want to rename
an existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to rename.
The parameters of the selected parameter set are displayed in the table.

3. Click the "Rename" button.
The "Rename parameter set" dialog opens.

4. Enter a different unique name for the parameter set under "Parameter set name".

5. Confirm the dialog.

See also
Parameter set control (Page 785)

Configuring the parameter set view (Page 805)

Transferring and deleting parameter sets automatically (Page 801)

Exporting and importing parameter sets (Page 813)

Transferring parameter sets (Page 816)

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
812 System Manual, 11/2019, Online help printout

11.3.2 Exporting and importing parameter sets (RT Uni)

Introduction
In a parameter set control in runtime you export parameter sets from the parameter set memory
to a "*.tsv" file to be able to edit them a text editor. In a parameter set control in runtime you
furthermore import parameter sets from a "*.tsv" file into the parameter set memory.

Note

A "*.tsv" file is a text file that uses the tabulator as a list separator.

Note

To export and import the parameter sets, you can also use the system functions in the function
list or in the scripts:
● With the system function "ExportParameterSets" or "ExportParameterSets", the parameter

sets are exported from the parameter set memory to a "*.tsv" file.
● With the system function "ImportParameterSets" or "ImportParameterSets", the parameter

records are imported from a "*.tsv" file into the parameter set memory.

Requirement
● At least one parameter set type with elements has been created.

● A parameter set control has been configured.

● The project is in runtime.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 813

Exporting parameter sets of a parameter set type
Follow these steps to export the parameter sets of a parameter set type:

1. In the "Parameter set type" field, select the parameter set type whose parameter sets you
want to export.

2. Click "Export".
The "Export parameter set" dialog box opens. The name of the parameter set control is pre-
assigned in the "File name" field.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
814 System Manual, 11/2019, Online help printout

3. If appropriate, change the name of the file to which you want export the parameter sets
under "File name".

4. Confirm the dialog.
The parameter set types are exported to a ".tsv" file which you can find in the Windows folder
"Downloads".
The first row of the opened file contains the file header. The second line contains the name
of the parameter set type. The third row contains the headers for parameter sets. From the
fourth line on the parameter sets are listed.

Importing parameter sets into a parameter set type
To import parameter sets into a parameter set type, follow these steps:

1. In the "Parameter set type" field, select the parameter set type into which you want to import
the parameter sets.

2. Click "Import".
The "Import parameter set" dialog box opens.

3. Select the file from which you want to import the parameter sets.

Note

The import file must have the same file header and the same header for parameter sets as
the export file. Otherwise the import of parameter sets is not possible.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 815

4. To overwrite parameter sets in the parameter set control that have the same ID as the
imported parameter sets, activate the "Overwrite" option.

Note

If you deactivate overwriting and if a parameter set with the same ID is available in the
parameter set control, the import of parameter sets is not possible.

5. Confirm the dialog.
The parameter sets are imported to the parameter set type.

See also
Parameter set control (Page 785)

Configuring the parameter set view (Page 805)

Managing parameter sets (Page 807)

11.3.3 Transferring parameter sets (RT Uni)

Introduction
You have assigned an external HMI tag of the data type HMI or PLC user data type to a
parameter set type. In a parameter set control in runtime you transfer the values of parameter
sets to the control system via the HMI tag. The parameter set values are used to set up
machines for different productions.

In a parameter set control in runtime you furthermore read active parameter sets from the
control system into the parameter set control via the HMI tag. The read parameter set values
are stored in the parameter set memory. By reading from the PLC you call up currently used
values of production machines for future use.

Note

You can also use system functions in the function list or in scripts to transfer parameter sets
between HMI device and PLC:
● With the system function "ReadAndSaveParameterSet" or "ReadAndSaveParameterSet",

a parameter set is read from the PLC and saved in the parameter set memory.
● With the system function "LoadAndWriteParameterSet" or "LoadAndWriteParameterSet", a

parameter set is loaded from the from the parameter set memory and written to the PLC.

Requirement
● A parameter set type with elements has been created.

● An external HMI tag of the data type HMI or PLC user data type is assigned to the parameter
set type.

● A parameter set control has been configured.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
816 System Manual, 11/2019, Online help printout

● The project is in runtime.

● At least one parameter set has been created in the parameter set type.

Transferring a parameter set to the PLC.
Proceed as follows to transfer a parameter set to the PLC:

1. In the "Parameter set type" field, select the parameter set type.

2. In the "Parameter set" field, select the parameter set whose values you want to transfer to
the PLC.

3. Click the "Write to PLC" button.

Reading a parameter set from PLC
Proceed as follows to read a parameter set from the PLC:

1. In the "Parameter set type" field, select the parameter set type.

2. In the "Parameter set" field, select the parameter set whose values you want to read from
the PLC.

Note

If do you not select a parameter set in the in the "Parameter set" field, a new parameter set
is created in the parameter set control while reading from the control system.

3. Click the "Read from PLC" button.

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 817

Result
You have transferred the values of parameter sets between the HMI device and control system.

See also
Assigning a tag of the data type HMI user data type to a parameter set type (Page 798)

Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 800)

Parameter set control (Page 785)

Configuring the parameter set view (Page 805)

Managing parameter sets (Page 807)

Transferring and deleting parameter sets automatically (Page 801)

Transferring parameter sets via scripts (Page 804)

Configuring parameter sets (RT Uni)
11.3 Using parameter sets in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
818 System Manual, 11/2019, Online help printout

Configuring user administration (RT Uni) 12
12.1 Basics of user administration (RT Uni)

Introduction
The TIA Portal provides the possibility to perform user administration for projects. In this way,
for example, a project can be protected against unintentional or unauthorized modification. A
user sets up the project protection to activate user management. This user is created as a
project administrator. Once the project protection has been activated, the project can only be
opened and edited by authorized users. Note that project protection cannot be revoked.

Permissible users are local project users and global users and user groups added by a project
administrator:

● Local project users:
Users who are defined and managed in a TIA Portal project. These user accounts are only
valid for this one project. It makes sense to use project user accounts if the entire automation
solution is engineered in one project.

● Global users and user groups:
These user accounts are defined and managed outside the TIA Portal in UMC (User
Management Component). Global users and user groups can be imported into the various
TIA Portal projects in which these users will work. To add users and user groups from UMC,
the corresponding rights are required in UMC.

You can assign specific roles to users or user groups, which in turn can be linked to different
function rights. There are the following general engineering role permissions to which a role can
be assigned:

● Open the project read-only
A user who has only this role permission can open the project, but not modify it. However,
he cannot open the editors for user administration.

● Open the project with write rights
A user with this role permission can modify the project. However, he cannot open the editors
for user administration with this.

● Managing users and roles
A user with this role permission can manage the users and roles of the project. In addition,
the user still requires the "Open the project with write rights" role permission because the
project cannot be opened or edited with the "Manage users and roles" role permission
alone.

In addition to these general role permissions, further runtime rights can be assigned. The
descriptions of these specific function rights can be found in the corresponding areas of the
help. Several function rights can be assigned to a role.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 819

When you enable user administration, the system creates the following two roles:

● "ES Administrator"
The first created project user is assigned the role "ES Administrator". This role has all three
engineering role permissions by default. Each project needs at least one administrator who
is allowed to edit the project and the security settings. In addition, other users may be
assigned the right to manage users and roles.

● "ES Standard"
Users who are assigned the role "ES Standard" have the permissions "Open project read-
only" and "Open project read/write".

You cannot change or delete these system roles. You can create additional roles and assign
them the required role permissions.

Note
Additional local user administrations

In addition to the user administration for projects, there are additional user administrations in
certain areas of the TIA Portal, e.g. for WinCC Panels.

Settings for users
A project administrator can make the following settings for a local project user:

● User name:
Name of the local project user who must be used to log on to the project.

● Password:
The password of the local project user assigned by the administrator with which the project
user can log onto the project. The project user can change the password later.

● Authentication method:
Authentication methods defined by the administrator. The following two methods are
available:

– Password: Login is via a password which was defined in the TIA Portal or in UMC.

– Radius: Login is via a RADIUS server on which the password is stored. This option can
only be used for devices that support login via a RADIUS server.

● Maximum session duration
Maximum duration for which the user can be logged on to a device. The user is logged off
from the device after the time has expired. This setting is only available for devices that
support a session duration. The session duration is not evaluated in the TIA Portal itself.

UMC - User Management Component
In addition, you can install the "User Management Component UMC" software package on one
or multiple computers; it provides a central user administration. This creates a system of
possibly interactive UMC installations (UMC ring server, UMC server). Then you can define
users and user groups in the UMC system or import them from the Windows Active Directory.
When UMC is installed, you can access the UMC server from the TIA Portal to add the users
and user groups defined there to the user administration of the TIA Portal and use roles to
assign them specific role permissions in a TIA Portal project.

Configuring user administration (RT Uni)
12.1 Basics of user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
820 System Manual, 11/2019, Online help printout

However, you cannot change the data of users and user groups added from UMC within the TIA
Portal. For example, even as administrator in the project you cannot change passwords or
other data of UMC users or UMC user groups. This is only possible in UMC. However, you have
the option to synchronize user administration in the TIA Portal with UMC or to check the
synchronization status. This enables you to eliminate inconsistencies between the global users
and user groups in UMC and the UMC users or UMC user groups already imported in the TIA
Portal.

Note
UMC documentation

The UMC installation file and the UMC documentation in English is available on the TIA Portal
installation data storage medium ("..\support", "...\Documents\Readme\English").

We highly recommend that you read the UMC documentation completely before you start
working with the user administration, especially the sections on "Secure Application Data
Support (SADS)". SADS is mandatory for working with the user administration in the TIA Portal.

User administration in the TIA Portal and Multiuser Engineering
Note the following information when working with the user administration in the TIA Portal in
combination with Multiuser Engineering:

● You can only make changes to the user administration of a multiuser project in a server
session and not in the local sessions.

● When you upload a single-user project that is protected with user administration to a
multiuser server, the resulting multiuser project is also protected. The users and user groups
contained in the project continue to exist with their passwords and can therefore continue to
log into the local sessions of the multiuser project, provided they have the corresponding
user rights.

● If you protect a previously unprotected local session using the user administration, this
protection is removed once again after checking-in and updating the local session, as the
multiuser project on the server is not protected as a result. This also applies when several
operators are protecting their local sessions.

● If you protect the multiuser project on the server using the user administration, the local
sessions created by this multiuser project are also protected as soon as these are updated.

● When you log off from your local session, which is protected using the user administration,
other users remain logged on to their local sessions of the multiuser project. You only log
yourself off. Your local session is the closed as a result.

● If the multiuser project on the server is protected using the user administration during
processing of your unprotected local session and your user account has not been assigned
the "Open project with read/write permission" role permission, you cannot check-in any
changes to your local session or update your local session.

More information on Multiuser Engineering can be found in section "Using Multiuser
Engineering".

Configuring user administration (RT Uni)
12.1 Basics of user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 821

12.2 Configuring user administration (RT Uni)

12.2.1 Setting password policies (RT Uni)
You can specify the structure and the complexity of the project user passwords for the
engineering system and Runtime. To do this, you can specify the following policies:

● "Minimum password length"
The minimum number of characters that the user password must have.

● "Minimum number of numeric characters"
The minimum number of numeric characters that the user password must contain.

● "Minimum number of special characters"
The minimum number of special characters that the user password must contain.

● "At least one upper case and one lower case letter"
Specifies that the user password must contain at least one uppercase and one lowercase
letter.

● "Number of recently used passwords blocked for reuse"
Sets the number of recently used passwords that cannot be used as a new password.

● "Enable password aging"
Specifies that the password only has a certain validity period and then expires. If this option
is selected, the password must be changed within the password validity.

● "Password validity (days)"
Sets the password validity in days, in which the password must be changed when the
password is activated.

● "Prewarning time (days)"
Sets how many days before the user's password expires, a warning is provided to the user.
The warning time must be less than that for the password validity.

Note
Permissible characters for usernames and passwords

You can use the following numbers, letters and special characters for usernames and
passwords:
● 0123456789
● A...Z a...z
● !#$%&()*+,-./:;<=>?@ [\]_{|}~^

Requirement
● A project is open.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
822 System Manual, 11/2019, Online help printout

Procedure
To set the password policies, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click "Settings".
The "Settings" editor opens in the working area and the "Project protection" area is
displayed.

3. Click "Password policies".
The "Password settings for Runtime and engineering" area is displayed.

4. Make all the desired settings.

12.2.2 Managing project users (RT Uni)
To manage local users in your project you can perform the following actions:

● Create a new project user

● Change the user name of a project user

● Change the password of a project user

● Change the authentication procedure of a project user

● Change the maximum session duration of a project user

● Change the comment for a project user

● Delete project users

Please note the following restrictions:

● A maximum of 256 project users can be added.

● The user name may not exceed 255 characters.

● The password may not exceed 120 characters and must meet the defined password
guidelines.

● The comment may not exceed 1000 characters.

In contrast, the following restrictions apply to CPs:

● A maximum of 33 project users can be added.

● The user name may not exceed 32 characters.

● The password may not exceed 32 characters and must meet the defined password
guidelines.

Requirement
● A project is open.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 823

Create new project user
To create a new project user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Click "Add new user".
A submenu is opened in which you can select the user type.

5. Click "Add new project user".

6. Enter a user name in the "User name" column.

7. Click on the arrow in the "Password" column.

8. Enter a password.

9. Re-enter the password to confirm.

10.Open the drop-down list in the "Authentication procedure" column and select the
authentication procedure for the project user.

11.In the "Maximum session duration" column configure the maximum session duration for the
project user.

12.If necessary, enter a comment for the project user in the "Comment" column.
A new project user has been created. Next, you can assign roles to the project user.

Note

You can also create a new project user by copying an existing project user. The roles assigned
to the original project user are also assigned to the copied project user. However, you must
assign a new password for the copied project user.

Changing the user name of a project user
To change the user name of a project user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Change the user name in the "User name" column.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
824 System Manual, 11/2019, Online help printout

Changing the password of a project user
To change the password of a project user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Click on the arrow next to the password in the "Password" column.

5. Enter the new password.

6. Re-enter the password to confirm.

Changing the authentication procedure of a project user
To change the authentication procedure of a project user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Open the drop-down list in the "Authentication procedure" column and select the preferred
authentication procedure.

Changing the maximum session duration of a project user
To change the maximum session duration of a project user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. In the "Maximum session duration" column configure a new maximum session duration.

Change the comment for a project user
To change the comment for a project user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Enter a new comment in the "Comment" column.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 825

Deleting project users
To delete a project user, proceed as follows:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Select the project user.

5. In the shortcut menu select the "Delete" command or use the key.

12.2.3 Managing global users and user groups (RT Uni)
You can add global users and user groups which were created in UMC (User Management
Component) to a project.

Global users can be managed in UMC and the changes are then effective in every project to
which the users or user groups belong. You have the option to synchronize the user
administration in the TIA Portal with UMC so that no inconsistencies occur if users or user
groups were changed in UMC. To determine whether synchronization is necessary, you can
check the synchronization status. You can find information on synchronization in the banner of
the user administration.

Please note the following restrictions with regard to global users and user groups:

● A maximum of 256 global users can be added.

● A maximum of 50 global user groups can be added.

● Global users and user groups cannot be copied.

You can display the following information for global users and user groups:

● User groups: The users they contain and whether they have already been imported into the
user administration.

● User: The user groups of which the user is a member and whether they have already been
imported into the user administration.

Requirement
● A project is open.

● The connection to UMC is configured and you have a user account with the corresponding
rights in UMC.
For further information on installation and configuration of UMC, refer to the English
documentation on UMC on the installation data carrier in the directory "/document/Readme/
English".

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
826 System Manual, 11/2019, Online help printout

Adding global users
To add a global user from UMC, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Click "Add new user".
A submenu is opened in which you can select the user type.

5. Click "Add user from UMC".
If you are not yet logged on in UMC, the "UMC login" dialog opens. Then also perform steps
6 and 7.

6. Enter your UMC user name and the corresponding password.

7. Click "OK".
As soon as you are logged on in UMC, the "Add user from UMC" dialog opens. All the
available users from UMC are displayed in this dialog. Already activated users are activated
and write-protected.

8. Activate the users you wish to add to your TIA Portal project.

Note

To find the required users more quickly, you can filter the table by the columns "Name" and
"Long name". To do this, enter part of the name or long name n the first line. All users whose
names or long names contain the text entered are displayed. To cancel filtering, click the
Filter button or select "*" from the drop-down list.

9. Click "OK" to add the selected users.
The selected users are added as global users. Your data is write-protected and cannot be
changed within the TIA Portal project. However, a global user can change his own password.

Deleting global users
To delete a global user from the TIA Portal project, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Select the global user. You can also delete several users at the same time via multi-
selection.

5. In the shortcut menu select the "Delete" command or use the key.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 827

Adding a global user group
To add a global user from UMC, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "User groups" tab.

4. Click "Add new user group".
If you are not yet logged on in UMC, the "UMC login" dialog opens. Then also perform steps
5 and 6.

5. Enter your UMC user name and the corresponding password.

6. Click "OK".
As soon as you are logged on in UMC, the "Add user group from UMC" dialog opens. All the
available user groups from UMC are displayed in this dialog. Already activated user groups
are activated and write-protected.

7. Activate the user groups that you wish to add to your TIA Portal project.

8. Click "OK" to add the selected user groups.
The selected user groups are added as global user groups. Your data is write-protected and
cannot be changed within the TIA Portal project.

Deleting a global user group
To delete a global user group from the TIA Portal project, proceed as follows:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "User groups" tab.

4. Select the global user group. You can also delete several user groups at the same time via
multi-selection.

5. In the shortcut menu select the "Delete" command or use the key.

Display users of an added global user group
To display the users included in a global user group, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "User groups" tab.

4. Select the user group. Note that you cannot use multiple selection.

5. In the bottom area of the "User groups" tab open the "Users" tab.
The users of the selected group are displayed. The check box is enabled in the "Imported"
column for users who have already been imported into the user administration.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
828 System Manual, 11/2019, Online help printout

Display user groups of a global user
To display the user groups for an added global users of which they are a member, follow these
steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Select the global user. Note that you cannot use multiple selection.

5. In the bottom area of the "Users" tab, open the "Assigned user groups" tab.
The user groups of which the selected global user is a member are displayed. The check
box is enabled in the "Imported" column for user groups that have already been imported
into the user administration.

Checking the synchronization status
To check the synchronization status, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Show the banner with the synchronization information, and click the "Check status" link.

Or:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab or the "User groups" tab.

4. Click "Check status" in the toolbar.

Performing synchronization
To synchronize, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Show the banner with the synchronization information, and click the "Synchronize" link.

Or:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab or the "User groups" tab.

4. Click "Synchronize" in the toolbar.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 829

12.2.4 Managing roles (RT Uni)
Rights are assigned to users via roles. The following system-defined roles without engineering
function rights are created in an unprotected project:

● HMI Administrator

● HMI Operator

● HMI Monitor

● NET Remote Access

● NET Administrator Radius

● NET Radius

When you activate project protection for a project, two additional system-defined roles with
engineering function rights are created: the roles "Engineering Administrator" and "Engineering
Standard".

You cannot rename or delete system-defined roles. You also cannot change the assignment of
the function rights to system-defined roles.

You can, however, create user-defined roles and assign them function rights. You can also
perform the following actions for user-defined roles:

● Change name of role

● Change maximum session duration

● Change comment for role

● Changing or deleting the assignment of function rights

● Delete a role

You can display the assigned function rights for each project user or global user and for each
global user group. This will give you an overview of the assigned rights at any time.

Requirement
● A project is open.

● An HMI device has been created.

Create new user-defined roles
To create a new user-defined role, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Double-click "Add new role".

5. Enter a name for the role in the "Name" column.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
830 System Manual, 11/2019, Online help printout

6. In the "Maximum session duration" column configure the maximum session duration for the
role.

7. If necessary, enter a comment for the role in the "Comment" column.
A new user-defined role has been created. Next, you can assign function rights to the role.

Note

You can also create a new user-defined role by copying an existing role. This means the
assigned role permissions are also assigned to the new role.

Assign function rights to a user-defined role
To assign function rights to a user-defined role, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Select the user-defined role. Please note that you cannot use multi-selection for assignment.

5. In the lower area "Function rights categories", open the categories from which you want to
assign the role permissions.

6. In the lower area "Function rights", activate the function rights you wish to link to the role.

Change name of a user-defined role
To change the name of a user-defined role, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Change the name of the user-defined role in the "Name" column.

Change maximum session duration of a user-defined role
To change the maximum session duration of a user-defined role, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. In the "Maximum session duration" column configure a new maximum session duration.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 831

Change comment for a user-defined role
To change the comment for a user-defined role, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Enter a new comment in the "Comment" column.

Changing or deleting the assignment of function rights
To change or delete the assignment of the function rights for a user-defined role, follow these
steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Select the user-defined role.

5. In the lower area "Function rights categories", open the categories from which you want to
assign the function rights or remove the assignment.

6. In the lower area "Function rights", activate the function rights you wish to assign to the role.

7. In the lower area "Function rights", deactivate the function rights that are no longer assigned
to the role.

Delete user-defined role
To delete a user-defined role, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Select the user-defined role.

5. In the shortcut menu select the "Delete" command or use the key.

Display assigned function rights of a project user or of a global user
To display the assigned function rights of a project user or of a global user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
832 System Manual, 11/2019, Online help printout

4. Select the user. Note that you cannot use multiple selection.

5. In the bottom area of the "Users" tab, open the "Assigned rights" tab.

6. Expand the categories of function rights in the "Categories of function rights" column.
The function rights that are assigned to the user are displayed in the "Rights list" column.
The roles by which the function rights are assigned to the user are displayed in the "Rights
derived from role" column.

Display assigned function rights of a global user group
To display the assigned function rights of a global user group, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "User groups" tab.

4. Select the global user group. Note that you cannot use multiple selection.

5. In the bottom area of the "User groups" tab, open the "Assigned rights" tab.
The function rights that are assigned to the global user group are displayed in the "Assigned
rights" column.

12.2.5 Assigning roles (RT Uni)
You can assign roles to project users or global users and user groups that have different
function rights. You can revoke the assignments at any time.

Requirement
● A project is open.

● Users and user groups have been created.

Assigning roles to project users and global users
To assign roles to a user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Select the user. Note that you cannot use multiple selection.

5. Enable the desired roles in the "Assigned roles" section.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 833

Assigning roles to global user groups
To assign roles to a global user group, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "User groups" tab.

4. Select the user group. Note that you cannot use multiple selection.

5. Enable the desired roles in the "Assigned roles" section.

Revoking role assignments for project users and global users
To revoke a role for a user, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Users" tab.

4. Select the user. Note that you cannot use multiple selection.

5. In the "Assigned roles" section, clear check marks for the roles that are no longer to be
assigned to the user.

Revoking role assignments for global user groups
To revoke a role assignment for a global user group, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "User groups" tab.

4. Select the user group. Note that you cannot use multiple selection.

5. In the "Assigned roles" section, clear check marks for the roles that are no longer to be
assigned to the user group.

12.2.6 Activate project protection (RT Uni)
To protect your TIA Portal project from unauthorized access, activate the project protection. A
project administrator user is automatically created when you activate the project protection.
The project administrator can create additional users. When the project protection is activated,
the project can only be opened and changed with a user account with sufficient rights.

Note

Note that project protection cannot be disabled once it has been activated.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
834 System Manual, 11/2019, Online help printout

Requirement
● A project is open.

Procedure
To activate project protection, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click "Settings".
The "Settings" editor opens in the working area and the "Project protection" area is
displayed.

3. Click "Protect this project".
The "Protect project" dialog opens in which you specify the logon information for the project
administrator.

4. Enter a user name for the project administrator.

5. Enter the password for the project administrator.

6. Re-enter the password to confirm.

7. If necessary, enter a comment for the project administrator.

8. Confirm your inputs with the "OK" button.
The project protection is activated. The projector administrator and the system-defined roles
"Engineering Administrator" and "Engineering Standard" are created. You are logged on as
project administrator. The project administrator is assigned the system-defined role
"Engineering Administrator".

9. Under "Security settings > Users and roles > Users", assign new passwords for project
users that you created before you activated the project protection.

Result
The project protection was activated. As logged on project administrator, you can now create
additional local users or add global users or user groups from UMC or create new roles.

Note

After project protection is activated, at least one user with password must always be assigned
to the system-defined role "Engineering Administrator" with the "Password" authentication
procedure.

12.2.7 Log on to a protected project (RT Uni)

Introduction
You can log on to a protected project with a user account that has the corresponding function
rights.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 835

Requirement
● A protected project has been created.

● A user account as project user or as global user is created that is associated with at least
one of the following two function rights:

– Open project read-only

– Open project with read and write permissions

Procedure
To log on to a protected project, follow these steps:

1. Select the "Open" command in the "Project" menu.
The "Open project" dialog box opens and the list of recently used projects is displayed.

2. If you want to check whether the project has been inadvertently modified outside the TIA
Portal when you open the selected project, select the "Activate basic integrity check" option.
The basic integrity check may take some time to complete.

3. Select the protected project from the list that you want to open. If the desired project does
not exist in the list, perform the following steps:

– Click "Browse".
The "Open existing project" dialog opens.

– Navigate to the desired project folder and select the project file.

4. Click "Open".
The "Log on" dialog opens.

5. Select the user type.

6. Enter your user name.

7. Enter your password.

8. If you want to change the password for your user account, click "Change password".

Note

If you log in as a global user, the password change is mandatory at the first logon, if this has
been defined in UMC. Then perform the steps for changing the password.

9. Click the "OK" button.
The protected project is opened.

12.2.8 Change password for protected project (RT Uni)
You can change your password for a protected project either when you log on to the project or
when you work in the project. If you change your password as a project user, only the password
for this project will be changed. If you change your password as a global user, your password
will be changed in UMC. This will change your password for all projects for which you are
registered as a user.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
836 System Manual, 11/2019, Online help printout

Requirement
● A protected project has been created.

● A user account as project user or as a global user is created that is associated with at least
the function right "Open project with read and write permissions".

Change password when logging on to a protected project
To change your password when logging on to a protected project, follow these steps:

1. Select the "Open" command in the "Project" menu.
The "Open project" dialog opens and the list of recently used projects is displayed.

2. Select a protected project from the list.

3. Click "Open".
The "Log on" dialog opens.

4. Click "Change password".
The "Change password" dialog opens.

5. Enter your user name.

6. Enter your current password.

7. Enter your new password.

8. Enter your new password again for confirmation.

9. Click the "OK" button.
A dialog opens which informs you that the password change was successful.

10.Click the "OK" button.
The password change process is complete. You can then use the new password when you
log on to a protected project.

Changing a password when working in a protected project
To change your password when working in a protected project, follow these steps:

1. Open the project view.

2. Click the down arrow in the toolbar next to the "User Management" button.
A menu is opened in which the user administration functions are listed.

3. Select the "Change password" menu command.
The "Change password" dialog opens.

4. Enter your user name.

5. Enter your current password.

6. Enter your new password.

7. Enter your new password again for confirmation.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 837

8. Click the "OK" button.
A dialog opens which informs you that the password change was successful.

9. Click the "OK" button.
The password change process is complete. You can then use the new password when you
log on to a protected project.

12.2.9 Log off from a protected project (RT Uni)
You can log off explicitly from a protected project. The project is closed.

Procedure
To log off from a protected project, follow these steps:

1. Open the project view.

2. Click the down arrow in the toolbar next to the "User Management" button.
A menu is opened in which the user administration functions are listed.

3. Select the "Log off and close project" menu command.
The "Log off and close project" dialog is opened.

4. Click "Yes".
If you have not made any changes to the project since it was saved last, you are logged off
and the project is closed. If you have made changes to the project since it was saved last,
"The project was changed." dialog opens.

5. When the "The project was changed." dialog opens, you either click "Yes" to save the project
changes or "No" to close the project without saving the project changes.
You are logged off and the project is closed either with or without saving the project changes.

12.2.10 Specify user administration used on Unified Comfort Panel (RT Uni)

Introduction
In the engineering system you specify whether you want to use the local or central user
administration on a Unified Comfort Panel. This means you specify in the engineering system
whether you want to work with local project users or with global users from UMC on a Unified
Comfort Panel. By default, the use of the local user administration is specified in the
engineering system.

Requirement
● A project is open.

● A Unified Comfort Panel has been created.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
838 System Manual, 11/2019, Online help printout

Procedure
To specify the user administration that is used on a Unified Comfort Panel, follow these steps:

1. Open the "Runtime settings" of the HMI device in the project tree.

2. Under "User administration > Configuration of user administration" activate either the use of
the local user administration or of the central user administration.

3. If you have activated the use of the central user administration, enter the UMC server
address, server ID and user name in the corresponding fields.

12.2.11 Limit access to Unified Comfort Panel (RT Uni)

Introduction
You can limit access to the Control Panel of a Unified Comfort Panel in the engineering system.
To do so, activate access control for the Control Panel. In addition, you assign the function right
for access to the Control Panel to users who are to have access to the Control Panel.

Requirement
● A project is open.

● A Unified Comfort Panel has been created.

● A user has been created.

● A user-defined role has been created.

Activate access control for Control Panel
To activate access control for the Control Panel, follow these steps:

1. Open the "Runtime settings" of the HMI device in the project tree.

2. Under "General > Control Panel" activate access control for the Control Panel.

Assign access right to Control Panel to a user
To assign a user the function right for access to the Control Panel, follow these steps:

1. Open the "Security settings" folder in the project tree.

2. Double-click on "Users and roles".
The "Users and roles" editor opens in the working area.

3. Open the "Roles" tab.

4. Select a user-defined role.

5. In the lower area "Function rights categories", open the category of the Runtime rights.

6. Click on the category of the Unified Comfort Panels.

7. In the lower area "Function rights", activate the function right for access to the Control Panel.

Configuring user administration (RT Uni)
12.2 Configuring user administration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 839

8. Open the "Users" tab.

9. Select a user.

10.In the lower area "Assigned roles", activate the user-defined role to which you have
assigned the function right for access to the Control Panel.
The user receives the access right for the Control Panel.

12.3 Use user administration in Runtime (RT Uni)

12.3.1 Log on to user administration in Runtime (RT Uni)

Introduction
To manage local project users in runtime, log on to user management in runtime.

Requirement
● An administrator account for user management in runtime was created when you installed

WinCC Runtime Unified or later in WinCC Unified Configuration.

● A project with a SIMATIC Unified HMI device has been created.

● Project users have been created.

● The project has been downloaded to the HMI device.

● Runtime is active.

Procedure
To log on to user management in runtime, follow these steps:

1. Click "User management" on the start page.
The "User log on" dialog opens.

2. Enter the user name and password of your administrator account for user management in
runtime.

3. If necessary, use the selection list to change the displayed language.

4. Click "Login".
The user management start page opens in runtime.

Configuring user administration (RT Uni)
12.3 Use user administration in Runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
840 System Manual, 11/2019, Online help printout

Compiling and loading (RT Uni) 13
13.1 Unified Comfort (RT Uni)

13.1.1 Runtime settings (RT Uni)

13.1.1.1 Settings in the runtime software (RT Uni)

Introduction
To edit the runtime settings for an HMI device, select "Runtime settings" under your HMI device
in the project tree.

Overview
You can view or edit the following settings:

Setting Description
General Identification Indicates the project identification.

Encrypted transfer Make settings for encrypted transfer. You
can find additional information under "Encryp‐
ted transfer".

Screen Specifies the start screen.
Alarms Controller alarms Displays the alarms of the controller.

State texts Specifies the texts of different states.
Services Reading/writing tags Specifies that the HMI device works as an

OPC server.
Language & font Runtime language and font selec‐

tion
● Specifies the available runtime languag‐

es and the sequence of language selec‐
tion.

● Specifies the default font.
● Specifies the languages for logging in

runtime.
Collaboration Identification Specifies the system identification of the col‐

laboration and the collaboration name.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 841

Setting Description
Storage system Database type Specifies the database type for logs:

● SQLite
Database storage location for tag
persistence

Specifies the storage medium for the tag per‐
sistence:
● SD-X51
● USB-X61
● USB-X62

Main database location for logging Specifies the storage medium for logs:
● SD-X51
● USB-X61
● USB-X62

See also
Start screen (Page 842)

Configuring an HMI device as an OPC UA server (Page 1060)

Languages in runtime (Page 772)

13.1.1.2 Start screen (RT Uni)

Start screen settings
In the runtime settings under "General > Screen", you define which screen of your project is to
be displayed as the start screen.

The start screen is the initial screen that is displayed after runtime starts. The screen resolution
is automatically adjusted to suit the HMI device when the screen is selected.

Note
Displaying a start screen changed by reloading

You have defined a start screen in the project and started runtime. If you then define another
start screen in your project and load the project in the device again, the last active screen is
displayed in runtime once connected again.

After reloading the project, refresh the screen in Runtime.

See also
Settings in the runtime software (Page 841)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
842 System Manual, 11/2019, Online help printout

13.1.1.3 Encrypted transfer (RT Uni)

Introduction
To enable secure loading of the runtime project, assign a password for encrypted transfer. You
enter the password both in the engineering system and in runtime.

Settings for encrypted transfer
In the runtime settings under "General > Encrypted transfer", make the following settings:

● Activate encrypted transfer

● Entering and confirming a password in the engineering system

● Allow transfer of initial password via unencrypted loading

The password for encrypted transfer to the HMI device is defined on the HMI device in "Start
Center" under "Service and Commissioning > Transfer".

To transfer the password unencrypted once, select the option "Allow initial password transfer
via unencrypted download".

If the password assigned in the engineering system does not match the password on the HMI
device, you have the option of re-assigning the password in the engineering system directly in
the "Load preview" dialog.

13.1.1.4 Setting time base

Setting the time base for the time of day
You set the time in the Control Panel of your HMI device. For more detailed information, refer
to the operating instructions for your HMI device.

Synchronize date and time with the PLC
You can find additional information on this subject in the online help for WinCC under
"Communicating with the PLC".

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 843

13.1.1.5 Printing in Runtime

Print functions
Print functions available in online mode:

● Hardcopy
You print out the currently displayed screen by means of an operator control that triggers the
"PrintScreen" system function.

● Printing alarms
Every alarm that has occurred and its state changes are reported along on a printer.

● Printing reports
Reports are output in graphic mode. The use of a serial printer is not recommended because
of the accumulated data volume.
For proper output, the printer must support the paper format and page layout of the report.

Note

The value of a tag in the report is read and output at the moment of printing. A substantial
time may elapse between printing out the first and the last page of a report consisting of
several pages. This may lead to the same tag on the last page being output with a different
value from that on the first page.

13.1.2 Overview (RT Uni)

The term "project"
The term "project" has two different meanings in the context of "compiling and downloading".

● WinCC project: Contains the configuration data of a HMI device in WinCC

● Runtime project: Contains the compiled configuration data of an HMI device.

The figure below illustrates the link between WinCC projects and runtime projects using the
example of the "Compile and Download" process:

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
844 System Manual, 11/2019, Online help printout

The configuration data are compiled.

The runtime project is loaded.

Definitions
To compile a project means generating a runtime project from the WinCC project.

Downloading a project means transferring the runtime project to an HMI device.

The runtime software for process visualization is running on the HMI device. In runtime, you
execute the project in process mode.

Simulation
You test your configuration with a simulation. You start simulation without a connection to the
running process.

In a simulation, you test configured internal tags or a screen change, for example. You simulate
the project on the configuration computer.

See also
Compiling a project (Page 846)

Simulating projects (Page 847)

Downloading projects (Page 851)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 845

13.1.3 Compiling a project (RT Uni)

Scope of the compilation
In the background, the configuration data is continuously checked for consistency and
compiled.

If you compile a project manually, only the changes in the configuration made since the last
compilation process are compiled in the background.

Requirement
● A project is open.

● The project contains only objects that are supported by the HMI device.

Procedure
Proceed as follows to compile a project:

1. If you want to compile several HMI devices at the same time, select all the relevant HMI
devices with multiple selection in the project tree.

2. Compile the project:

– To only compile changes in the project, select the "Compile > Software (only changes)"
command from the shortcut menu of the HMI device.

– To compile all project data, select the "Compile > Software (compile all)" command from
the shortcut menu.

Result
The configuration data of all selected HMI devices is compiled. If errors occur during
compilation, the errors are shown in the Inspector window.

If you have configured objects that are not supported on the HMI device, you must delete these
objects before you compile again.

Please note the instructions in the Readme file supplied with Runtime Unified.

See also
Overview (Page 844)

Simulating projects (Page 847)

Downloading projects (Page 851)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
846 System Manual, 11/2019, Online help printout

13.1.4 Simulating projects (RT Uni)

13.1.4.1 Basics of simulation (RT Uni)

Introduction
You can use the simulator to test the performance of your configuration on the configuration
PC. This allows you to quickly locate any logical configuration errors before productive
operation.

You can start the simulator as follows:

● In the shortcut menu of the HMI device or in a screen: "Start simulation"

● Click "Start simulation" in the toolbar.

● Menu command Online > Simulation > Start

● Under "Visualization > Simulate device" in the portal view.

Field of application
You can use the simulator to test the following functions of the HMI system, for example:

● Screen change and screen navigation

● Internal tags

● Layout

● Configured alarms

See also
Simulating a project (Page 848)

Simulating a screen (Page 850)

13.1.4.2 Skip "Load preview" dialog (RT Uni)

Skip "Load preview" dialog
To permanently skip the "Load preview" dialog when simulating projects and screens, proceed
as follows:

1. Open the settings under "Options > Settings".

2. Select "Simulation".

3. In the "HMI Simulation" area, clear the check box "Show 'Load preview' dialog during
download to simulation".

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 847

Result
● The "Load Preview" dialog is no longer displayed.

● The simulation is opened automatically in the standard browser.

Note

Errors and warnings that occur are displayed in the Inspector window in the "Info" tab.

Note
Settings of the "Load preview" dialog

The following settings are applied from the previous loading process with displayed "Preview
Load" dialog:
● Settings for keeping tag values, active alarms and user data (default value: enabled).
● Settings for resetting logs (default value: "No reset")

If the "Load preview" dialog was hidden before the first loading of the project, the default values
are used.

See also
Simulating a screen (Page 850)

Simulating a project (Page 848)

13.1.4.3 Simulating a project (RT Uni)

Introduction
You simulate a project on the configuration PC and can download the simulation to the HMI
device via an Ethernet connection.

Note
Simulating a project on a configuration PC while runtime is running

Runtime is terminated when a project on the HMI device is running in runtime and you use the
option "Full download".

Runtime is not terminated when a project on the HMI device is running in Runtime and you use
the option "Delta download". For example, tags keep their value and are not set to the start
value.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
848 System Manual, 11/2019, Online help printout

Ethernet connection
You download your runtime project simulation to the HMI device via an Ethernet connection.
The connection uses Ethernet port 20008.

Note
Ethernet port 20008

If an application is using Ethernet port 20008, download is not possible.

If no connection to the target can be established, check the port assignments. If another
application is using Ethernet port 20008, close this application.

Requirement
● The "Simulation (SIMATIC WinCC Unified Scada)" component is installed on the

configuration PC.

● The project is open in the configuration PC.

● The HMI device and the HMI device have been successfully compiled.

Procedure
Proceed as follows to simulate a project:

1. Click "Start simulation" in the toolbar.
The "Load Preview" dialog is displayed and the compilation result is displayed.

2. Check the displayed default settings and change the settings as necessary:

– Specify whether to use the "Full download" or "Delta download" option.

– Specify whether runtime should start after the download.

– When you use the "Full download" option again, you specify whether tag values, active
alarms, and user data are retained. Only available if you have selected "Start runtime".

– When you use the "Full download" option again, you specify whether all logs are reset in
runtime. Only available if you have selected "Start runtime".

3. Click "Download".

4. Open the browser.

5. Call the URL "https://localhost" in the browser.
Instead of the name "localhost", you can use the computer name.

6. Select "WinCC Unified RT".

7. Enter the user name and password.
The configured screen is displayed as start screen in the browser.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 849

8. Test, for example:

– Screen change and screen navigation.

– Layout

– Internal tags.

9. To stop the simulation, select "Online > Stop runtime/simulation".

See also
Basics of simulation (Page 847)

Simulating a screen (Page 850)

13.1.4.4 Simulating a screen (RT Uni)

Introduction
If you have only made changes to one screen, you can temporarily specify this screen as the
start screen for simulation. In this way, you can debug changes without having to modify the
start screen, or opening the screen on the HMI device.

Requirement
You created a project that contains at least one screen.

Procedure
To define a screen as temporary start screen for simulation, follow these steps:

1. In the project tree, select the screen that is to become the temporary start screen in the
simulation.

2. Select the "Start simulation" command from the shortcut menu of the screen.
The "Load Preview" dialog is displayed and the result of the compiling is displayed.

3. Check the displayed default settings and change the settings as necessary:

– Specify whether to use the "Full download" or "Delta download" option.

– Specify whether runtime should start after the download.

– When you use the "Full download" option again, you specify whether tag values, active
alarms, and user data are retained. Only available if you have selected "Start runtime".

– When you use the "Full download" option again, you specify whether all logs are reset in
runtime. Only available if you have selected "Start runtime".

4. Click "Download".

5. Open the browser.

6. Call the URL "https://localhost" in the browser.
Instead of the name "localhost", you can use the computer name.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
850 System Manual, 11/2019, Online help printout

7. Select "WinCC Unified RT".

8. Enter the user name and password.
The simulated screen is displayed.

Result
If "Start runtime" is selected in the settings for loading, the screen selected in the project tree
is displayed in the simulation window instead of the configured start screen.

See also
Basics of simulation (Page 847)

Simulating a project (Page 848)

13.1.5 Downloading projects (RT Uni)

13.1.5.1 Overview for loading of projects (RT Uni)

Overview
The project is automatically compiled before you download it to an HMI device. This always
ensures that the latest version of the project is transferred.

If you are using external HMI tags in your project that are connected to controller tags, you
should also compile the user program before you compile the HMI device.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 851

Loading a project to an HMI device
The following steps are completed prior to downloading:

1. The download settings are verified. The "Extended download to device" dialog box opens
automatically during the initial download of a project to an HMI device. You use this dialog
to define the protocol and interface or destination path for the project in accordance with the
HMI device Runtime used.
If the HMI device is part of a subnet, for example, you also select the subnet and the first
gateway.
You can open the "Extended download" dialog at any time with the menu command
"Online > Extended download to device...".
The "Load preview" dialog opens.

2. The project is compiled. Warnings and errors during compilation are displayed in the
Inspector window and in the "Load preview" dialog.

3. The "Load preview" dialog shows you the following information for each HMI device:

– The individual steps for loading

– Check of the Runtime version of the target HMI device
A warning is displayed if the WinCC Unified Runtime version installed on the target
device does not match the configured device version.

– Default settings that take effect when loading
You can change the default settings for this download process, if necessary.

– Occurring warnings (optional).
You can download a project while ignoring the "warnings". The functionality may be
restricted in runtime.

– Occurring errors (optional).
You cannot load the project. WinCC will open the invalid configuration in the
corresponding editor if you double-click the error message in the Inspector window.
Correct the errors and reload the project.

Note
Interruption of a download

If the download is interrupted, WinCC automatically ensures that no data is lost and that
existing data is deleted on the HMI device only after complete transmission.

Loading a project without a connected HMI device
If you cannot establish a direct connection from the configuration PC to the HMI device, copy
the compiled project to the HMI device via a storage medium.

Loading with S7 routing
Configure the S7 routing settings in the "Devices & Networks" editor in the relevant PLC. The
settings depend on the device configured.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
852 System Manual, 11/2019, Online help printout

S7 routing supports the following protocols:

● MPI/PROFIBUS

● PN/IE

Transferring Runtime add-ons in WinCC
Projects can contain Runtime add-ons in the form of controls or CSP (Communication Support
Packages). These Runtime add-ons are automatically transferred with the project.

See also
Loading a project (Page 853)

Load project from external storage medium (Page 859)

Compiling a project (Page 846)

Simulating projects (Page 847)

Compiling and loading with Multiuser Engineering (Page 862)

13.1.5.2 Loading a project (RT Uni)

Introduction
Before a project can run on an HMI device, you must first load it to the HMI device. During
loading, you must specify, in particular, whether existing data on the HMI device such as "User
administration" and "Parameter sets" is to be overwritten.

The HMI device name entered in the project tree is used for PROFINET communication. The
use of the name corresponds to the default settings of the PROFINET interface of the HMI
device. For devices with more than one PROFINET interface, the name of the IE CP is
automatically added to the device name with a separating period. The name is written to the
HMI device during download. If a device name for the PROFINET communication has already
been entered in the HMI device, it will be overwritten.

You can find additional information about these settings in the information system in the
"Assigning a device name and IP address" section.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 853

If the device version of the target HMI device does not match the configured device version, you
are asked whether you wish to change the device version at this time.

NOTICE

Changing the device version deletes all data on the HMI device.

Data is deleted on the target system if you change the device version. For this reason, you
should first back up the following data:
● User administration
● Parameter sets
● Licenses

Resetting to factory settings also deletes the license keys. Back up the license keys before you
reset the system to factory settings.

For Unified Comfort devices, licenses are only deleted during resetting to factory settings.
Back up the licenses and license keys before you reset the system to factory settings.

Note
Overwriting existing data during loading

During loading, you must specify whether existing data on the HMI device is to be overwritten.
By selecting the check boxes in the "Load preview" dialog you can always overwrite the
following data during loading:
● Existing data belonging to user administration on the device
● Existing data of the parameter sets on the device

Note
Downloading the project to an HMI device while Runtime is being executed.

Runtime is closed when a project is running in Runtime on the HMI device and you load a
project to this HMI device with the command "Download to device > Software (all)".

Runtime is not terminated when a project is running in Runtime on the HMI device and you load
a project to this HMI device with the command "Download to device > Software (only changes)".
For example, tags keep their value and are not set to the start value.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
854 System Manual, 11/2019, Online help printout

Project identification
At the start of the configuration, each project receives a project identification which is
transferred to the HMI device during loading. If you have already downloaded a project, the
download process recognizes the project using the project identification. If the HMI device
name is changed in the configuration, the project identification also changes.

Note
Existing runtime projects on the target device

If a runtime project with the same project identification is already available on the HMI device,
the project is overwritten. In this case, the options "Software (only changes)" and "Software
(all)" are available for loading.

If a runtime project with a new project identification is downloaded to the HMI device, the
existing runtime project is replaced by the new project. In this case, only the option "Software
(all)" is available for the download.

In both cases, existing project runtime data are overwritten on the HMI device.

Save relevant data before the download.

Controlling the transfer behavior on the HMI device
As a general rule, only one project can active in runtime on an HMI device. An HMI device is
generally configured to exit Runtime automatically when loading is started. If this is not the
case, you will have to exit runtime manually on the HMI device.

You define how the HMI device reacts when the project is loaded in the "Start Center" under
"Settings" on the HMI device:

Transfer mode Effect
Off The project cannot be loaded to the HMI device.
Manually The project can only be loaded to the HMI device if the following requirements

are met:
● Runtime is not running
● The HMI device is in "Transfer" mode.

Automatic The project can always be loaded to the HMI device.
If a transfer is started on the configuration PC and a project is in runtime on the
HMI device, the running project is automatically closed.

Note
Disable automatic transfer after commissioning

After the commissioning phase, disable the automatic transfer function to prevent the HMI
device from switching inadvertently to transfer mode.

Transfer mode can trigger unwanted responses in the plant.

In order to restrict access to the transfer settings and thus avoid unauthorized changes, enter
a password in the "Start Center".

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 855

Please refer to the documentation for the HMI device used for more detailed information on
transfer settings.

Requirement
● You have created an HMI device in the project.

● The HMI device is connected to the configuration PC.

● The "Start Center" has been started on the HMI device.

● The protocol by which the project is loaded is set on the HMI device in the "Start Center"
under "Settings".

● Transfer mode is set as "Automatically" or "Manually" in the HMI device.

Procedure
Proceed as follows to load a project:

1. To download a project simultaneously to several HMI devices, select the HMI devices by
means of multiple selection in the project tree.

2. Select one of the following commands from the shortcut menu:

– "Download to device > Software (only changes)".

– "Download to device > Software (all)"

3. If the "Extended loading" dialog is open, configure the "Settings for loading". Make sure that
the "Settings for loading" correspond to the "Transfer settings in the HMI device".

– Select the protocol used, for example, Ethernet or HTTP.

– Configure the relevant interface parameters on the configuration PC.

– Make any interface-specific or protocol-specific settings required in the HMI device.

– Click "Download".

You can open the "Extended download" dialog at any time with the menu command
"Online > Extended download to device...".
The "Load Preview" dialog opens. The project is compiled at the same time. The result is
displayed in the "Load Preview" dialog.

4. Check the displayed presettings and change them as necessary.

5. Click "Download".

Result
The project with the runtime add-ons it contains is downloaded to the selected HMI devices.

During the download, you can keep track of the files that are transferred.

If errors or warnings occur during the download, corresponding alarms are displayed under
"Info > Load" in the Inspector window.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
856 System Manual, 11/2019, Online help printout

On completion of the successful download of the project, you can execute it on the HMI device.

Note

If the transfer is interrupted, WinCC automatically ensures that no data is lost and that existing
data is deleted on the HMI device only after complete transmission.

See also
Updating the operating system on the HMI device (Page 896)

Error messages during loading of projects (Page 865)

Overview for loading of projects (Page 851)

Load project from external storage medium (Page 859)

13.1.5.3 Using external storage medium (RT Uni)

Loading project to external storage medium (RT Uni)

Introduction
If you cannot establish a direct connection from the configuration PC to the HMI device, load the
compiled runtime project onto an external storage medium. For example, use a USB stick or SD
card.

You load either the complete runtime project or only changes of a runtime project. To load
changes, use the "Delta download" option.

As soon as you have connected the external storage medium to your HMI device, load the
project on your HMI device.

Requirement
● An HMI device has been created.

Procedure
To create an external storage medium and load a project onto the storage medium, proceed as
follows:

1. Jump to the "Devices" tab in the project tree.

2. Double-click "Add user-defined card reader" in the "Card reader/USB storage" folder.
A selection dialog opens.

3. Select a target directory to save the project.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 857

4. Drag and drop the folder of the HMI device (e.g. "HMI_1 [<Device type>]") to the added
folder. Alternatively, use copy and paste.
The project is checked. If the project has contents that have not yet been compiled, a
compile is performed.
The "Load Preview" dialog opens.

Note

If a runtime project with the same project identification already exists in the target directory,
only the options "Full download" and "Delta download" are available for download.

5. In the selection menu, specify how your project is to be loaded:

– "Full download"

– "Delta download"

Note

Only one runtime project at a time with the same project identification can be saved in the
target directory via the option "Full download" and "Delta download".

If a runtime project already exists, it is overwritten during loading.

Save relevant data before the download.

6. Click "Load" to confirm.

Result
Your project is stored as a compressed ZIP folder in the directory "[<Target directory>]
\Simatic.HMI\RT_Projects" :

● Projects that were created with the option "Full download" receive as file name e.g.
"[<Project_name>].PC-System_1[SIMATIC PC station - WinCC Unified Scada RT]_full.zip".

● Projects that were created with the option "Delta download" receive as file name e.g.
"[<Project_name>].PC-System_1[SIMATIC PC station - WinCC Unified Scada
RT]_delta.zip".

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
858 System Manual, 11/2019, Online help printout

Load project from external storage medium (RT Uni)

Introduction
If you cannot establish a direct connection from the configuration PC to the HMI device, copy
the compiled project to an external storage medium, such as a USB flash drive, and then load
it onto the HMI device.

NOTICE

Data loss

When you activate the "Firmware upgrade" or "Firmware downgrade" options, then the
operating system of the HMI device is updated. Existing data on the HMI device including the
HMI device password is deleted. Settings in the Start Center are retained, license keys are
saved to the external storage medium before update of the operating system.

If required, save this data before loading.

You create the required project data in WinCC by configuring the HMI device and then dragging
and dropping or copying and pasting the folder of the HMI device (e.g. "HMI_1 [<device type>]")
to an external storage medium under "Card Reader/USB memory".

Requirements
● You have started the Start Center on the HMI device.

● The storage medium with the backed up project is inserted in the HMI device.

Procedure
1. Select "Service & Commissioning > Load project from storage".

2. Select a storage medium under "Select storage media for OS update".

Note

If there is no storage medium or a defective storage medium in the HMI device, the "0
devices found" message is displayed. Insert the storage medium or replace the storage
medium.

An overview of all projects which are compatible with the HMI device and are located on the
storage medium is displayed.

3. Select the project that you want to load into the HMI device.

Note

Use "Details" to receive additional information about the selected project.

4. Press "Load Project".

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 859

5. Press "Next".
The HMI device checks whether the project data can be loaded. The result of the check is
displayed in the "Load Preview" dialog.
The project can be loaded to the HMI device if no alarms of the type "Error" are issued.

Note

If a downgrade or upgrade is necessary, the "Update OS Image" dialog informs you about
the possible loss of data and gives you further instructions.

6. Select "Load", to transfer the project data to the HMI device with the project data.

After the loading process the new project is started on the HMI device.

Alarms in the "Load Preview" dialog
The following messages can be displayed in the "Load Preview" dialog:

● Alarms of the type "Information":

● Alarms of the type "Warning", with options

● Alarms of the type "Error", with options

The following table shows alarms of the type "Information":

Icon Status Alarm Meaning
Info Firmware version ...

Runtime version ...
Firmware and Runtime version on the HMI device

Info Ready For Loading Project data is suitable for the HMI device

The following table shows alarms of the type "Warning", with options:

Icon Status Alarm Meaning
Overwrite Select project data The following lines contain options for overwriting data

on the HMI device.
Parameter sets Overwrite parameter sets of the HMI device with the

parameter sets of the project, optional.
User administration
data

Overwrite the user administration on the HMI device
with the user administration of the project (optional).

Upgrade Runtime upgrade Runtime version on the HMI device is older than the
Runtime version of the project, versions are compati‐
ble, upgrade of Runtime version on the HMI device is
optional.

Upgrade Firmware upgrade Firmware version on the HMI device is older than the
firmware version of the project, versions are compati‐
ble, upgrade of firmware on the HMI device is optional.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
860 System Manual, 11/2019, Online help printout

Icon Status Alarm Meaning
Downgrade Runtime downgrade Runtime version on the HMI device is newer than the

Runtime version of the project, versions are compati‐
ble, downgrade of Runtime version on the HMI device
is optional.

Downgrade Firmware downgrade Firmware version on the HMI device is newer than the
firmware version of the project, versions are compati‐
ble, downgrade of firmware on the HMI device is op‐
tional.

The following table shows alarms of the type "Error", with options:

Icon Status Alarm Meaning
Upgrade Runtime upgrade Runtime version on the HMI device is older than the

Runtime version of the project, versions are incompat‐
ible, upgrade of Runtime version on the HMI device is
required.

Upgrade Firmware upgrade Firmware version on the HMI device is older than the
firmware version of the project, versions are incom‐
patible, upgrade of firmware on the HMI device is re‐
quired.

Downgrade Runtime downgrade Runtime version on the HMI device is newer than the
Runtime version of the project, versions are incompat‐
ible, downgrade of Runtime version on the HMI device
is required.

Downgrade Firmware downgrade Firmware version on the HMI device is newer than the
firmware version of the project, versions are incom‐
patible, downgrade of firmware on the HMI device is
optional.

Download Runtime download There is no Runtime software on the HMI device, e.g.
after update of the operating system. Runtime soft‐
ware must be downloaded.

Note

When loading projects to your HMI device, please note that there are compatible and
incompatible firmware and Runtime versions.

If you are loading a compatible firmware and Runtime version of the project to your HMI device,
an upgrade or downgrade is optional. You can download the project to the HMI device without
an upgrade or downgrade. In this case, you can ignore the alarm of the type "Warning".

If you are loading an incompatible firmware and Runtime version of the project to your HMI
device, an upgrade or downgrade is mandatory. Otherwise, you cannot download the project
to the HMI device. An alarm of the type "Error" is displayed:

Note

Alarms of the type "Warning" also appear in the event of a potential overwriting of user data and
parameter sets if this setting was not disabled in the configuration.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 861

See also
Overview for loading of projects (Page 851)

Loading a project (Page 853)

Updating the operating system of the HMI device from a data carrier (Page 898)

Error messages during loading of projects (Page 865)

13.1.6 Compiling and loading with Multiuser Engineering (RT Uni)

13.1.6.1 Compiling and loading with multiuser engineering (overview) (RT Uni)

Introduction
When using multiuser engineering for your projects, you should take into account the response
when compiling the Runtime projects and the response when downloading them to HMI
devices.

You can compile and download to an HMI device in both the server project view and in the local
session.

You can find more information about the topic of "multiuser engineering" under "Using Multiuser
Engineering".

Basics
The following scenarios are possible for Unified Comfort Panels in multiuser engineering:

● Compiling in the server project view

● Compiling in the local session

● Loading from the server project view

● Loading from the local session

Note

Complete download from the server project view or local session is no different to complete
download in a single-user project. With a complete download, the current Runtime project is
loaded from the currently active view to an HMI device.

Note

Compiling and downloading in a local session is no different from compiling and downloading
in a single-user project.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
862 System Manual, 11/2019, Online help printout

In principle, you can execute all commands for compiling and loading in multiuser engineering
projects:

● "Software (rebuild all)"

● "Compile > Software (only changes)"

● Software (all)

The term "project"

The term "project" has two different meanings in the contexts of compilation and loading.
"Project" is the WinCC project on the configuration PC. "Project" is also the Runtime project you
create by compiling the configuration data of an HMI device and download to the HMI device.

● WinCC project: contains the configuration data of one or more HMI devices

● Runtime project: contains the compiled configuration data of one HMI device

Rules
The following basic rules apply to compiling and downloading in multiuser engineering:

● The Runtime project that has been compiled in a local session always remains local and is
not uploaded to the multiuser server. It cannot be saved in the multiuser server project.

● Only Runtime projects compiled in the server project view can be saved in the multiuser
server project.

You can find additional information on Multiuser Engineering on the Siemens YouTube
channel: Multiuser Engineering - one team working simultaneously on a project (https://
www.youtube.com/watch?v=n4oTZ2Gzg6U).

See also
Compiling in the server project view (Page 863)

Compiling in the local session (Page 864)

Downloading projects (Page 851)

13.1.6.2 Compiling in the server project view (RT Uni)

Basics
Compiling and downloading in the server project view is no different from compiling and
downloading in a single-user project.

During the compiling of a project in the server project view, the multiuser server project is
blocked. Other users cannot make changes to this server project during this time. The Runtime
project compiled in the server project view is stored along with the engineering project in the

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 863

https://www.youtube.com/watch?v=n4oTZ2Gzg6U
https://www.youtube.com/watch?v=n4oTZ2Gzg6U

central multiuser server. Blocking the multiuser server project ensures that the configuration
data and the Runtime project remain in sync.

Note

When you compile and save in the server project view, other users obtain the Runtime project
you have updated along with the engineering project when they "refresh" their local session.
Other users do not have to recompile the changes you have made after an update.

Example: Compiling during check-in
You make changes to a tag in a local session. All prior changes have been compiled in the
associated server project.

If there are no compilation errors, both projects - the modified engineering project (with the
modified tags) and the compiled Runtime project - are saved in the central multiuser server
project with the "Save changes" command.

If you skip compiling during the check-in, the project contains the changes that have been
saved on the server.

The next user who creates a local session from the server project or updates an existing local
session must compile your two changes in addition to his or her own changes.

Note

Working on a shared project through multiple local sessions increases the probability of error.
It is therefore recommended to compile the project at check-in and eliminate any errors that are
reported during compiling. In this way, you provide the next user with a project free of errors.

See also
Compiling and loading with multiuser engineering (overview) (Page 862)

Compiling in the local session (Page 864)

13.1.6.3 Compiling in the local session (RT Uni)

Basics
Compiling and downloading projects in the local session is no different from compiling and
downloading in a single-user project.

Since the local session is a copy of the server project, the first compilation status of the local
session is identical to that of the server project. If the server project contains contents that are

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
864 System Manual, 11/2019, Online help printout

not compiled or error messages occurred during the compiling, they are transferred to the local
session.

Note

It is recommended to compile the project at check-in and eliminate any errors that are reported
during compiling. In this way, you provide the next user with a project free of errors and avoid
spreading errors.

Updating in the local session
If you update a project in the local session, the local session - including the compilation status
- is completely replaced by the content of the server project. Only the changes marked for
check-in are retained in the updated local session and generate additional compiling steps in
the local session.

Example: Updating the local session
You make changes to a tag in a local session. All prior changes have been compiled in the
associated server project.

You update the content of the local session by clicking the "Update" button. After the update,
the local session obtains the compilation status of the server project. There are also compiling
tasks for the acquisition of the modified tags.

See also
Compiling and loading with multiuser engineering (overview) (Page 862)

Compiling in the server project view (Page 863)

13.1.7 Error messages during loading of projects (RT Uni)

Possible problems during the download
When a project is being downloaded to the HMI device, status messages regarding the
download progress are displayed in the output window.

Problems arising during the download of the project to the HMI device are usually caused by
one of the following errors:

● Wrong operating system version on the HMI device

● Incorrect download settings on the HMI device

● Incorrect HMI device type in the project

● The HMI device is not connected to the configuration PC.

The most common download failures and possible causes and remedies are listed below.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 865

The download is cancelled due to a compatibility conflict

Possible cause Remedy
Conflict between versions of the configuration soft‐
ware and the operating system of the HMI device

Synchronize the operating system of the HMI de‐
vice with the version of the configuration software.
To update the operating system on the HMI de‐
vice, select the "Update operating system" com‐
mand from the "Online > HMI device maintenance"
menu in WinCC. You can also use ProSave.
For additional information, refer to the operating
instructions for the HMI device.

The configuration PC is connected to the wrong
device, e.g. a controller.

Check the cabling.
Correct the communication parameters.

Project download fails

Possible cause Remedy
Connection to the HMI device cannot be establish‐
ed (alarm in the output window)

Check the physical connection between the con‐
figuration PC and the HMI device.
Check whether the HMI device is in transfer mode.
Exception: Remote control

The configuration is too complex

Possible cause Remedy
The configuration contains too many different ob‐
jects or options for the HMI device selected.

Remove all objects of a specific type, for example
all HTML browsers.
Alternatively, remove options such as Sm@rtServ‐
er or OPC server.
Reduce the project size.

See also
Reducing the project size (Page 866)

13.1.8 Reducing the project size (RT Uni)

Introduction
When loading a large-scale project to an HMI device, the memory of the HMI device may be
insufficient for the project. There are several ways to reduce the size of your project.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
866 System Manual, 11/2019, Online help printout

Options for reducing the project size
There are several ways to reduce the size of the project and save space:

● Reduce the number of available runtime languages
Check whether all selected runtime languages are actually needed. You can disable the
languages that you do not need under "Runtime settings > Language & Font > Runtime
language and font selection".

● Do not use help texts for S7 diagnostic alarms
To reduce the size of the project, you can disable the download of help texts for the S7
diagnostic alarms. In order to avoid downloading the help texts to the HMI device, disable
the option "Download S7 diagnostics help texts" under "Runtime settings > Alarms >
General".

● Rebuild all software
In order to optimize the project data and to clean up obsolete changes, compile the entire
project using the "Compile > Software (rebuild all)" command from the shortcut menu of the
HMI device.

● Harmonize the presentation using styles
It is recommended to harmonize screen objects using styles. Standardize the appearance
of screen objects in a project to optimize project data. Use the specified preset or
customized style for the configuration of the screen objects throughout the project.

● Activate automatic updating of PLC alarms
To save space, you can specify that the PLC alarm texts are only to be loaded in runtime
when needed. To do this, enable the "Automatic update" option under "Runtime settings >
Alarms > Controller alarms". Make sure that automatic update of alarms is also enabled in
the corresponding controller.
The "Automatic update" option is not available on Basic Panels.
The amount of space that can be saved depends on the number of PLC alarms and the
number of runtime languages.

● Reduce the number of fonts loaded
Check whether the number of downloaded user-defined fonts can be reduced. If necessary,
configure only the standard fonts for the required Runtime languages under "Runtime
settings > Language & font > Runtime language and font selection".
To save space, use fewer font groups for the configuration.

● Reduce the size of the graphics
Check the size of the graphics that you use in the project. If necessary, reduce the size of
the graphics by reducing the resolution or choose a higher compression format without
noticeable loss of quality for the project graphics.
To keep the project size small for Basic HMI devices, harmonize the sizes of graphics used
in the project.
Select appropriate graphic formats for your screens: For example, use PNG images for
drawings that are not vector graphics and JPEG images for photos.

See also
Loading a project (Page 853)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 867

13.1.9 Starting runtime (RT Uni)

Introduction
You can start the project in runtime as soon as you have downloaded the project to the HMI
device. The project is generally started automatically on the HMI device.

The project settings defined in the "Runtime settings" of the HMI device are activated when the
project is started in Runtime. Make sure when defining the Runtime settings "Lock task
switching" and "Full screen" that you will be able to stop Runtime again. You can, for example,
configure a button with the system function "StopRuntime".

Note
Response of Runtime when the HMI device is restarted

When the HMI device is restarted, the project is automatically restarted even if the project was
stopped before the restart.

Note
Closing runtime automatically

If automatic transfer is activated on the HMI device and a transfer is started on the configuration
PC, the running project is automatically terminated.

The HMI device then automatically switches to "Transfer" operating mode.

After the commissioning phase, disable the automatic transfer function to prevent the HMI
device from switching inadvertently to transfer mode.

Transfer mode can trigger unwanted responses in the plant.

In order to restrict access to the transfer settings and thus avoid unauthorized changes, enter
a password in the "Start Center".

Note
Using encrypted communication connections in runtime

A runtime project with encrypted communication connections to S7 PLCs must be loaded for
each Windows user who wants to use these connections in runtime.

Requirement
● The project was downloaded to the HMI device.

● The "Start Center" has been started.

Starting runtime on an HMI device
On an HMI device, the project is stored in the folder specified in the transfer settings of the HMI
device. The "Start Center" is displayed when the HMI device is switched on. Depending on the
configuration, the loaded project starts automatically after the defined delay time.

If the project does not start automatically, click "Start" in the "Start Center".

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
868 System Manual, 11/2019, Online help printout

Refer to the documentation for the HMI device for additional information on startup of projects.

Result
Runtime is started on the HMI device.

13.1.10 Adapting the project for another HMI device (RT Uni)

Introduction
When you download a WinCC project to an HMI device, WinCC checks whether the HMI device
is compatible with the HMI device type used in the project. If the types of HMI device do not
match, you will see a message before the download starts.

The download is aborted.

Adapting the project for the HMI device
You need to adapt the project accordingly to be able to download the project to the connected
HMI device.

● Add a new HMI device in the project tree. Select the correct type of HMI device from the HMI
device selection.

● Copy the configured components from the previous to the new HMI device.
You copy many components directly in the project tree and the details view.
For example, copy the "Screens" folder to the screens folder of the new HMI device using
the shortcut menu.

● Use the detail view to copy entries in the project tree for which the "Copy" command is not
available in the shortcut menu.

● For example, select the "Parameter sets" entry in the project tree. The parameter sets are
displayed in the detail view.

● Select the parameter sets in the detail view and drag them to the "Parameter sets" entry of
the new HMI device. The parameter sets are copied. You can also select multiple objects in
the detail view.

● Configure the components that cannot be copied, e.g. connections, area pointers, and
alarms.

● Save the project at various points in time.

● Compile the full project.

● When the compilation is successfully completed, download the project to the HMI device.

Linking references
References to linked objects are included in the copying. The references are once again linked
to each other after the linked objects are copied.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 869

Example:

You copy a screen in which objects are linked to tags. The tag names are entered at the
individual objects after the screen is added to the new HMI device. The tag names are marked
in red because the references are open. When you then copy the tags and insert them into the
new HMI device, the open references are closed. The red marking for the tag names
disappears.

To complete references to connected objects in the controller, you first need to configure a
connection to the controller.

Using the information area
When you compile the project for the new HMI device, errors and warnings are displayed in the
"Info" tab of the Inspector window. You can use the shortcut menu command "Go to" to go
directly to the location where the error or warning can be corrected.

Work through the list of errors and warnings from top to bottom.

When the compilation is successfully completed, download the project to the HMI device.

13.1.11 Users in runtime (RT Uni)
The operating instructions of the HMI device contains information about users and user
administration on your HMI device.

13.1.12 Viewing memory card data (RT Uni)

13.1.12.1 Basics (RT Uni)

Introduction
WinCC provides you with the possibility of viewing data stored on your memory card. The
function supports the use of memory cards of the HMI device and of the CPU.

You have the following options:

Viewing a backup (Page 871)

Renaming and deleting backups (Page 872)

Viewing HMI device images (Page 873)

Deleting HMI device images (Page 874)

Creating HMI device images on memory card (Page 875)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
870 System Manual, 11/2019, Online help printout

See also
Viewing a backup (Page 871)

Renaming and deleting backups (Page 872)

Viewing HMI device images (Page 873)

Deleting HMI device images (Page 874)

Creating HMI device images on memory card (Page 875)

13.1.12.2 Working with backups (RT Uni)

Viewing a backup (RT Uni)

Introduction
If you have stored the backup of an HMI device on a memory card, this backup can also be
viewed in the TIA Portal.

Requirements
● WinCC is installed.

● A memory card with a backup is available.

● The card reader is connected to the configuration PC.

● The project view is open.

Backup on the memory card in the card reader
1. Insert the memory card into the card reader.

2. Open "Card Reader/USB storage" in the project tree.

3. Select the card reader drive.
The "Online card data" folder is displayed.

4. Open the "Online card data" folder.

5. Click the backup to open the shortcut menu.

6. Select "Properties".

Backup on the memory card of the PLC
Proceed as follows if the backup is stored on the memory card of the PLC:

1. Connect the PLC with the configuration PC.

2. Click on the PLC in the project navigation.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 871

3. Select "Connect online" from the shortcut menu.
A connection to the PLC is established.
Once the PLC is connected, the "Online card data" folder is displayed.

4. Open the "Online card data" folder.

Note
Accessing a password-protected PLC

When you attempt to access a PLC that is protected by a password, you will be prompted
to enter the password.

You need at least read access rights in order to view the data that is stored on the memory
card.

5. Click the backup to open the shortcut menu.

6. Select "Properties".

Result
The backup properties are displayed in a separate dialog:

● General properties

– Date and time when the backup was created

– Software version with which the backup was created.

● Supported HMI devices with which the backup is compatible

See also
Renaming and deleting backups (Page 872)

Renaming and deleting backups (RT Uni)

Introduction
You can rename and delete backups from a memory card in the project navigation of the TIA
Portal.

Requirements
● WinCC is installed.

● The card reader is connected to the configuration PC.
Or The PLC is connected online with the configuration PC.

● A memory card with a backup is available.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
872 System Manual, 11/2019, Online help printout

● The project view is open.

● The backup is displayed in the project navigation.

Note
Accessing a password-protected PLC

When you attempt to access a PLC that is protected by a password, you will be prompted
to enter the password.

You need write access rights to rename or delete memory card data.

Procedure
1. Click on the backup in the project navigation.

2. Open the shortcut menu.

3. Select "Rename" to rename the file.

4. Enter a new name.

5. Select "Delete" to delete the file.

Result
The backup file is now renamed or deleted.

See also
Viewing a backup (Page 871)

13.1.13 Working with HMI device images (RT Uni)

13.1.13.1 Viewing HMI device images (RT Uni)

Introduction
If you have saved the HMI device image of a Unified Comfort Panel on a memory card, you can
display the properties of the HMI device image in the TIA Portal.

Requirements
● WinCC is installed.

● The card reader is connected to the configuration PC.

● A memory card with the HMI device image is available.

● The project view is open.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 873

Procedure
1. Insert the memory card into the card reader.

2. Open "Card Reader/USB storage" in the project tree.

3. Select the card reader drive.
The "Online card data" folder is displayed.

4. Open the "Online card data" folder.
The available images of the HMI device are displayed in additional folders.

5. Click the required HMI device image.

6. Select "Properties" in the shortcut menu.

Result
The properties of the HMI device image are displayed in a separate dialog:

● General properties

– Date and time when the HMI device image was created

– Software version with which the HMI device image was created

● Supported HMI devices with which the HMI device image is compatible

See also
Deleting HMI device images (Page 874)

Creating HMI device images on memory card (Page 875)

13.1.13.2 Deleting HMI device images (RT Uni)

Introduction
You can delete the HMI device image of a Unified Comfort Panel from a memory card in the
project navigation of the TIA Portal.

Requirements
● WinCC is installed.

● The card reader is connected to the configuration PC.

● A memory card with an HMI device image is available.

● The project view is open.

● The HMI device image is displayed in the project navigation.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
874 System Manual, 11/2019, Online help printout

Procedure
1. Click the HMI device image in the project navigation.

2. Open the shortcut menu.

3. Select "Delete" to delete the file.

Result
The HMI device image is deleted.

See also
Viewing HMI device images (Page 873)

Creating HMI device images on memory card (Page 875)

13.1.13.3 Creating HMI device images on memory card (RT Uni)

Introduction
As an alternative to directly transferring an HMI device image of from a configuration PC to a
Unified Comfort Panel, you can create an HMI device image on a memory card or USB flash
drive and later transfer the HMI device image to the Unified Comfort Panel.

Requirements
● WinCC is installed.

● The card reader is connected to the configuration PC.

● The project view is open.

Procedure
1. Insert the memory card into the card reader.

2. Click on the memory card in the project navigation.

3. Open the shortcut menu.

4. Select the entry "Card Reader/USB storage > Create HMI OS image on memory card".
The "Select the memory map of the operating system" dialog opens.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 875

5. Select an HMI device image in the "Images" area or under "Images from another location".

6. Select the restore settings.

– Select "Keep installed settings of the Control Panel":
The settings you entered on the Unified Comfort Panel are retained.

– "Keep installed licenses" enabled:
The licenses on the Panel are retained.

– "Lock the settings on the panel" enabled:
You can no longer change the selected settings for "Keep installed settings of the Control
Panel" and "Keep installed licenses" on the Unified Comfort Panel.

Result
You have created an HMI device images on memory card. Alternatively, you may use a USB
stick instead of the memory cards.

See also
Viewing HMI device images (Page 873)

Deleting HMI device images (Page 874)

13.1.14 Basics of operating in Unified Runtime (RT Uni)

13.1.14.1 Overview (RT Uni)

Operating options for an HMI device
The following operating options are available:

● Operation via touch screen
The HMI device has a touch-sensitive touch screen. Use your finger or a suitable touch pen
to operate the touch screen.

● Operation via mouse and keyboard
You can use the mouse and keyboard to operate the device like a PC.

Adhere to the instructions for operating the device in the relevant operating instructions.

Individually configured operation
The configuration engineer has various options available for setting up operation.

Examples of actions whose execution is always determined on a project-specific basis:

● Screen change

● Reporting

● Changing runtime language

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
876 System Manual, 11/2019, Online help printout

There are no specific operating elements to execute certain functions. The configuration
engineer specifies the project-specific execution. The screen change can be triggered, for
example, via a button.

Information on project-specific operations can be found in the system documentation.

13.1.14.2 Operation with the touch screen (RT Uni)

Overview of operation with the touch screen (RT Uni)
Use the touch screen to operate the HMI device of the project that is running on your HMI
device.

Operating the touch screen

NOTICE

Damage to the touch screen

The following operation considerably reduces the service life of the touch screen up to total
failure:
● Touching with pointed or sharp objects
● Sudden contact with hard objects. Use your finger or a suitable touch pen to operate the

touch screen.

Do not touch the touch screen with sharp or pointed objects. Adhere to the instructions for the
touch screen of the device in the corresponding operating instructions.

Special features when operating using the touch screen
Operation with the touch screen is characterized by the following special features:

● Enable
To enable the operator control, use your finger or a suitable touch pen to operate the touch
screen. To generate a double-click, touch the operator control twice in rapid succession.

● Value input
You enter numbers and letters on the touch screen with a screen keyboard.

Input using the screen keyboard
The screen keyboard is displayed when you select a screen item that requires input. The
screen keyboard is hidden again when input is complete.

Further information on the screen keyboard can be found in the operating instructions of the
HMI device.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 877

Placing the focus on objects (RT Uni)
You have the following options:

● Click or tap on the object.

Note
Giving focus to objects with a transparent background

If an object has a transparent background, click on a visible area of the object.

● Press <Tab> until the object has the focus.

Operating objects with transparent fill (RT Uni)
The objects displayed on a screen can have transparent ranges.

Example: Sliders, bars and pointer instruments are enclosed by a transparent rectangle.

Trigger event

Requirement
An event which is triggered by operating actions such as typing or clicking has been configured
for the object in the engineering.

Procedure
To trigger the event, proceed as follows:

● If the object does not have the focus, click a visible part of the object, e.g. its border.

● If the object already has the focus, the event is also triggered by clicking in the transparent
area.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
878 System Manual, 11/2019, Online help printout

Using multi-touch functions (RT Uni)

Supported gestures (RT Uni)

Definition
Various touch gestures are available for the runtime operation. Some touch gestures have
different effects in the process pictures than in the controls.

Note
No operation with three or more fingers.

Only use one or two fingers when operating with touch gestures.

If you use more than two fingers with touch gestures, this can cause incorrect operation.

In the case of multitouch operation with several fingers, you only operate the respectively
configured objects.

Supported touch gestures in process pictures

Icon Gesture Function
Tap To select an object, tip on the corresponding position in the process screen.

Drag with
one finger

To scroll horizontally or vertically, drag the process screen or the object with
one finger in the desired direction.
You scroll horizontal and vertical at the same time by dragging vertically in
screens.

Scale To zoom in or zoom out, drag simultaneously with two fingers.

Swipe To switch between two process screens, swipe horizontally with one finger.

Keep pressed To call the shortcut menu, press for longer than a second on the object or the
link.
The function corresponds to a right-click.

Activation
gestures

To call the WinCC system dialog, swipe fast vertically from top to bottom.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 879

Supported touch gestures in controls

Icon Gesture Behavior Supported
WinCC con‐
trols

Tap To select a row, tap the row.
With corresponding configuration of the control: To select a
cell.

Alarm control

Drag with two
fingers

To move table and/or trends and axes, drag with two fingers
in the control window.

● Trend
control

● Process
control

● Ruler win‐
dow

Drag with
one finger

To shift the X axis or Y axis.
To navigate within a list or table.

● Trend
control

● Process
control

● Ruler win‐
dow

To select multiple rows, tap a row and drag your finger up or
down.
With corresponding configuration of the control: To select
multiple cells.

Alarm control

To adapt the column width, tap a column grid line and drag
your finger to the right or left.
To change the order of the columns, tap a column header and
drag your finger to another column header.

Keep press‐
ed

To display the tooltip of the picked value or object, press for
longer than a second on the value or the object.
The function corresponds to a right-click.

Trend control

Double tap To toggle between 2 preset zoom settings.
Requirement: "Zoom +/-", "Zoom time axis +/-" or "Zoom
value axis +/-" was pressed.

Trend control

Scale To zoom in or out in the trend control, drag with two fingers in
the control window.

Trend control

Hold a finger
and tap twice
with the other
finger

To restore a zoomed view to 100%, follow these steps:
● Hold the control with one finger
● Tap twice on the control with the second finger.
The operation corresponds to clicking the symbol "Original
view" (1:1).

Trend control

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
880 System Manual, 11/2019, Online help printout

See also
Special features for multi-touch operation (Page 881)

Special features for multi-touch operation (RT Uni)

Scrolling in lists and controls
You can scroll through lists and controls by dragging.

You use horizontal dragging to move the content of the screen to the left or right. You use
vertical dragging to scroll up or down in the view. An indicator appears during scrolling to
indicate your position. When you drag a list diagonally, the content is moved horizontally and
vertically at the same time.

You scroll around five times faster up or down on a page when you use two fingers to drag up
or down.

Special features of the trend view
You enlarge or reduce the view in "Trend view" and "f(x) trend view" objects by pinch-to-zoom
with two fingers.

Double tap to switch from the magnified trend view back to the normal view.

The zooming function is limited to the time axis in the "Trend view" object.

If you have enabled the option "Range > Auto-size" during configuration of the value axes in f(x)
trend view, the axes are constantly calculated during zooming.

Horizontal scrolling is not supported in the "Trend view" object.

Note
Current view is not persistent

The changes of zoom factor and position changed by scrolling are not saved.

The trend view is reset to the default setting during a screen change.

See also
Supported gestures (Page 879)

13.1.14.3 Direct Keys (RT Uni)

Introduction
Direct keys on the HMI device are used to set bits in the I/O area of a SIMATIC S7.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 881

Direct keys enable operations with short reaction times that are, for example, a jog mode
requirement.

Note

Direct keys are still active when the HMI device is in "offline" mode.

Note

You can only use direct keys when coupling via PROFINET IO.

Direct keys result in additional basic load on the HMI device.

Configuring direct keys
You can configure buttons as direct keys on HMI devices with touchscreen. You can also define
screen numbers. This allows the project engineer to define the direct keys for a specific screen.

More detailed information on configuring direct keys can be found at "Visualizing processes >
Communicating with controllers".

13.1.14.4 Triggering an action (RT Uni)

Introduction
Triggering an action at an operator control can mean the following:

● A command is executed.
Example: Touch a button to trigger a script or perform a predefined function.

● An object is enabled.
Example: Touch a table cell to enter a value in a list.

Requirement
● You have navigated to the operator control on which you want to trigger the action.

● The operator control has the focus.

Procedure
● Touch the operator control on the touch screen once or twice in rapid succession.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
882 System Manual, 11/2019, Online help printout

Result
The following results are possible:

● The requested command is executed.

● The screen keyboard is opened and/or the cursor blinks in the input area of the operator
control.

● The element is selected and can be moved.

For more detailed information, refer to the operating instructions for your HMI device.

13.1.14.5 Entering a value (RT Uni)

Introduction
Depending on the input format, you enter numeric or alphanumeric values in an input field using
the screen keyboard.

Requirement
● The object is an input field or table field.

● The operator control is enabled.

Entering a value
1. Enter the desired value.

2. To confirm the value and exit the field, press the <Enter> key.

3. To discard the value and exit the field, press the <Esc> key.

Result
A value is entered or discarded. You navigate as needed to the next operator control.

For more detailed information, refer to the operating instructions for your HMI device.

13.1.14.6 Moving operator controls (RT Uni)

Introduction
You operate movable operator controls of a screen item in runtime via the touchscreen, such
as a slider or scroll bar.

Requirement
● A movable operator control is selected.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 883

Procedure
1. Use a corresponding gesture to move the operator control, e.g. "drag" for a slider.

2. To finish the movement, navigate to another screen object or operator control.

Result
The position of the movable operator control and the display in the screen object have changed.

For more detailed information, refer to the operating instructions for your HMI device.

13.1.14.7 Displaying infotext (RT Uni)

Introduction
Depending on the configuration, additional information and operating instructions are available
as infotext. The infotext is assigned to an operating element, an alarm or to the open screen.
The infotext of an I/O field may contain, for example, information about the value to be entered.

Requirement
● An infotext is configured for the operating element, the screen or an alarm.

Calling the infotext
1. Enable the desired operating element.

2. Press the <Help> button of the screen keyboard.
The infotext for the operating element is displayed.

If there is no infotext for the selected screen object, the infotext for the current screen is
displayed, if it has been configured.

Use the scroll bar for long infotexts.

Depending on the configuration, info text can also be retrieved by means of a configured
operating element.

Switching between infotexts
● To switch between the infotexts of the operating elements and the screen, enable the

infotext window.

Hiding infotext
● To hide the infotext, press the <Esc> key or press the <Help> key again.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
884 System Manual, 11/2019, Online help printout

13.1.14.8 Changing Runtime language (RT Uni)

Introduction
The HMI device supports multilingual projects. A corresponding operating element which lets
you change the language setting on the HMI device in Runtime has been configured.

The project always starts with the language set in the previous session.

Requirement
● The required language for the project is available on the HMI device.

● The language switching function is linked to an operating element, for example, to a button.

Selecting a language
You can change project languages at any time. Language-specific objects are immediately
displayed on the screen in the new language when you switch languages.

You can switch the language in Runtime in one of the following ways:

● Use a configured operating element to switch from one language to the next in a list.

● Use a configured operating element to directly set the required language.

13.1.14.9 Web browser of WebKit engine (RT Uni)

Introduction
If the "Browser" object is configured for an HMI device, then the "Browser" operating object is
displayed in the corresponding runtime screen. Only the web browser of the WebKit engine is
available on HMI devices. This web browser offers many HTML5 features, but no Active X
support.

HTML5 functions
The following HTML5 standard functions are fully or partly supported by the Web browser of the
WebKit engine:

● Parsing rules

● Elements

● Forms and fields

● Output

● Communication

● User interactions

● Performance

● Security

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 885

● History and Navigation

● 2D graphics

● Memory

● Animations

● Web applications

● Files and file systems

Note

Microdata, input, peer to peer, position and orientation, video, audio, responsive images, 3D
graphics, streams and web components are not supported in the Web browser of the WebKit
engine.

The table below shows the availability of the HTML5 functions in the Web browser of the WebKit
engine in detail:

Parsing rules Available
<!DOCTYPE html> triggers the standard mode Yes
HTML5 tokenizer Yes
HTML 5 tree building Yes
Parsing Inline SVG Yes
Parsing Inline MathML Yes

Elements Available
Embedded invisible data Yes
New or modified elements
Section elements Yes
Grouping content elements that belong together Partly
Semantic elements of the text level Partly
Interactive elements Partly
Global attributes and methods
Hidden attributes Yes
Inserting dynamic markups Yes

Forms and fields Available
Field types
type = text Yes
type = search Yes
type = tel Yes
type = URL Yes
type = email Yes
type = date No

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
886 System Manual, 11/2019, Online help printout

Forms and fields Available
type = month No
type = week No
type = time No
type = datetime No
type = datetime-local No
type = number Yes
type = range Yes
type = color Yes
type = checkbox Yes
type = image Yes
type = file Yes
textarea Yes
select Yes
fieldset Yes
datalist Yes
keygen Yes
output Yes
progress Yes
meter Yes
Fields
Field validation Yes
Assignment of forms and controls Yes
Other attributes Yes
CSS sectors Yes
Events Yes
Forms
Form validation Yes

Output Available
Full-screen support No
Web notifications Yes

Communication Available
Server-sent events Yes
Web beacons No
XML HttpRequest Level 2
File upload Yes
Response type Yes
WebSocket
Basic Socket Communication Yes
ArrayBuffer and Blob Yes

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 887

User interactions Available
Drag-and-drop
Attributes Yes
Events Yes
Editing HTML
Editing elements Yes
Editing documents Yes
CSS sectors No
APIs Yes
Clipboard
Clipboard for API and events No
Spell check
Spelling attributes Yes

Performance Available
Native binary data Yes
Workers
Web workers Yes
Shared workers Yes

Security Available
Web Cryptography API No
Content Security Policy 1.0 Yes
Content Security Policy 1.1 No
Cross-Origin Resource Sharing Yes
Cross-Document Messaging Yes
Iframes
Sandboxes Iframe Yes
Seamless Iframe Yes
Iframe with Inline contents Yes

History and Navigation Available
Session history Yes

2D graphics Available
Canvas 2D graphics Yes
2D primitives
Text input in graphics Yes
Path input in graphics No
Drawing an ellipse in graphics No

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
888 System Manual, 11/2019, Online help printout

2D graphics Available
Drawing a dashed line in graphics Yes
System focus ring No
Functions
Hit testing No
Aperture mode No
Formats for image export
PNG Yes
JPEG Yes
JPEG-XR No
WebP No

Animation Available
window.requestAnimationFrame Yes

Web applications Available
Offline resources
Application cache Yes
Service workers No
Content and scheme handlers No

Memory Available
Key value storage
Session memory Yes
Local storage No
Database storage
IndexedDB No
Blob object store No
ArrayBuffer object store No
Web SQL database Yes

Files and file systems Available
Reading files
Basic support for reading files Yes
Creating a blob from a file Yes
Creating a data URL from a blob Yes
Creating an ArrayBuffer from a blob Yes
Creating a blob URL from a blob Yes
Accessing a file system

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 889

Files and file systems Available
API file system No
File API: Folders and system No

Additional functions Available
Styles
Style items No
Scripts
Asynchronous script execution Yes
Signaling script errors in Runtime Yes
Events for script execution No
Base 64 encoding and decoding Yes
JSON coding and decoding Yes
URL API Yes
MutationObserver "Yes" (pre-selected)
Promises No
Page visibility "Yes" (pre-selected)
Text selection Yes
Scrolling (Scroll into view) Yes

13.1.15 Entering barcodes via handheld readers (RT Uni)

Introduction
Optical handheld readers enable you to optically identify components, machines and other
objects and to transfer the read-out data on your HMI device directly to certain operating
objects.

Optical handheld readers capture codes such as two-dimensional data matrix codes, one-
dimensional barcodes and postal barcodes.

Supported optical handheld readers can be found at the following entry on the Internet:

FAQ 19188460 (https://support.industry.siemens.com/cs/ww/en/view/19188460)

You can find templates for the settings and instructions on configuration in the manual for your
optical handheld reader.

Note

The optical handheld reader is connected to the USB interface of the HMI device. Only one
device at a time can use the USB port. This is why it is not possible to use a USB keyboard and
an optical handheld reader or two optical readers at the same time.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
890 System Manual, 11/2019, Online help printout

https://support.industry.siemens.com/cs/ww/en/view/19188460

Procedure
You use the connected optical reader to read a code into the object that has the focus.

After the read-in, confirm the value with the Enter key or with the "Suffix - Enter" that you have
previously configured in the settings of your optical reader.

Objects for input with optical handheld reader
The following objects support input via an optical handheld reader:

Object Preconditions for input
I/O field
Clock

The corresponding data type is selected.
The object and the tag length are configured accordingly.
The operator element has the cursor focus.

Parameter set view The parameter set has the cursor focus.
Browser The operator element has the cursor focus.
Runtime dialogs which support key‐
board entry

The dialog is open and the corresponding input field has the
cursor focus.

File browser The field "File path" has the cursor focus.

Result
The code is read and entered into the corresponding input field.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 891

13.1.16 Servicing the HMI device (RT Uni)

13.1.16.1 Overview of the service for Unified Comfort Panels (RT Uni)

Structure
The following figure shows the software components of an HMI device and their relation to the
engineering system.

Runtime data
The runtime data is generated during operation of the plant and stored on the HMI device. This
data includes, for example, parameter sets and data for the user administration. This data is
overwritten during loading. If required, save this data before loading a Runtime project.

Runtime project and Runtime software
The Runtime project contains the compiled configuration data for an HMI device. Download the
Runtime project along with the Runtime software from WinCC to the HMI device.

Operating system
The operating system of the HMI device is provided as HMI device image via WinCC. Suitable
HMI images are supplied with each WinCC version. Depending on the configuration, download
the appropriate image along with the Runtime project to the HMI device as required.

Firmware and hardware
The HMI device is delivered with preconfigured firmware and hardware.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
892 System Manual, 11/2019, Online help printout

13.1.16.2 ProSave (RT Uni)

Introduction
The "ProSave" service tool is included in the WinCC installation. The ProSave functions are
accessed in WinCC with the menu "Online > HMI Device maintenance".

Functional scope
ProSave offers numerous functions for data transfer between the configuration PC and HMI
device:

● Backing up and restoring the HMI device data

● Updating the operating system of the HMI device

● License Keys transferred

● Installing or uninstalling drivers on an HMI device and providing information about installed
and installable options.

● Communication settings (transferred from WinCC)

See also
Overview (Page 844)

13.1.16.3 Backup of HMI data (RT Uni)

Introduction
Data backup is used to create a backup of the data on the HMI device, e.g. before the update
of the operating system. You can restore the backed-up data at a later time.

If an HMI device is connected to the configuration PC, you can back up and restore HMI device
data from the configuration PC using WinCC.

Alternatively, you can back up the data to an external storage medium supported by the HMI
device. If the HMI device is networked, you can also backup the data to a server.

Scope of data backup
The following options are available for data backup:

● Complete backup
Saves runtime, firmware, operating system, configuration, parameter sets, user
administration, options and License Keys

● Firmware/configuration

● Parameter sets only

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 893

● Only parameter sets in CSV format

● User administration only

A backup file with the extension *.psb is generated when you backup the data of an HMI device.

Note
Scope of data backup

The selected content of the flash memory is saved during data backup. Alarm logs and process
value logs are generally saved on the external storage medium. Alarm logs and process value
logs are therefore not backed up. If necessary, back up the contents of the memory card
separately.

Note the following for a complete backup and restore of the dataset:
● A full backup includes all options installed. As a rule, the backup includes all options data

that is still available after "POWER OFF".
● All data on the device, including License Keys and the operating system, are permanently

deleted when you perform complete data restoration.
● If the data restoration was interrupted, execute the command "Reset to factory settings".

Restart data restoration.

Note

Use an interface with high bandwidth, such as Ethernet, to back up and restore data via WinCC.

See also
Backing up and restoring data of the HMI device (Page 894)

13.1.16.4 Backing up and restoring data of the HMI device (RT Uni)

Note

Use the restore function for project data only on operating devices which were configured using
the same configuration software.

Requirement
● The HMI device is connected to the configuration PC

● The HMI device is selected in the project tree.

● If a server is used for data backup: The configuration PC has access to the server

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
894 System Manual, 11/2019, Online help printout

Backup of the data of the HMI device
Proceed as follows to backup the data of the HMI device:

1. Select the "Backup" command from the "Online > HMI Device maintenance" menu.
The "Create backup" dialog box opens.

2. Select the type of the PG/PC interface and the target device, and click "Create".
The "SIMATIC ProSave" dialog box opens.

3. Select the data to backup for the HMI device under "Data type".

4. Enter the name of the backup file under "Save as".

5. Click "Start Backup".

This starts the data backup. The backup operation takes some time, depending on the
connection selected.

Restoring the data of the HMI device
Proceed as follows to restore the data of the HMI device:

1. Select the "Restore" command from the "Online > HMI Device maintenance" menu.
The "Restore backup" dialog box opens.

2. Select the type of the PG/PC interface and the target device, and click "Load".
The "SIMATIC ProSave" dialog box opens.

3. Enter the name of the backup file under "Save as".
Information about the selected backup file is displayed under "File information".

4. Click "Start Restore".

This starts the restoration. This operation takes some time, depending on the connection
selected.

Backup/Restore from the "Backup/Restore" dialog in the Start Center of the HMI device
The "Backup / Restore" function is enabled for SD memory cards and USB memory media.

For more information, refer to the operating instructions of the HMI device.

See also
Backup of HMI data (Page 893)

13.1.16.5 Updating the operating system (RT Uni)

Introduction
Update the HMI device image if the version is incompatible with the configuration. The version
of the image matches the device version.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 895

Update the operating system and Runtime software of the HMI device with the help of the
device version. While loading the project, you may be prompted to run an automatic update of
the device version, depending on the protocol used.

Loading will then continue. Loading of the project is otherwise aborted. In this case, perform the
update of the device version manually.

Updating the device version
Connect the HMI device to the configuration PC to update the device version. If possible, use
the interface providing the highest bandwidth for this connection, e.g. Ethernet.

"Reset to factory settings"
If the operating system on the HMI device is no longer operational, update the operating system
and reset the HMI device to the factory settings.

See also
Updating the operating system on the HMI device (Page 896)

13.1.16.6 Updating the operating system on the HMI device (RT Uni)
If possible, use the interface providing the highest bandwidth for this connection, e.g. Ethernet.
When you update the operating system, the Runtime software on the HMI device is also
updated and the device version is changed.

NOTICE

Updating the operating system deletes all data on the HMI device

When you update the operating system you delete data on the target system. For this reason,
you should back up the following data beforehand:
● User administration
● Parameter sets

Resetting to factory settings also deletes the License Keys. Back up the License Keys before
you reset the system to factory settings.

Requirement
● The HMI device is connected to the configuration PC.

● The HMI device is selected in the project tree.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
896 System Manual, 11/2019, Online help printout

Updating the operating system
Proceed as follows to update the operating system:

1. Select the "Update operating system" command from the "Online > HMI Device
maintenance" menu.
The "Update operating system" dialog box opens.

2. Select the type of the PG/PC interface and the target device, and click "Update".
The "SIMATIC ProSave [OS-Update]" dialog opens. The path to the image is preset.

3. If required, you can select a different path for the image that you want to transfer to the HMI
device.

4. Click "Update OS".

This starts the update. The update operation can take time, depending on the connection
selected.

Resetting the HMI device to factory settings
To reset the HMI device to factory settings, proceed as follows:

1. Switch off power to the HMI device.

2. Connect the HMI device to the Engineering Station.

3. Select the "Update operating system" command from the menu under "Online > HMI Device
maintenance" on the configuration PC in WinCC.
The "Update operating system" dialog box opens.

4. Select the type of the PG/PC interface and the target device, and click "Update".
The "SIMATIC ProSave [OS-Update]" dialog opens. The path to the image is preset.

5. If required, you can select a different path for the image that you want to transfer to the HMI
device.

6. Activate "Reset to factory settings".

7. Click "Update OS".

8. To reset to factory settings, switch on the power to the HMI device again.
This operation can take time.

Result
The operating system of the HMI device is operational and up-to-date.

See also
Updating the operating system (Page 895)

Transferring license keys (Page 899)

Managing licenses (Page 899)

Backing up and restoring data of the HMI device (Page 894)

Overview for loading of projects (Page 851)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 897

13.1.16.7 Updating the operating system of the HMI device from a data carrier

Introduction
You can update the operating system using a data storage medium. You can find the HMI
image files, for example, in the installation directory of WinCC under: "\Siemens\Automation
\Portal V1x\Data\Hmi\Transfer\<HMI device image version>\Images".

NOTICE

Data loss

All data on the HMI device, including the project and HMI device password, is deleted during
a restore operation. License keys are only deleted after a security prompt.

Back up your data before the restore operation, if necessary.

Requirement
● The HMI device image file is located in the "SIMATIC.HMI\Firmware\" directory on your data

carrier, e.g. a SIMATIC HMI Memory card or an industry-grade USB stick.

● The data carrier with the relevant HMI device image file including operating system is
inserted in the HMI device.

Procedure
1. Open the "Start Center" on your HMI device.

2. Select "Service & Commissioning > Update OS".

3. Select a storage medium under "Select storage media for OS update".

Note

If there is no storage medium or a defective storage medium in the HMI device, the "0
devices found" message is displayed. Insert the storage medium or replace the storage
medium.

4. Select the required HMI device image file under "Firmware files on external storage".

5. Press "Update OS".
The "Update OS Image" dialog opens.

6. To start restoring the operating system, press "Yes".
The "Transfer" dialog is displayed. A progress bar shows the course of the restore. The HMI
device then restarts.

Note

After the restore, it may be necessary to recalibrate the touch screen.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
898 System Manual, 11/2019, Online help printout

See also
Updating the operating system on the HMI device (Page 896)

13.1.16.8 Transferring license keys (RT Uni)

Introduction
You need a license for certain WinCC Runtime options you may want to install on an HMI
device. Usually, the necessary licenses supplied as "License Keys" on a data medium, e.g.
USB stick. The "License Keys" can also be made available on a license server.

Use "Automation License Manager" to transfer the "License Keys" to or from an HMI device.
The "Automation License Manager" is included automatically when you install WinCC.

NOTICE

Backing up License Keys

In the following cases you have to backup the "License Keys" in order to prevent deletion of
the "License Keys":
● Before updating the operating system
● Prior to restoring the data from a full backup

"License Keys" on an HMI device are backed up depending on the HMI device
configuration. For more information on this topic, refer to the operating instructions of the
HMI device.

See also
Managing licenses (Page 899)

13.1.16.9 Managing licenses (RT Uni)

Requirement
● The HMI device is connected to the configuration PC or the PC running the "Automation

License Manager".

● If you are using the configuration PC: The HMI device is selected in the project tree.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 899

Procedure
To transfer license keys, follow these steps:

1. Open the "Automation License Manager". Go to the Windows Start menu and start
"Automation License Manager" on a PC on which WinCC is not installed.
The "Automation License Manager" starts.

2. Select the "Connect HMI device" command from the "Edit > Connect target system" menu.
The "Connect target system" dialog opens.

3. Select the HMI device type in the "Device type" area.

4. Select the "Connection".

5. Configure the "connection parameters" associated with the selected connection.

6. Click "OK".
The connection to the HMI device is now set up. The connected HMI device is displayed in
the left pane of "Automation License Manager".

7. Transfer the "License Keys" to the HMI device:

– In the left pane, select the drive on which the "License Keys" are located.
The "License Keys" are displayed on the right pane.

– Select the "License Keys"

– Drag-and-drop the "License Keys" to the HMI device.

You can also remove License Keys from the HMI device using drag-and-drop.

Alternative procedure
You can also start the "Automation License Manager" from WinCC on a PC with a WinCC
installation: Select the "Authorize/License" command in the "Online > HMI Device
maintenance" menu.

Result
The "License Keys" are transferred to the HMI device.

To backup the "License Keys" from the HMI device, drag-and-drop the "License Keys" from the
HMI device to an available drive.

See also
Transferring license keys (Page 899)

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
900 System Manual, 11/2019, Online help printout

13.1.16.10 Installing and uninstalling an option (RT Uni)

Introduction
You can install the following options on an HMI device:

● Additional options supplied with WinCC

● Options purchased in addition to WinCC

Which options you can install depends on the HMI device type.

You can find an overview of the installable options in the "Getting started with WinCC".

Requirement
● The HMI device is connected to the configuration PC.

● The PG/PC interface is set.

● The HMI device is selected in the project tree.

● The HMI device is switched on.

Procedure
To install an option on the HMI device, proceed as follows:

1. Select the "Options" command from the "Online > HMI Device maintenance" menu.
The "Load options" dialog opens.

2. Select the type of the PG/PC interface and the target device, and click "Load".
The "SIMATIC ProSave" dialog box opens.
All available options and the previously installed options are displayed.

3. To display the installed options on the HMI device, click "Device status".

4. To install an option on the HMI device, select the option under "Available options" and click
">>".

5. To uninstall an option from the HMI device, select the option under "Available options" and
click "<<".

Result
The selected options are installed on or uninstalled from the HMI device.

Compiling and loading (RT Uni)
13.1 Unified Comfort (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 901

13.2 Unified PC (RT Uni)

13.2.1 Runtime settings (RT Uni)

13.2.1.1 Settings in the runtime software (RT Uni)

Introduction
To edit the runtime settings for an HMI device, select "Runtime settings" under the HMI device
in the project tree.

Overview
You can view or edit the following settings:

Setting Description
General Identification Indicates the project identification.

Encrypted transfer Make settings for encrypted transfer. You
can find additional information under "Encryp‐
ted transfer".

Screen Specifies the start screen.
Alarms Controller alarms Displays the alarms of the controller.

State texts Specifies the texts of different states.
Services Reading/writing tags Specifies that the HMI device works as an

OPC server.
Language & font Runtime language and font selec‐

tion
● Specifies the available runtime languag‐

es and the sequence of language selec‐
tion.

● Specifies the default font.
● Specifies the languages for logging in

runtime.
Collaboration Identification Specifies the system identification of the col‐

laboration, collaboration name and the IP ad‐
dress.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
902 System Manual, 11/2019, Online help printout

Setting Description
Storage system Database type Specifies the database type for logs:

● SQLite
● Microsoft SQL
If "Microfoft SQL" is selected, a separate soft‐
ware installation is required.

Database storage location for tag
persistence

Specifies the storage medium for the tag per‐
sistence:
● Off
● Local
● Project folder

Main database location for logging Specifies the storage medium for logs:
● Off
● Local
● Project folder

See also
Encrypted transfer (Page 904)

Start screen (Page 903)

Configuring an HMI device as an OPC UA server (Page 1060)

Languages in runtime (Page 772)

13.2.1.2 Start screen (RT Uni)

Start screen settings
You specify the start screen in the runtime settings of the HMI device under "General > Screen".

The start screen is the initial screen that is displayed after runtime starts. The screen resolution
is automatically adjusted to suit the HMI device when the screen is selected.

You specify the start screen in the runtime settings of the HMI device under "General > Screen".

Note
Displaying a start screen changed by reloading

You have defined a start screen in the project and started runtime. If you then define another
start screen in your project and load the project in the device again, the last active screen is
displayed in runtime once connected again.

After reloading the screen, refresh it in runtime in the browser with the <F5> key or the "Update"
button in the browser.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 903

See also
Settings in the runtime software (Page 902)

13.2.1.3 Encrypted transfer (RT Uni)

Introduction
To enable secure loading of the runtime project, assign a password for encrypted transfer. You
enter the password both in the engineering system and in runtime.

Settings for encrypted transfer
In the runtime settings under "General > Encrypted transfer", make the following settings:

● Activate encrypted transfer

● Entering a password in the engineering system

● Allow transfer of initial password via unencrypted loading

You define the password for encrypted transfer in Runtime in the application "WinCC Unified -
Configuration" in the "Secure download" area. Alternatively, to transfer the password
unencrypted, activate the option "Allow transfer of the initial password via unencrypted loading".

If the password assigned in the engineering system does not match the password in Runtime,
select one of the following options:

● Use the "WinCC Unified - Configuration" application to change the Runtime password.

● In the Runtime settings, allow the transfer of the initial password via unencrypted loading
and load the project completely.
Requirement: The old password is known.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
904 System Manual, 11/2019, Online help printout

13.2.1.4 Printing in runtime (RT Uni)

Print functions
The following print functions are available in runtime:

● Hardcopy

● Printing alarms
Every alarm that has occurred and its state changes are logged on a printer.

● Printing reports
Reports are output in graphic mode. The use of a serial printer is not recommended because
of the accumulated data volume.
For the report to be printed correctly, the printer must support the paper format and page
layout of the report.

Note

The value of a tag in the report is read and output at the moment of printing. A substantial
period of time may elapse between printing out the first and the last page of a report
consisting of several pages. This may lead to the same tag being output with a different
value on the last page than on the first page.

13.2.2 Overview (RT Uni)

The term "project"
The term "project" has two different meanings in the context of "compiling and downloading".

● WinCC project: Contains the configuration data of a HMI device in WinCC

● Runtime project: Contains the compiled configuration data of an HMI device.
If Runtime has been installed on the configuration PC, you can execute the runtime project
directly on the configuration PC.
If you want to execute the runtime project on a different PC, you have to transfer the runtime
project to the PC before startup.

The figure below illustrates the link between WinCC projects and runtime projects using the
example of the "Compile and Download" process:

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 905

The configuration data are compiled.

The runtime project is loaded.

Definitions
To compile a project means generating a runtime project from the WinCC project.

Downloading a project means transferring the runtime project to an HMI device.

WinCC Unified SCADA RT is the runtime software for process visualization. In runtime, you
execute the project in process mode.

Simulation
You test your configuration with a simulation. You start simulation without a connection to the
running process.

In a simulation, you test configured internal tags or a screen change, for example. You simulate
the project on the configuration computer.

See also
Compiling a project (Page 907)

Sequence of the download process (Page 912)

Loading a project (Page 913)

Simulating projects (Page 907)

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
906 System Manual, 11/2019, Online help printout

13.2.3 Compiling a project (RT Uni)

Scope of the compilation
In the background, the configuration data continuously checked for consistency and compiled.

If you compile a project manually, only the changes in the configuration made since the last
compilation process are compiled in the background.

Requirement
● A project is open.

Procedure
Proceed as follows to compile a project:

1. To compile the configuration data of multiple HMI devices at the same time, select all HMI
devices using multiple selection in the project tree.

2. To compile the project, click "Compile" in the toolbar.

Result
The configuration data of all selected HMI devices is compiled. If errors occur during
compilation, the errors are shown in the Inspector window.

See also
Overview (Page 905)

Sequence of the download process (Page 912)

Loading a project (Page 913)

13.2.4 Simulating projects (RT Uni)

13.2.4.1 Basics of simulation (RT Uni)

Introduction
You can use the simulator to test the performance of your configuration on the configuration
PC. This allows you to quickly locate any logical configuration errors before productive
operation.

You can start the simulator as follows:

● In the shortcut menu of the HMI device or in a screen: "Start simulation"

● Click "Start simulation" in the toolbar.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 907

● Menu command Online > Simulation > Start

● Under "Visualization > Simulate device" in the portal view.

Field of application
You can use the simulator to test the following functions of the HMI system, for example:

● Screen change and screen navigation

● Internal tags

● Layout

● Configured alarms

See also
Simulating a project (Page 909)

Simulating a screen (Page 911)

13.2.4.2 Skip "Load preview" dialog (RT Uni)

Skip "Load preview" dialog
To permanently skip the "Load preview" dialog when simulating projects and screens, proceed
as follows:

1. Open the settings under "Options > Settings".

2. Select "Simulation".

3. In the "HMI Simulation" area, clear the check box "Show 'Load preview' dialog during
download to simulation".

Result
● The "Load Preview" dialog is no longer displayed.

● The simulation is opened automatically in the standard browser.

Note

Errors and warnings that occur are displayed in the Inspector window in the "Info" tab.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
908 System Manual, 11/2019, Online help printout

Note
Settings of the "Load preview" dialog

The following settings are applied from the previous loading process with displayed "Preview
Load" dialog:
● Settings for keeping tag values, active alarms and user data (default value: enabled).
● Settings for resetting logs (default value: "No reset")

If the "Load preview" dialog was hidden before the first loading of the project, the default values
are used.

See also
Simulating a screen (Page 911)

Simulating a project (Page 909)

13.2.4.3 Simulating a project (RT Uni)

Introduction
You simulate a project on the configuration computer.

Note
Simulating a project on a configuration PC while Runtime is running

Runtime is terminated when a project on the HMI device is running in runtime and you use the
option "Full download".

Runtime is not terminated when a project on the HMI device is running in Runtime and you use
the option "Delta download". For example, tags keep their value and are not set to the start
value.

Ethernet connection
You download your runtime project simulation to the HMI device via an Ethernet connection.
The connection uses Ethernet port 20008.

Note
Ethernet port 20008

If an application is using Ethernet port 20008, download is not possible.

If no connection to the target can be established, check the port assignments. If another
application is using Ethernet port 20008, close this application.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 909

Requirement
● The "Simulation (SIMATIC WinCC Unified Scada)" component is installed on the

configuration PC.

● The project is open in the configuration PC.

● The HMI device and the HMI device have been successfully compiled.

Procedure
Proceed as follows to simulate a project:

1. Click "Start simulation" in the toolbar.
The "Load Preview" dialog is displayed and the compilation result is displayed.

2. Check the displayed default settings and change the settings as necessary:

– Specify whether to use the "Full download" or "Delta download" option.

– Specify whether runtime should start after the download.

– When you use the "Full download" option again, you specify whether tag values, active
alarms, and user data are retained. Only available if you have selected "Start runtime".

– When you use the "Full download" option again, you specify whether all logs are reset in
runtime. Only available if you have selected "Start runtime".

3. Click "Download".

4. Open the browser.

5. Call the URL "https://localhost" in the browser.
Instead of the name "localhost", you can use the computer name.

6. Select "WinCC Unified RT".

7. Enter the user name and password.
The configured screen is displayed as start screen in the browser.

8. Test, for example:

– Screen change and screen navigation.

– Layout

– Internal tags.

9. To stop the simulation, select "Online > Stop runtime/simulation".

See also
Basics of simulation (Page 907)

Simulating a screen (Page 911)

Skip "Load preview" dialog (Page 908)

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
910 System Manual, 11/2019, Online help printout

13.2.4.4 Simulating a screen (RT Uni)

Introduction
If you have only made changes to one screen, you can temporarily specify this screen as the
start screen for simulation. In this way, you can debug changes without having to modify the
start screen, or opening the screen on the HMI device.

Requirement
You created a project that contains at least one screen.

Procedure
To define a screen as temporary start screen for simulation, follow these steps:

1. In the project tree, select the screen that is to become the temporary start screen in the
simulation.

2. Select the "Start simulation" command from the shortcut menu of the screen.
The "Load Preview" dialog is displayed and the result of the compiling is displayed.

3. Check the displayed default settings and change the settings as necessary:

– Specify whether to use the "Full download" or "Delta download" option.

– Specify whether runtime should start after the download.

– When you use the "Full download" option again, you specify whether tag values, active
alarms, and user data are retained. Only available if you have selected "Start runtime".

– When you use the "Full download" option again, you specify whether all logs are reset in
runtime. Only available if you have selected "Start runtime".

4. Click "Download".

5. Open the browser.

6. Call the URL "https://localhost" in the browser.
Instead of the name "localhost", you can use the computer name.

7. Select "WinCC Unified RT".

8. Enter the user name and password.
The simulated screen is displayed.

Result
If "Start runtime" is selected in the settings for loading, the screen selected in the project tree
is displayed in the simulation window instead of the configured start screen.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 911

See also
Basics of simulation (Page 907)

Simulating a project (Page 909)

Skip "Load preview" dialog (Page 908)

13.2.5 Downloading projects (RT Uni)

13.2.5.1 Sequence of the download process (RT Uni)

Introduction
The project is automatically compiled before you download it to an HMI device. This always
ensures that the latest version of the project is transferred.

If you are using external HMI tags in your project that are connected to PLC tags, you should
also compile the user program before you compile the HMI device.

Process sequence
If you are downloading a runtime project, follow the procedure below:

1. Select the WinCC project.

2. Set the connection first.

– Enter the connection data of the target device.

– The connection is checked and established.
The connection is thus defined for all subsequent download processes for this WinCC
project. To change the connection, open the "Online > Extended upload to project" dialog
again.

3. WinCC project is compiled.

– If the compilation completes with errors, the download is aborted.

– Runtime project is created.

4. Settings for downloading

– If the runtime project is already running or is stored on the target device, confirm the
closing of Runtime and overwriting the existing data.

– If another runtime project is running on the target device, confirm the closing of Runtime.

– You specify whether runtime is started on the HMI device after the download.

5. Triggering the download of the runtime project.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
912 System Manual, 11/2019, Online help printout

Downloading a runtime project several times
You can download a runtime project one after the other to several connected HMI devices and
your configuration PC and start runtime at the same time.

WinCC supports different Runtime versions and configurations.

Downloading different runtime projects
Close the project open on the HMI device to download an additional project to the HMI device.

Example: The project "Mixing" is open on the HMI device but not in runtime. If you change the
project, download the changes to the HMI device using "Download to device". To download the
"Bottling" project to the HMI device, for example, close the project "Mixing" on the HMI device.

See also
Loading a project (Page 913)

Overview (Page 905)

Compiling a project (Page 907)

13.2.5.2 Loading a project (RT Uni)

Introduction
You download a runtime project from your WinCC project. You always download only one
runtime project to a connected HMI device or to your configuration PC.

You load either the complete runtime project or only changes of a runtime project. To load
changes, use the "Delta download" option.

How to handle existing runtime projects
If you have already downloaded a project, the download process recognizes the project using
the project identification.

 The project identification can be found in the runtime settings of the operating device under
"General".

Note
Existing runtime projects on the target device

If a runtime project with the same project identification is already available on the HMI device
and you select the command "Download to device > Software (all)", the entire project is
downloaded again. Existing runtime data from the same project is overwritten.

Save relevant data before the download.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 913

Note
Downloading the project to an HMI device while Runtime is being executed.

Runtime is closed when a project is running in runtime on the HMI device and you load a project
to this HMI device with the command "Download to device > Software (all)".

Runtime is not terminated when a project is running in Runtime on the HMI device and you load
a project to this HMI device with the command "Download to device > Software (only changes)".
For example, tags keep their value and are not set to the start value.

Note

If you have changed the name or data type of a tag, you must load the runtime project
completely.

Ethernet connection
You download your runtime project to the HMI device via an Ethernet connection. The
connection uses Ethernet port 20008.

Note
Ethernet port 20008

If an application is using Ethernet port 20008, download is not possible.

If no connection to the target can be established, check the port assignments. If another
application is using Ethernet port 20008, close this application.

Device version
If the device version of the target HMI device does not correspond to that of the configured
device version, runtime cannot be started after the download:

● Verify that the device version of the target HMI device conforms to your configuration before
you compile and download your project.

● If necessary, change the device version manually via the properties of the HMI device.

Requirement
● The controller data have been compiled without errors.

● The HMI device has been compiled without errors.

● The device versions of the target HMI device correspond to the configured device version.

● The HMI device is connected to the configuration PC or the configuration PC serves as HMI
device.

● Ethernet port 20008 in your network configuration is not allocated.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
914 System Manual, 11/2019, Online help printout

To download a project using the command "Download to device > Software (download
changes)", the following additional requirements must be met:

● The runtime project that is to receive the changes is executed.

● The project versions of the executed runtime project and the runtime project loaded onto the
external storage medium using the "Delta download" option are identical.

Loading a project
1. Select the HMI device in the project tree.

2. Select "Download to device > Software (only changes)" or "Download to device > Software
(all)".
When you download the WinCC project for the first time, the "Extended download" dialog
opens.

3. Enter the IP address or device name of the target HMI device.
If you use your configuration PC as a HMI device, enter the IP address 127.0.0.1 or the
device name "localhost".

4. Click "Connect".
The connection is established and a dialog is displayed.

5. When the connection is established, click "Load".
The WinCC project is compiled again.
The "Load Preview" dialog is displayed. The compilation result is displayed.

6. Check the displayed default settings and change the settings as necessary:

– Specify whether to use the "Full download" or "Delta download" option.

– Specify whether runtime should start on the target system after the download.

– When you use the "Full download" option again, you specify whether tag values, active
alarms, and user data are retained. Only available if you have selected "Start runtime".

– When you use the "Full download" option again, you specify whether all logs are reset in
runtime. Only available if you have selected "Start runtime".

7. Click "Download".

8. Open runtime.

9. If you have used the "Delta download" option, update runtime.

Select another target device
1. Select the HMI device in the project tree.

2. Select "Online > Extended download to device".
The "Extended download" dialog opens.

3. Enter the IP address or device name of the new target device.

4. Click "Connect" and reload the project.

The runtime project is loaded onto another HMI device.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 915

Result
The project is loaded onto the selected HMI device under the following file path:

C:\ProgramData\SCADAProjects

If errors or warnings occur during the download, corresponding alarms are displayed under
"Info > Load" in the Inspector window.

On completion of the successful download of the project, you can execute it on the HMI device.
If you have activated the start of runtime on the target system in the "Load Preview" dialog, the
project is started in runtime after loading.

See also
Sequence of the download process (Page 912)

Overview (Page 905)

Compiling a project (Page 907)

Settings in the runtime software (Page 902)

13.2.5.3 Using external storage medium (RT Uni)

Loading project to external storage medium (RT Uni)

Introduction
If you cannot establish a direct connection from the configuration PC to the HMI device, load the
compiled runtime project onto an external storage medium. For example, use a USB stick or SD
card.

You load either the complete runtime project or only changes of a runtime project. To load
changes, use the "Delta download" option.

As soon as you have connected the external storage medium to your HMI device, load the
project on your HMI device.

Requirement
● An HMI device has been created.

Procedure
To create an external storage medium and load a project onto the storage medium, proceed as
follows:

1. Jump to the "Devices" tab in the project tree.

2. Double-click "Add user-defined card reader" in the "Card reader/USB storage" folder.
A selection dialog opens.

3. Select a target directory to save the project.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
916 System Manual, 11/2019, Online help printout

4. Drag and drop the folder of the HMI device (e.g. "HMI_1 [<Device type>]") to the added
folder. Alternatively, use copy and paste.
The project is checked. If the project has contents that have not yet been compiled, a
compile is performed.
The "Load Preview" dialog opens.

Note

If a runtime project with the same project identification already exists in the target directory,
only the options "Full download" and "Delta download" are available for download.

5. In the selection menu, specify how your project is to be loaded:

– "Full download"

– "Delta download"

Note

Only one runtime project at a time with the same project identification can be saved in the
target directory via the option "Full download" and "Delta download".

If a runtime project already exists, it is overwritten during loading.

Save relevant data before the download.

6. Click "Load" to confirm.

Result
Your project is stored as a compressed ZIP folder in the directory "[<Target directory>]
\Simatic.HMI\RT_Projects" :

● Projects that were created with the option "Full download" receive as file name e.g.
"[<Project_name>].PC-System_1[SIMATIC PC station - WinCC Unified Scada RT]_full.zip".

● Projects that were created with the option "Delta download" receive as file name e.g.
"[<Project_name>].PC-System_1[SIMATIC PC station - WinCC Unified Scada
RT]_delta.zip".

Load project from external storage medium (RT Uni)

Introduction
When you load a project from an external storage medium, the SIMATIC Runtime Manager
extracts the repository to a temporary folder on the target system. The transfer to runtime takes
place from this folder which is then deleted again.

Requirements
● SIMATIC Runtime Manager is installed on the HMI device.

● The storage medium with the backed-up project is connected to the HMI device.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 917

To download a project that has been downloaded to the external storage medium using the
"Delta download" option, the following additional requirements must be met:

● The runtime project that is to receive the changes is executed.

● The project versions of the executed runtime project and the runtime project loaded onto the
external storage medium using the "Delta download" option are identical.

Procedure
1. Start the "SIMATIC Runtime Manager"." tool.

2. Click "Add project from offline transfer".
The "Add project" dialog opens.

3. Click "..." under "Select project archive".
A selection dialog opens.

4. Select the compressed ZIP folder of the runtime project on the storage medium.

5. Click "Open".
Under "Project information" you can see details of the selected project.

6. To start the project directly, select the option "Start runtime with project" under "Options".

7. Confirm with "Add project".

The project is included in the "Project" list and started directly in the runtime.

If you have not selected the "Start runtime with project" option, you can start the project from the
project list of the SIMATIC Runtime Managers:

1. Select the check box in the "Project" column.

2. Select the button "Start runtime with selected project".

Note

You can execute only one project in runtime at the same time.

13.2.6 Compiling and loading with multiuser engineering (RT Uni)

13.2.6.1 Compiling and loading with multiuser engineering (overview) (RT Uni)

Introduction
When using multiuser engineering for your projects, you should take into account the response
when compiling the runtime projects and the response when downloading them to HMI devices.

You can compile and download to an HMI device in both the server project view and in the local
session.

You can find more information on Multiuser Engineering in "Using Multiuser Engineering".

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
918 System Manual, 11/2019, Online help printout

Basics
The following scenarios are possible for Unified PC in multiuser engineering:

● Compiling in the server project view

● Compiling in the local session

● Loading from the server project view

● Loading from the local session

Note

The option "Full download" from the server project view or from the local session does not differ
from the option "Full download" in a single-user project. With the option "Full download", the
current runtime project is loaded from the currently active view to an HMI device.

Note

Compiling and downloading in a local session is no different from compiling and downloading
in a single-user project.

In principle, you can execute all commands for compiling and loading in multiuser engineering
projects:

● "Software (compile all)"

● "Compile > Software (only changes)"

● "Software (all)"

The term "project"

The term "project" has two different meanings in the context of "compiling and downloading".
"Project" is the WinCC project on the configuration PC. "Project" is also the runtime project that
you create by compiling the configuration data of an HMI device and downloading it to the HMI
device.

● WinCC project: Contains the configuration data of one or more HMI devices

● Runtime project: Contains the compiled configuration data of an HMI device

Rules
The following basic rules apply to compiling and downloading in multiuser engineering:

● The runtime project which was compiled in a local session always remains local and is not
uploaded to the multiuser server. It cannot be saved in the multiuser server project.

● Only runtime projects compiled in the server project view can be saved in the multiuser
server project.

You can find additional information on Multiuser Engineering on the Siemens YouTube
channel: "Multiuser Engineering - one team working simultaneously on a project (https://
www.youtube.com/watch?v=n4oTZ2Gzg6U)".

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 919

https://www.youtube.com/watch?v=n4oTZ2Gzg6U
https://www.youtube.com/watch?v=n4oTZ2Gzg6U

13.2.6.2 Compiling in the server project view (RT Uni)

Basics
Compiling and downloading in the server project view is no different from compiling and
downloading in a single-user project.

During the compiling of a project in the server project view, the multiuser server project is
blocked. Other users cannot make changes to this server project during this time. The runtime
project compiled in the server project view is stored along with the engineering project in the
central multiuser server. Blocking the multiuser server project ensures that the configuration
data and the runtime project remain in sync.

Note

When you compile and save in the server project view, other users obtain the runtime project
you have updated along with the engineering project when they "refresh" their local session.
Other users do not have to recompile the changes you have made after an update.

Example: Compiling during check-in
You make changes to a tag in a local session. All prior changes have been compiled in the
associated server project.

If there are no compilation errors, both projects - the modified engineering project (with the
modified tags) and the compiled runtime project - are saved in the central multiuser server
project with the "Save changes" command.

If you skip compiling during the check-in, the project contains the changes that have been
saved on the server.

The next user who creates a local session from the server project or updates an existing local
session must compile your two changes in addition to his or her own changes.

Note

Working on a shared project through multiple local sessions increases the probability of errors.
It is therefore recommended to compile the project at check-in and eliminate any errors that are
reported during compiling. In this way, you provide the next user with a project free of errors.

13.2.6.3 Compiling in the local session (RT Uni)

Basics
Compiling and downloading projects in the local session is no different from compiling and
downloading in a single-user project.

Since the local session is a copy of the server project,the first compilation status of the local
session is identical to that of the server project. If the server project contains contents that are

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
920 System Manual, 11/2019, Online help printout

not compiled or error messages occurred during compiling, they are transferred to the local
session.

Note

It is recommended to compile the project at check-in and eliminate any errors that are reported
during compiling. In this way, you provide the next user with a project free of errors and avoid
spreading errors.

Updating in the local session
If you update a project in the local session, the local session - including the compilation status
- is completely replaced by the content of the server project. Only the changes marked for
check-in are retained in the updated local session and generate additional compiling steps in
the local session.

Example: Updating the local session
You make changes to a tag in a local session. All prior changes have been compiled in the
associated server project.

You update the content of the local session by clicking the "Update" button. After the update,
the local session obtains the compilation status of the server project. There are also compiling
tasks for the acquisition of the modified tags.

13.2.7 Error messages during loading of projects (RT Uni)

Possible problems during loading
When a project is being downloaded to the HMI device, status messages regarding the
download progress are displayed in the output window.

Problems arising during the download of the project to the HMI device are usually caused by
one of the following errors:

● Wrong operating system version on the HMI device

● Incorrect settings for loading on the HMI device

● Incorrect HMI device type in the project

● The HMI device is not connected to the configuration PC.

The most common download failures and possible causes and remedies are listed below.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 921

The download is canceled due to a compatibility conflict

Possible cause Solution
Conflict between versions of the configuration soft‐
ware and the operating system of the HMI device

Synchronize the operating system of the HMI de‐
vice with the version of the configuration software.
For additional information, refer to the operating
instructions for the HMI device.

The configuration PC is connected to the wrong
device, e.g. a controller.

Check the cabling.
Correct the communication parameters.

Project download fails

Possible cause Solution
Connection to the HMI device cannot be establish‐
ed (alarm in the output window)

Check the physical connection between the con‐
figuration PC and the HMI device.

13.2.8 Starting runtime (RT Uni)

Introduction
If WinCC Runtime is also installed on a configuration PC, you start Runtime during loading. To
do this, activate the corresponding option in the "Load Preview" dialog.

If only WinCC Runtime is installed on an HMI device, download the project to the HMI device.

To start runtime, use the "SIMATIC Runtime Manager" or enable the subsequent start of
runtime during download.

If you have already downloaded several runtime projects, use "SIMATIC Runtime Manager" to
select the project to be started.

Note
Downloading the project to an HMI device while runtime is being executed.

The runtime that is running is closed when a project is in runtime on the HMI device and you
download a project to this HMI device using the "Full download" option.

Requirements
● "WinCC Unified Runtime" is installed on the device.

● The HMI device is connected to the configuration PC via Ethernet.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
922 System Manual, 11/2019, Online help printout

Procedure
To start the runtime of a SIMATIC Unified PC, proceed as follows:

1. Select the desired HMI device in the project tree.

2. Click "Download to device" in the toolbar. Alternatively, select "Download to device >
Software (all)" in the shortcut menu.
When you download the WinCC project for the first time, the "Extended download" dialog
opens.

3. Enter the IP address of the target device.

4. Click "Connect"
The "Load Preview" dialog is displayed.

5. Check the displayed default settings and change the settings as necessary:

– Specify whether to use the "Full download" or "Delta download" option.

– Specify whether runtime should start on the target system after the download.

– When you use the "Full download" option again, you specify whether tag values, active
alarms, and user data are retained. Only available if you have selected "Start runtime".

– When you use the "Full download" option again, you specify whether all logs are reset in
runtime. Only available if you have selected "Start runtime".

6. Click "Download".

Result
The project is compiled and loaded.

If you have activated the start of runtime on the target system in the "Load Preview" dialog, the
project is started in runtime after loading.

To stop runtime, select "Online > Stop runtime/simulation". Alternatively, use the "SIMATIC
Runtime Manager" to stop runtime.

See also
Settings in the runtime software (Page 902)

13.2.9 Adapting the project for another HMI device (RT Uni)

Introduction
When you download a WinCC project to an HMI device, WinCC checks whether the HMI device
is compatible with the HMI device type used in the project. If the types of HMI device do not
match, you will see a message before the download starts.

The download is aborted.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 923

Adapting the project for the HMI device
You need to adapt the project accordingly to be able to download the project to the connected
HMI device.

● Add a new HMI device in the project tree. Select the correct type of HMI device from the HMI
device selection.

● Copy the configured components from the previous to the new HMI device.
You copy many components directly in the project tree and the details view.
For example, copy the "Screens" folder to the screens folder of the new HMI device using
the shortcut menu.

● Use the detail view to copy entries in the project tree for which the "Copy" command is not
available in the shortcut menu.

● Select the "Recipes" entry in the project tree, for example. The recipes are displayed in the
detail view.

● Select the recipes in the detail view and drag them to the "Recipes" entry of the new HMI
device. The recipes are copied. You can also select multiple objects in the detail view.

● Configure the components that cannot be copied, e.g. connections, area pointers, and
alarms.

● Save the project at various points in time.

● Compile the full project.

● When the compilation is successfully completed, download the project to the HMI device.

Linking references
References to linked objects are included in the copying. The references are once again linked
to each other after the linked objects are copied.

Example:

You copy a screen in which objects are linked to tags. The tag names are entered at the
individual objects after the screen is added to the new HMI device. The tag names are marked
in red because the references are open. When you then copy the tags and insert them into the
new HMI device, the open references are closed. The red marking for the tag names
disappears.

To complete references to connected objects in the controller, you first need to configure a
connection to the controller.

Using the information area
When you compile the project for the new HMI device, errors and warnings are displayed in the
"Info" tab of the Inspector window. You can use the shortcut menu command "Go to" to go
directly to the location where the error or warning can be corrected.

Work through the list of errors and warnings from top to bottom.

When the compilation is successfully completed, download the project to the HMI device.

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
924 System Manual, 11/2019, Online help printout

13.2.10 Users in runtime (RT Uni)

13.2.10.1 Changing users in runtime (RT Uni)

Introduction
In runtime, different users can log on, provided these users have been created.

Requirement
● The IP address or the fully qualified name (computer name and domain) of the computer on

which Runtime is installed is entered in the browser.
If Runtime is not installed on the same computer as the browser, the "localhost" designation
can also be used.

● A user is logged into runtime.
You log in by selecting "WinCC Runtime RT" or "User management".

Procedure
To log off a user and then log on a different user, proceed as follows:

1. Select "User management".

2. Expand the menu at the top right.

3. Select "Logout".

4. Log in with a different user.

See also
User administration in runtime (Page 926)

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 925

13.2.10.2 User administration in runtime (RT Uni)

Overview
Through the "User" selection menu, administrators have the possibility to create new users,
edit the properties of the users and assign roles to them.

You can change the password via the "User profile" selection menu.

See also
Changing users in runtime (Page 925)

Compiling and loading (RT Uni)
13.2 Unified PC (RT Uni)

WinCC Engineering V16 - Runtime Unified
926 System Manual, 11/2019, Online help printout

Configuring cycles (RT Uni) 14
14.1 Basics of cycles (RT Uni)

Introduction
Cycles are used to control actions that regularly occur in runtime. Common applications are the
acquisition cycle, the logging cycle and the screen cycle. You can also define your own cycles
in addition to those already provided in WinCC.

Principle
In runtime, actions that are performed regularly are controlled by cycles. Typical applications
for cycles:

● Acquisition of external tags
The acquisition cycle determines when the HMI device will read the process value of an
external tag from the PLC. Set the acquisition cycle to suit the rate of change of the process
values. The temperature of an oven, for example, changes much more slowly than the
speed of an electrical drive.
Do not set the acquisition cycle too low, since this will unnecessarily increase the
communication load of the process.

● Triggering scheduled tasks
In scheduled tasks you have the option to configure a task with a cyclical trigger. Use the
cycle time to determine when the scheduled task is executed.

● Logging process values
The logging cycle determines when a process value is saved in the logging database. The
logging cycle is always an integer multiple of the acquisition cycle.

The smallest value for a cycle in Runtime Unified is 100 ms. You can configure all further values
with an increment of 50 ms. The smallest default values are 100 ms, 250 ms and 500 ms.

Application example
You can use cycles for the following tasks:

● To record and archive process values.

● To trigger tasks.

● To regularly log a process.

● To draw attention to maintenance intervals.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 927

14.2 Defining cycles (RT Uni)

Introduction
Use cycles to control actions that are run at regular intervals in Runtime. You can also define
your own cycles in addition to those already provided in WinCC.

Requirement
The project is open.

Procedure
To define a cycle, follow these steps:

1. Double-click the "Cycles" entry in the project navigation.
The "Cycles" editor opens.

2. In the "Name" column of the "Cycles" editor, double-click "Add".
A new cycle time is created.

3. Enter a unique name in the "Name" field.

4. Select the desired cycle unit.

5. Select the desired value for the cycle time.
The available selection of values varies depending on the cycle unit selected.

6. As an option, you can enter a comment regarding the use of the cycle.

7. Save the project.

Result
The cycle you configured is created and beside the default cycles in WinCC for use during
configuration.

Configuring cycles (RT Uni)
14.2 Defining cycles (RT Uni)

WinCC Engineering V16 - Runtime Unified
928 System Manual, 11/2019, Online help printout

Creating production reports (RT Uni) 15
15.1 Basics (RT Uni)

15.1.1 Introduction (RT Uni)

Introduction
With WinCC Unified Reporting, you can generate production reports in the form of Excel reports
in Runtime. Reporting covers the following project data:

● Logging tags and online tags

● Log alarms

● With the Performance Insight option package installed: KPIs and operands
See also Creating production reports for PI options.

You can then continue to edit the data in Excel or save the report as PDF and distribute or
archive it.

For example, you can generate a report that outputs all alarms occurring in a production line.
Prepare the values in the report graphically and then distribute the report for analysis.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 929

Functional scope in the add-in
You create the report templates in an Excel add-in. For this purpose, Reporting offers the
following functions in the add-in:

● Selection of the data source of the Runtime project:

– Online: By means of a connection to a server on which the project is running

– Offline: By means of a configuration file

● Definition of single value segments and time series segments

● Selection of the data source items of the segments
Possible data source items:

– Logging tags and online tags

– Log alarms

● Definition of the report period (absolute or relative)

● Creation of type-specific data source item configurations

● Execution of individual segments or all segments for test purposes

Excel sheet Excel plugin

Data

Report area

Data

Report area

Update

Update

WinCC Runtime

Position of the data in the table

Location
Time information

Start, End
Which data

Indicators (KPIs, operands, alarms, tags)

Position of the data in the table

Location
Time information

Start, End
Which data

Indicators (KPIs, operands, alarms, tags)

Functional scope in Runtime
In runtime, you configure report tasks in the "Reporting" control that are based on the templates
defined in the add-in. To do so, reporting offers the following functions in Runtime:

● Maintenance of task parameters, especially import and export of report templates

● Creating new report tasks and managing existing report tasks

● Overview of the generated reports

● Download or deletion of the reports

Creating production reports (RT Uni)
15.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
930 System Manual, 11/2019, Online help printout

15.1.2 Basics of Reporting (RT Uni)

Report templates
A report template is an Excel file that was created with the WinCC Unified Excel add-in. For
each report template, you set the data source and the options that are used by the template.
You also define which segments of the reports are using the template and which data source
items are evaluated by the segments.

After you have imported the report templates into the "Reporting" control in runtime, you can
select them for configuring the report tasks.

Data sources
The data source is the source from which you select data source items when you configure the
report template.

The following connection modes and data sources are available:

● Connection mode: Online
Data source is the project that is running on the Runtime server to which the report template
is connected.

● Connection mode: Offline
Data source is a configuration file. You create the configuration file by connecting a report
template to a runtime server and exporting the project running there to a file. You can use
this file to create additional report templates without connecting to a runtime server.

Options and data source items
Options control the types of data source items to which the report template has access.

Data source items are the specific objects whose data is read from the Runtime project during
report generation.

The following options and types of data source items are available in Reporting, depending on
the installed software:

Software Option Types of data source items
WinCC Unified ba‐
sic installation

Alarm Log alarms

WinCC Unified ba‐
sic installation

Logging tag Logging tags

WinCC Unified ba‐
sic installation

Tag Online tag

Creating production reports (RT Uni)
15.1 Basics (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 931

Software Option Types of data source items
WinCC Unified ba‐
sic installation

User-defined col‐
umn

User-defined texts or Excel formulas

Performance In‐
sight option pack‐
age

Performance In‐
sight

Local KPIs and operands of the PI option Performance insight:
● KPI
● Counters
● Cycle time
● Machine state
● Design speed

Report tasks and task parameters
A report task is a job for generating 1 to N reports. Task parameters define the details of the
generation, for example, the trigger of the report task and which report template the report task
uses. When a report task is triggered, a new report is automatically generated.

Reports
A report is an Excel file that reads in data from the Runtime system and displays it in form of a
table.

Reports are generated:

● Automatic
When the trigger defined for a report task occurs.

● Manual
When you execute report tasks manually in the "Report tasks" tab.

The report is created automatically when its report task is executed.

15.2 Procedure (RT Uni)

Project planning in the engineering system
1. Configure the alarms and tags for which you want to generate reports.

2. Place the "Reporting" control in a screen of a WinCC Unified device.

3. Compile the project and load it to the Runtime environment.

Definition of report templates in the Excel add-in
Proceed as follows to define report templates that can be used in runtime for report tasks:

1. Select the data source of the Runtime project.

2. Define templates that use the configured alarms and tags as data source items.

3. Optional: When using an online connection, test the template by reading the runtime data
of selected segments or all segments.

Creating production reports (RT Uni)
15.2 Procedure (RT Uni)

WinCC Engineering V16 - Runtime Unified
932 System Manual, 11/2019, Online help printout

Working with reports in runtime
To work with reports in runtime, follow these steps:

1. Configure the task parameters. To do this, import templates that use alarms and tags as
data source items.

2. Configure the report tasks. Select one of these templates as the template.

Note
Generating reports

The execution of a report task generates a report. Report tasks are executed automatically
when the trigger defined in their task parameters is initiated. You can also have the option
to execute report tasks manually.

3. Get an overview of the reports that were generated.

4. Download the reports, if necessary.

See also
Running a report job manually (Page 970)

Configuring report templates (Page 940)

15.3 Configuring production reports in the engineering system (RT Uni)

15.3.1 Inserting a "Reporting" control in a screen (RT Uni)

Procedure
1. Select the HMI device on the "Devices" tab.

2. Open the "Screens" folder.

3. Open the screen.

4. In the "My controls" pane, select the "Reporting" control and place it on the screen.

Creating production reports (RT Uni)
15.3 Configuring production reports in the engineering system (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 933

15.4 Creating templates for production reports (RT Uni)

15.4.1 Requirements (RT Uni)

15.4.1.1 Installation of the Reporting add-in (RT Uni)

Installing Excel manifest on a computer

Procedure
1. In the installation package of WinCC Unified on "DVD_2", double-click the file "Support

\Reporting\SIMATIC_WinCC_Unified_Reporting_<Version number>.exe".

2. Select the target directory to which the underlying ZIP file is extracted and confirm your input.
The ZIP file is extracted and setup starts automatically.

Note
Start setup manually

To start the setup manually after the file was extracted, select the option "Extract the setup
files without being installed".

Start the setup later by running the "Setup.exe" file as administrator in the target directory.

3. Follow the setup instructions.

4. In the "Configuration" step, select the options for the Excel add-in and the PDF add-in.

5. Select whether PDF generation of the reports runs via Excel or Libre Office.

6. When Excel creates the PDFs, specify the user name and the password under which the
PDF is created.
Use a user that does not exist in the Windows user administration yet.

7. When Libre Office creates the PDFs, select the installation directory of Libre Office.

8. Click "Next" and follow the setup instructions.

Setting up read access to the Excel manifest
Give the users that create templates with the Excel add-in read access to the installation path
of the Excel manifest: <target directory>\WinCCUAReporting\Excelmanifest

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
934 System Manual, 11/2019, Online help printout

Adding add-in in Excel

Requirement
The following software is installed on the device on which you want to use the Excel add-in:

Excel Operating system Browser
MS Excel 2016 - Build 16.0.6769 (32- or
64-bit)

Windows 10 Version < 1903 Internet Explorer 11
Windows 10 Version > 1903
Windows 10 Version >= 1903 Microsoft Edge

Procedure
1. Open Microsoft Excel.

2. Open the "Trust Center" under "File" > "Options".

3. Click on "Trust Center Settings".

4. Click on "Trusted Add-In Catalogs".

5. Add the catalog using the URL "\\<Computer name>\excelmanifest".

6. Make sure that the check mark in the "Show in Menu" column is set.

7. End and restart Excel.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 935

8. In the "Insert" menu, click "My Add-ins".

In the "Office Add-ins" dialog box, the Siemens add-in is displayed under "Shared folders".

9. Select the add-in and click on "Add".

15.4.1.2 Configuring Internet Explorer and Edge (RT Uni)
The Reporting Excel add-in uses the certificate that was selected during installation of WinCC
Unified Runtime or later in "WinCC Unified Configuration".

Some browsers do not consider self-signed certificates as trusted. If you use a self-signed
certificate for WinCC Unified Runtime, you must add the certificate to the list of trusted
certificates in Internet Explorer or Edge on the device on which the Excel add-in is installed.

For detailed information on handling certificates, see the Runtime Readme.

Procedure
The following section describes the procedure for adding a self-signed certificate to the list of
trusted certificates, using Internet Explorer as an example:

1. Start Internet Explorer.

2. In the address line, enter the host name or the IP when creating the certificate.
You will receive a security warning.

3. Click "Continue to this website (not recommended)".

4. Click "Install certificate".

5. Click "Place all certificates in the following store" and "Browse".

6. Click "Trusted Root Certification Authorities" followed by "OK".

Note

Do not use the preset options for automatic selection of the certificate store.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
936 System Manual, 11/2019, Online help printout

7. Exit the dialog.

8. If you receive a security warning as to whether you want to trust the certificate, confirm it with
"Yes".

9. Load the page again.

See also
MicrosoftHelp_IE_ZertifikatInstallieren (https://medium.com/@ali.dev/how-to-trust-any-self-
signed-ssl-certificate-in-ie11-and-edge-fa7b416cac68)

15.4.2 Setting up a data source (RT Uni)

15.4.2.1 Using an online connection (RT Uni)

Setting up an online connection (RT Uni)

Requirements
● The Runtime server is accessible.

● WinCC Unified Runtime and the desired options are installed on the server.

● A project with the desired project data is available on the server.

● The project is downloaded to Runtime and is in RUN.

● The add-in is not connected to a server.

Setting up connection settings
1. In the "Data sources" group, click on "Connections" in the "WinCC Unified" tab.

2. Under "Connections", click on "Online".

3. Under "Server", enter the server name or the IP.

4. Click "Load".

5. Select the desired options.

6. Confirm your entries.

Result
The server node is created and the connection is established.

You can edit the connection settings at a later time, for example, to add an option.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 937

https://medium.com/@ali.dev/how-to-trust-any-self-signed-ssl-certificate-in-ie11-and-edge-fa7b416cac68
https://medium.com/@ali.dev/how-to-trust-any-self-signed-ssl-certificate-in-ie11-and-edge-fa7b416cac68

Diagnostics
If no connection can be established or an incorrect server name has been entered, the add-in
will display a corresponding error message.

Editing an online connection (RT Uni)
You can edit the connection settings to the connected server.

Requirement
● The "WinCC Unified" tab is visible in Excel.

● A connection to a server is set up as data source.

Deleting a connected server
1. In the "Data sources" group, click on "Connections".

2. Under "Connections", click on "Online".

3. Select the server node.

4. Click "Delete" next to the server node.

Changing a connected server
To connect Reporting to a server other than the one currently set up, follow these steps:

1. In the "Data sources" group, click on "Connections".

2. Under "Connections", click on "Online".

3. Delete the existing server connection.

4. Set up a new server connection.

Adding an option
1. In the "Data sources" group, click on "Connections".

2. Under "Connections", click on "Online".

3. Select the server node.

4. Click "Edit" next to the server node.

5. Select the desired option.

6. Confirm your entries with "OK".

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
938 System Manual, 11/2019, Online help printout

Deleting an option
1. In the "Data sources" group, click on "Connections".

2. Under "Connections", click on "Online".

3. Select the server node.

4. Select an option under the server node.

5. Deactivate the option.

6. Confirm your entries.

See also
Setting up an online connection (Page 937)

15.4.2.2 Using an offline connection (RT Uni)

Creating a configuration file in the add-in (RT Uni)

Requirement
An online connection is loaded.

Procedure
1. In the "Data sources" group, click on "Connections" in the "WinCC Unified" tab.

2. Under "Connections", click on "Online".

3. Click "Download configuration".

4. Under "Options", select which options are to be part of the configuration file.

5. Click "Download".

6. Determine the storage location of the configuration file in the "Show downloads - Internet
Explorer" window.

Result
The configuration file is stored in JSON format in the specified directory.

To use the configuration file for a report template, download the configuration file to the add-in.

See also
Setting up an online connection (Page 937)

Setting up an offline connection (Page 940)

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 939

Setting up an offline connection (RT Uni)

Requirement
A configuration file is available on the device.

Procedure
1. In the "Data sources" group, click on "Connections" in the "WinCC Unified" tab.

2. Under "Connections", click on "Offline".

3. Click "Open offline configuration".

4. Select the desired file in the window that opens and confirm your entries.

5. Click "Load".

6. Select the desired options.

7. Confirm your entries.

Result
The configuration file is loaded to the add-in. The data of the configuration file is available for
configuring the report template.

See also
Creating a configuration file in the add-in (Page 939)

15.4.3 Configuring report templates (RT Uni)

15.4.3.1 Sequence of events (RT Uni)

Requirement
An online connection or offline connection has been established.

Procedure
To create a new report template, proceed as follows:

1. Open a new Excel file.

2. Add a segment.
You can choose between time series segments and single value segments.

3. Add data source items to the segment.
The exact procedure depends on the type of the data source item.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
940 System Manual, 11/2019, Online help printout

4. Optional: If you do not want the data source item to use the default configuration, specify its
configuration.
You have the following options:

– Select an existing configuration.

– Create a new configuration and select it.

– Define a local configuration.

5. Optional: To define additional segments, repeat steps 2 to 4.

6. Optional: When using an online connection, test the template by reading the runtime data
of selected segments or all segments.

15.4.3.2 Create segments (RT Uni)

Definition
A report template consists of any number of segments. Each segment is a container to which
you can add any number of data source items. The segment reads the data from its data source
items.

You can choose between time series segments and single value segments.

Time series segments
Time series segments consist of a legend table and a data table:

● The legend table lists general information about the data source items of the segment.
Example of logging tags: Name, Option, Parent and Description

● The data table lists several values for each data source item in the segment.
Example of logging tags: All values logged for the tags in the evaluation period, including
their time stamp.

Possible data source items:

● Log alarms

● Logging tags

● User-defined columns

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 941

Single value segments
Single value segments consist of a data table that lists exactly one value for each data source
item in the segment.

Note
Output additional information

For the data source items of the single value segment, you can set in the configurations of the
data source items whether the data table outputs additional information about the value.

Example of logging tags:
● Quality code and time stamp of the tag value
● Labels

Possible data source items:

● Logging tags

● Online tags

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
942 System Manual, 11/2019, Online help printout

User interface
The interface for creating and editing segments has the following structure:

1 Filter
Filters the list of segments by name.

2 Button for creating a segment
3 List of segments

Each segment has buttons for reading in, editing and deleting the segment.
The following configuration is displayed for each segment:
● Segment name
● Number of data source items
● Insertion location of the segment in the Excel file
● Time interval
A click on the segment opens the area with the data source items.

Requirement
● The "WinCC Unified" tab is visible in Excel.

● The data source is set up.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Click "New segment".

3. Select "New time series segment" or "New single value segment".

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 943

4. Enter a segment name. Note the Excel restrictions for naming tables (for example, do not
use blanks).

5. For a time series segment, make the following settings in addition:

– Under "Location", determine where the segment is inserted in the file. Enter the name of
the worksheet and the cell.
Alternatively, click and use the cell currently highlighted in the Excel file.

Note
Arranging segments horizontally

Place the segments horizontally toward each other.

Because the tables grow dynamically, tables can overlap in vertical placement. This
causes an error of the class OfficeExtension.Error.

– Under "Start" and "End", you determine the time period for which values are read into the
segment.

 Absolute time information Select a date and a time.
The information is absolute to the current
date.

 Relative time information Select a reference time and a time interval.
The information is relative to the current
date.

 Read time information from cell Applies the value of the cell currently high‐
lighted in the Excel file.
Make sure that the cell supplies a valid
time.

 Read time information from tag Applies the value of the set online tag.
Make sure that the tag supplies a valid time.
Possible data types:
● DateTime
● String
● Integer

6. Confirm your entries with "OK".

Result
The segment is created and added to the list of segments:

Next, add data source items to the segment. Your procedure depends on the type of the new
data source item.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
944 System Manual, 11/2019, Online help printout

Format for relative time information
The relative times are entered using a reference time and a time interval.

Reference time

Use one of the following characters for the reference time:

● "*" - Now

● "t" (today) - Today at midnight

● "y" (yesterday) - Yesterday at midnight

● "1-31" - Specific day of the current month

Time interval

● "y" (year): +1y = plus 1 year

● "mo" (month): +1mo = plus 1 month

● "w" (week): +1w = plus 1 week

● "d" (day): +1d = plus 1 day

● "h" (hour): +1h = plus 1 hour

● "m" (minute): +1m = plus 1 minute

● "s" (second): +1s = plus 1 second

● "ms" (milliseconds): +250ms = plus 250 milliseconds

Examples

● *-1y: One year ago today

● t+8h: Today at 8:00 am

● y+8h: Yesterday at 8:00 am

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 945

● 1+8h: The first day of the current month at 8:00 am

● *-1d: One day ago

● *-2h-30m-30s: 2 hours, 30 minutes and 30 seconds ago

See also
Adding data source elements (Page 947)

Working with configurations (Page 953)

15.4.3.3 Edit segments (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

● A segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Click "Edit" next to a segment in the list of segments.

3. Edit the segment.
You can make the same settings as when creating the segment.

15.4.3.4 Delete segments (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

● A segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Click "Delete" next to a segment in the list of segments.

3. Confirm your entries with "OK".

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
946 System Manual, 11/2019, Online help printout

15.4.3.5 Adding data source elements (RT Uni)

Add log alarms (RT Uni)

Requirement
● There are logging alarms in the project that runs on the connected Runtime server or is the

basis of the configuration file.

● The "Alarm" option is activated in the connection settings.

● The "WinCC Unified" tab is visible in Excel.

● A time series segment is available.

Adding log alarms
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.

2. Select a segment.
The segment is extended by the area for the data source items.

3. Click "+".

4. Select the "Alarm" option.

5. Select the "Alarm" entry under "Select alarms".

6. To remove alarms from the report, select the entry "Alarms" under "Selected data source
items" and click "Delete".

Note
Change selection criteria

After you have added notifications, you can change the selection criteria and add more data
source items.

For example: Output tags and alarms in the same segment.

7. Confirm with "OK".

Note
Displayed alarms

First, the data table shows all logging alarms of the project. You filter the alarms using the
configuration of the data source item.

Result
The added data source item for alarms is displayed below the segment and inserted into the
Excel file.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 947

If you do not want the data source item to use the default configuration, select a configuration
next.

See also
Create or edit configurations for an alarm (Page 953)

Select configuration (Page 957)

Working with configurations (Page 953)

Add logging tags (RT Uni)

Requirement
● The project on which the connected Runtime server runs or the basis of the configuration file

has logging tags.

● The "Logging tag" option was selected while setting up of the connection.

● The "WinCC Unified" tab is visible in Excel.

● A single value segment or time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.

2. Select a segment.
The segment is extended by the area for the data source items.

3. Click "+".

4. Select the "Logging tag" option.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
948 System Manual, 11/2019, Online help printout

5. Optional: To reduce the load time, limit which tags are loaded to the selection under "Fill filter
form".
The preset filters "*" return all logging tags of the project.

– "Tag name": Enter the name of the online tag whose logging tags you want to add.

– "Logging tag name": Enter the name of the logging tags you want to add.

Note that the entry is case-sensitive.

Note
Filter by partial string

You use the wildcard "*" to filter by partial strings.

For example:
● *T* returns all tags with a "T" in their name.
● *T returns all tags that end in "T".
● T* returns all tags that start with "T".

When filtering for structures, the separators must be part of the filter string.

For example: The following filters return the logging tags for all tags of the device
"HMI_RT_1":
● Filter for tag: "HMI_RT_1::*"
● Filter for logging tag: "*"

6. Click "Load".
The filters are applied to the logging tags contained in the project.

7. Optional: Further reduce the number of tags that are offered for selection by clicking next to
"Select logging tag" and entering another filter string.
The list of tags you are being offered is filtered while you type.

8. Select one or more tags under "Select logging tag".
The tags are added to the "Selected data source items" list.

Note
Change selection criteria

After you have added a tag, you can select a different option or a different filter and add
additional data source items.

For example: Output KPIs and logging tags in the same segment.

9. To remove one or more data source items from "Selected data source items", select them
and click "Delete".

10.Confirm with "OK".
The added logging tags are shown below the segment and added to the Excel table.

11.If you have added the logging tag to a single value segment:

– In the Excel worksheet, select the cell in which the logging tag is to be inserted.

– Click the "Select a cell" button on the data source item of the logging tag.
Alternatively, enter the name of the worksheet and the cell.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 949

See also
Create segments (Page 941)

Select configuration (Page 957)

Create or edit configurations for logging tags (Page 954)

Working with configurations (Page 953)

Adding online tags (RT Uni)

Requirement
● The project on which the connected Runtime server runs or that is the basis of the

configuration file has online tags.

● The "Tag" option was enabled when the connection was set up.

● The "WinCC Unified" tab is visible in Excel.

● A single value segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.

2. Select the single value segment.
The segment is extended by the area for the data source items.

3. Click "+".

4. Select the "Tag" option.

5. Optional: To reduce the load time, limit which tags are loaded to the selection under "Fill filter
form".
Under "Tag name", enter a filter, e.g. the name of the online tag. Note that the entry is case-
sensitive.
The preset filter "*" returns all online tags of the project.

Note
Filter by partial string

You use the wildcard "*" to filter by partial strings.

For example:
● *T* returns all tags with a "T" in their name.
● *T returns all tags that end in "T".
● T* returns all tags that start with "T".

When filtering for structures, the separators must be part of the filter string.

For example: The "HMI_RT_1::*" filter returns all online tags of the "HMI_RT_1" device.

6. Click "Load".
The filters are applied to the online tags contained in the project.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
950 System Manual, 11/2019, Online help printout

7. Optional: Further reduce the number of tags that are offered for selection by clicking next to
"Select tag" and entering another filter string.
The list of tags you are being offered is filtered while you type.

8. Select one or more tags under "Select tag".
The tags are applied to the "Selected data source items" list.

Note
Change selection criteria

After you have added a tag, you can select a different option or a different filter and add
additional data source items.

9. To remove one or more data source items from "Selected data source items", select them
and click "Delete".

10.Confirm with "OK".

The added online tags are shown below the segment and added to the Excel file.

See also
Creating or editing configurations for online tags (Page 956)

Working with configurations (Page 953)

Adding user-defined columns (RT Uni)

Introduction
User-defined columns supplement the data of the other data source items of a time series
segment with additional information:

● With a fixed string
The string appears in each cell of the column.
Example: Display measurement unit of the tag values in report

● With a formula
The formula is calculated during generation for each cell in the dynamic column.
Example: The sum of the tag values output in the report.

The configuration of the user-defined column controls which string or formula it uses.

Requirement
● The "User-defined column" option was enabled when the connection was set up.

● The "WinCC Unified" tab is visible in Excel.

● A time series segment is available.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 951

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.

2. Select a segment.
The segment is extended by the area for the data source items.

3. Click "+".

4. Select the option "User-defined column".

5. Enter the name of the column under "name".

6. Click "Select" or press <ENTER>.
The column is included in the list "Selected data source items".

Note
Change selection criteria

After you have added a column, you can select a different option or a different filter and add
additional data source items.

7. Select a configuration for the user-defined column.

8. To remove one or more data source items from "Selected data source items", select them
and click "Delete".

9. Confirm with "OK".

The added columns are shown below the segment and added to the Excel table.

See also
Creating and editing configurations for user-defined columns (Page 956)

Working with configurations (Page 953)

15.4.3.6 Delete data source elements (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

● A segment with a data source element is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Expand a segment by clicking on it.
The area for adding and editing data source elements appears.

3. Move the mouse pointer over a data source element and click "Delete".

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
952 System Manual, 11/2019, Online help printout

15.4.3.7 Working with configurations (RT Uni)

Basics of configuration (RT Uni)
The configuration of a data source item defines how the values of the data source item are
calculated and displayed in a segment.

There are specific configuration settings for each data-source-item type.

Data source items used in time series segments use a different configuration than data source
items used in single-value segments.

You have the following options:

● Use a default configuration.
There is a default configuration for all types of data source items. Once added, data source
items use the default configuration of their type.
You can edit the default configurations.

● Use user-defined configuration.
You can create any number of user-defined configurations for all types of data source items.
You can select one of the user-defined configurations on the data source item.

● Overwrite a configuration locally.
You can overwrite the configuration selected at the data source item locally.

Create or edit configurations for an alarm (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click "New segment > Log alarm configuration".

4. Enter the name of the configuration under "Name".

5. To determine which alarm properties are displayed, activate the options for the desired
columns under "Columns".

6. To filter which logging alarms are displayed, define a filter query. The filter query can consist
of any number of conditions.
Follow these steps:

– Under "Filter query", click "+" or "Add new condition line".

– Select an alarm property, an operator, and enter a value.

– Optional: Use "+" or "Add new condition row" to create further conditions and select
whether the conditions are to be linked with a logical AND or OR.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 953

7. Activate the option "Use system colors" so that the alarms are highlighted with the same
colors as in the alarm control.

8. Confirm your entries with "OK".

Editing a configuration
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click a configuration for logging alarms.

4. Edit the configuration settings. You have the same options as when creating the
configuration.

5. Confirm your entries with "OK".

The changes are applied the next time you read in the runtime data.

See also
Select configuration (Page 957)

Calculation modes for data source elements (Page 960)

Create or edit configurations for logging tags (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click "New segment".

4. To create a configuration for logging tags in a time series segment, select the entry "Logging
tag configuration".
To create a configuration for logging tags in a single value segment, select the entry "Single
value configuration logging tag".

5. Set the settings for the configuration.

6. Confirm your entries with "OK".

Editing a configuration
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click a configuration for logging tags.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
954 System Manual, 11/2019, Online help printout

4. Edit the configuration settings.

5. Confirm your entries with "OK".

The changes are applied the next time you read in the runtime data.

Settings for time series segments
The following settings are available for logging tags in time series segments:

Setting Description
"Name" Enter the name of the configuration.
"Calculation mode" Select which data are to be written if there is no current value.
"Interval" Only for the calculation modes "Keep last value" and "Interpolate".
"Show quality code" Select whether the quality code is output with the value.

Settings for single value segments
The following settings are available for logging tags in single value segments:

Setting Description
"Name" Enter the name of the configuration.
"Time stamp" Determine the date and time for which the value is read.
"Calculation mode" Determine which data is to be written if there is no current value.
"Show captions" Define whether a header is displayed in the columns for the time stamp,

the data source item and the quality code.
"Show time stamp" Determine whether and where this information is displayed in the table.

The information is always in relation to the value cell."Show data source item"
"Show quality code"

Possible values for "Time stamp":

 Absolute time information Select a date and a time.
The information is absolute.

 Relative time information Select a reference time and a time interval.
The information is relative to the current date.

 Read time information from cell Applies the value of the cell currently highligh‐
ted in the Excel file.
Make sure that the cell supplies a valid time.

 Read time information from tag Applies the value of the set online tag.
Make sure that the tag supplies a valid time.
Possible data types:
● DateTime
● String
● Integer

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 955

Creating or editing configurations for online tags (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click "New segment > Single value configuration tag".

4. Set the settings for the configuration.

5. Confirm your entries with "OK".

Editing a configuration
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click a configuration for online tags.

4. Edit the configuration settings.

5. Confirm your entries with "OK".

The changes are applied the next time you read in the runtime data.

Settings for single value segments
The following settings are available for online tags in single value segments:

Setting Description
"Name" Enter the name of the configuration.
"Show captions" Select whether a header is displayed in the columns for the time stamp,

the data source item and the quality code.
"Show time stamp" Select whether the time stamp is output with the value.
"Show data source item" Select whether the quality code is output with the value.
"Show quality code" Select whether the quality code is output with the value.

Creating and editing configurations for user-defined columns (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
956 System Manual, 11/2019, Online help printout

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

3. Click "New segment > Configuration of user-defined column".

4. Enter the name of the configuration under "Name".

5. Under "Formula", select one of the following options:

– Enter a fixed string.
The string is transferred into each cell of the column.

– Enter an Excel formula.
The formula is copied into each cell of the user-defined column and adapted to the
respective row.
To prevent a part of the formula from being adjusted, place the character "$" in front of
it.
Example

Formula in configuration =B2+C2 =B$2+C2
Adapting the formula in the
report

in line 2 =B2+C2 =B2+C2
in line 3 =B3+C3 =B2+C3
in line 4 =B4+C4 =B2+C4

Note
No validity check

The formula is not tested for correctness during either input or dynamic adaptation.

6. Confirm your entries with "OK".

Select configuration (RT Uni)

Requirement
● The "WinCC Unified" tab is visible in Excel.

● A segment with a data source item is available.

● There is a user-defined configuration for the type of the data source item.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Select the segment.
The segment is extended by the area for the data source items.

3. Select the desired configuration from a data source item in the drop-down list.

4. Click "OK".

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 957

Result
The changes are applied the next time you read in the runtime data.

Define local configuration (RT Uni)
A local configuration is only available at the data source item where it was entered.

Requirement
● The "WinCC Unified" tab is visible in Excel.

● A segment with a data source item is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Select the segment.
The segment is extended by the area for the data source items.

3. Move the mouse over a data source item and click "Edit".
You create a local configuration that first adopts the values of the original configuration.

4. Enter a name for the local configuration.

5. Change the desired settings.

6. Confirm your entries with "OK".

Result
The changes are applied the next time you read in the runtime data.

Delete configuration (RT Uni)

Requirement
A configuration is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

2. Click "Data source item segment configuration".

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
958 System Manual, 11/2019, Online help printout

3. Move the mouse to a configuration.

Note
Default configurations cannot be deleted

You can edit default configurations but not delete them.

4. Click "Delete".

Result
● The configuration is deleted.

● Data source elements with this configuration obtain a local configuration with the same
settings.

15.4.3.8 Reading Runtime data in Excel (RT Uni)
Importing runtime data into Excel is only possible with an online connection.

Requirement
An online connection is established.

Reading in all segments
1. Select "WinCC Unified > Segments".

2. Click "Update all" .

Reading in individual segments
1. Select "WinCC Unified > Segments".

2. Click "Update" next to a segment in the list of segments.

Result
The segment or segments are run. Your data is read into Excel.

You can further process the read values with the known Excel functions, for example, by
outputting them as a diagram.

When you save the Excel file, your segments and the read out values are retained.

Diagnostics during the data query
Successful execution of the data query is documented by the add-in with a status message in
the table:

If an error occurs during the data query, a general error message is displayed under status. In
addition, detailed error messages are displayed in the "ErrorLog" worksheet.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 959

15.4.3.9 Calculation modes for data source elements (RT Uni)
If there is no current value for a data source item for a requested point in time, the following
calculation modes are available.

Calculation modes for tags
The following calculation modes are available for tags of a time series segment:

Calculation mode Description
Raw The actual value available for the specified period. If no data are available, no value is

output.
Keep last value: If no data are available, the last value is used.

With this mode you can also use values with an invalid quality code.
Interpolate The values are interpolated linearly for the specified time period.

With this mode you can only use values with a valid quality code.

The following calculation modes are available for tags of a single value segment:

Calculation mode Description
Interpolate The values are interpolated linearly for the specified time period.

With this mode you can only use values with a valid quality code.
Left If no data are available, the last value to the left of the specified time period is used.
Right If no data are available, the last value to the right of the specified time period is used.

15.4.4 Making general settings (RT Uni)

15.4.4.1 Changing the language (RT Uni)

Changing the add-in language
The Excel add-in automatically uses the same interface language as Excel. If you are using a
language for Excel that is not included in the Unified options, English is used as the default
language.

You can select the language for the contents of the report independently of the interface. To
select another language, the language must be configured in Runtime.

Selecting the language for the report
1. Select "WinCC Unified > Segments".

2. Click "Settings".

3. Under "Runtime language", select the language of the report content.

4. Under "Query language" you select which language data queries have that require user
input, e.g. filter definitions.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
960 System Manual, 11/2019, Online help printout

15.4.4.2 Adapting the work area (RT Uni)

Undocking and moving the add-in
To enlarge your workspace, you can undock the Excel add-in:

1. Open the drop-down list in the header of the add-in.

2. Click "Move".

3. Move the mouse pointer to the desired location and click the left mouse button.

4. To move the add-in again, keep the left mouse button pressed in the header of the add-in
and move the mouse.

5. To dock the add-in again, double-click in the header of the add-in.

Adapting the size of the add-in
1. Open the drop-down list in the header of the add-in.

2. Click "Size".

3. Move the mouse pointer to the left to make the add-in wider or to the right to make it
narrower.

4. Left-click when you have reached the desired size.

15.4.4.3 Zooming in the add-in (RT Uni)

Procedure
To zoom in or out of the display in the add-in, press <CTRL> and move the mouse wheel.

15.4.5 Undo and redo (RT Uni)
The Excel functions "Undo" and "Redo" are not available in the add-in.

Creating production reports (RT Uni)
15.4 Creating templates for production reports (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 961

15.5 Working with production logs in runtime (RT Uni)

15.5.1 The user interface of the "Reports" control (RT Uni)

Note

With version V16, the "Reports" control is supported only for Unified PC. If you use the control
under Unified Comfort Panel, an error message of the compiler is returned. Existing projects
under Unified Comfort Panel in which the control is configured must delete the control before
compilation to version V16.

Note
Automatic data transfer

Changes in the "Reports" control are saved automatically.

Layout
You create and manage report jobs in the "Reports" control. You also have access to the
reports generated by the report jobs.

The control has the following structure:

1 Tabs for configuring and managing reports, report jobs and job parameters
2 Toolbar

The buttons you see depends on the tab.
3 Work area

A list of elements available in the tab
4 Options to select elements
5 Detail area

Shows the properties of the selected element.
6 Status bar

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
962 System Manual, 11/2019, Online help printout

Tab

"Reports" tab
Here you can see which reports have already been generated. You can download reports or
delete them from the toolbar.

"Report jobs" tab
Here you create new report jobs, manage existing report jobs or start a report job manually.

"Job parameters" tab
Here you manage the parameters with which you configure the report jobs in the "Report jobs"
tab.

Toolbar
The following buttons are available in the toolbars of the tabs:

Icon Button
Delete Deletes the elements whose option is enabled in the work area.

● Add new
● Import

● Creates a new element.
● "Job parameters > Templates" tab: To import one or more templates to

runtime.
Run In the "Report jobs" tab.

Manually creates reports for the report jobs whose option is enabled in the
work area.

Export ● In the "Job parameters > Templates" tab:
To export templates

● In the "Reports" tab:
To download reports onto the client

Status bar
The button in the status bar displays general information sent by the reporting service, for
example on whether a report job has been executed.

15.5.2 Configuring task parameters (RT Uni)

Job parameters define the details of a report job.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 963

You configure the following parameters on the "Job parameters" tab:

● Templates

● Trigger

● Storage location
The storage location determines where the reports generated by the execution of the report
job are stored on the Runtime server.
Storage location is the default project directory.
The parameter is read-only.

You define the remaining job parameters while configuring a report job in the "Report jobs" tab.

See also
Import and export templates (Page 964)

Deleting templates (Page 965)

Configure trigger (Page 965)

15.5.2.1 Import and export templates (RT Uni)

Requirement
● The "Reports" control is placed on a screen of the project.

● The "Job parameters > Templates" tab is visible in the control.

● Import: You have access to the storage location of the templates.

● Export: Templates have been imported into the control.

Importing templates
1. Click "Add new" in the toolbar.

Alternative: In the work area, click "Add new".

2. Select one or more template files in the dialog box that opens.

3. Confirm your input.

Note
No validation

The templates are not validated during import.

4. Optional: In the work area, select one of the imported templates and enter a comment
describing the template in the detail area.

Exporting templates
1. In the work area, select the options next to the templates you want to export.

2. Click "Export" in the toolbar.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
964 System Manual, 11/2019, Online help printout

The templates are downloaded to the download folder or a user-defined directory according to
the device settings.

15.5.2.2 Deleting templates (RT Uni)

Requirement
● The "Reports" control is placed on a screen of the project.

● The "Job parameters > Templates" tab is visible in the control.

● Templates have been imported into the control.

Procedure
1. In the work area, select the options next to the templates you want to delete.

2. Click "Delete" in the toolbar.

Deleting used templates
The "In use" column shows whether the template is used by a report job.

If you delete a template that is used by a report job, the report job is marked as inconsistent and
no longer executed.

15.5.2.3 Configure trigger (RT Uni)

Requirement
● The "Reports" control is placed on a screen of the project.

● The "Job parameters > Trigger" tab is visible in the control.

Add trigger
1. In the work area of the tab, click "Add new".

A new trigger is created and displayed in the detail area.

2. Assign a unique name to the trigger.

3. Set the trigger type:

– "Tag trigger"
Report jobs with this trigger are executed when a configured value condition occurs for
a tag.

– "Serial trigger"
Report jobs with this trigger are executed in the user-defined period as standard.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 965

4. For triggers with "Variable trigger" trigger type:

– Click "Select tag".

– Click "Load".

– Select the required tag and click "OK".

– Set the condition and the condition value.
Example:

Set tag Type UInt32
Condition >
Condition value 100

The trigger will be initiated when the tag receives a value greater than 100.

5. For triggers with "Serial trigger" trigger type:

– Select the serial pattern.
The series pattern defines the occurrence and time at which the trigger is initiated.
Example: Weekly > Every 2 weeks > Fridays

– Select the series area.
The series range defines the period in which the trigger is initiated.

"Start" Specify the start date
"Time" Specify the time at which the trigger is initiated.
"End on" Specify the end date. The trigger will be executed for the last time on this

day.
"End after" Determine the number of dates after which the series ends.
"No end date" The series runs indefinitely.

Note
Generate report once

If a report is to be generated automatically exactly once at a fixed time, select the start date,
the time and set the value "1" under "End after".

6. Optional: Enter a comment for the trigger.

Delete trigger
Activate the option of the desired trigger in the work area of the tab and click "Delete" in the
toolbar.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
966 System Manual, 11/2019, Online help printout

Edit trigger
1. Activate the option of the desired trigger in the work area of the tab.

2. In the detail area, edit the settings of the trigger.

Note
No change of the trigger type

The trigger type can only be set when adding the trigger.

15.5.3 Configuring report tasks (RT Uni)

15.5.3.1 Creating a report job (RT Uni)
A report job is a job for generating reports. The configuration of a report job controls the details
of the generation.

N reports can be generated for each report job. Each time a report job is executed, a new report
is generated.

A report job is executed in the following cases:

● Automatic
This is the case if the trigger defined for the report job occurs.

● Manual
When you execute report jobs manually in the "Report jobs" tab.

Requirement
● The "Reports" control is configured on a screen of the project.

● Job parameters have been configured in the control:

– At least one template has been imported.

– To automatically execute a report job: Triggers are configured in the "Job parameters >
Trigger" tab.

● For a report job that generates reports as PDF files: During the reporting setup, the PDF add-
in was installed and the information required for PDF creation was provided.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.

2. Select "Add new" In the work area or click "Add new" in the toolbar.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 967

3. In the detail area, enter a name for the report job.

4. In the detail area, configure the parameters of the report job:

– Template
Select the template on which the report generated by the report job is based.

– Target name
Enter the name of the generated reports.
Use placeholders to dynamize the name and generate unique names.
The string LineA_{YYYYMMDD}_{HHMMSS}_{NNN}, for example, generates a name,
consisting of a descriptive part, a time stamp and a
counter: LineA_20181210_170641_667

– Storage location
Read-only: Project folder
The directory for the generated reports.

– Trigger
If the report job is only to be executed manually, select "Manual".
If the report job is to be executed automatically, select the required trigger.

– Target type
Define the target format of the report. You have the following options:

Format Requirement
Excel None
Excel and PDF Microsoft Office Excel 2016 (Build 16.0.6769 or higher) or Libre Office with a

PDF plug-in are installed on the Runtime serverPDF

– Comment
Describe the report job in more detail.

Result
The report job is saved automatically. When it is triggered, a report is generated.

List of placeholders
The following placeholders are available for defining report names

Place‐
holder

Description Example Area
Config‐
uration

Result

{N} Automatic enumera‐
tion

Rep_{N
}

Rep_1 1..9

{NN} Automatic enumera‐
tion

Rep_{N
N}

Rep_01 01..99

{NNN} Automatic enumera‐
tion

Rep_{N
NN}

Rep_00
1

001..999

{YYYY} Current year with 4
digits

Rep_{Y
YYY}

Rep_20
18

Valid year with 4 digits

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
968 System Manual, 11/2019, Online help printout

Place‐
holder

Description Example Area
Config‐
uration

Result

{YY} Current year with 2
digits

Rep_{Y
Y}

Rep_18 Valid year with 2 digits

{MM} Current month Rep_{M
M}

Rep_12 Valid month with 2 digits

{DD} Current day of the
month

Rep_{D
D}

Rep_10 Valid day with 2 digits

{HH} Current hour Rep_{H
H}

Rep_17 Valid hour with 2 digits

{MM} Current minute Rep_{M
M}

Rep_06 Valid minute with 2 digits

{SS} Current second Rep_{S
S}

Rep_41 Valid second with 2 digits

See also
Running a report job manually (Page 970)

Configure trigger (Page 965)

15.5.3.2 Managing report jobs (RT Uni)

Requirement
● The "Reports" control is configured on a screen of the project.

● Report jobs have been configured in the control.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.

2. To edit a report job, proceed as follows:

– Select the report job in the work area.

– In the detail area, edit the settings of the report job.
You have the same options as when creating a report job.

3. To delete report jobs, proceed as follows:

– In the work area, enable the options next to the report job.

– Click "Delete" in the toolbar.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 969

15.5.4 Running a report job manually (RT Uni)

Requirement
Report jobs have been configured in the "Reports" control.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.

2. In the work area, select the options next to the report jobs you want to run manually.

3. Click "Run" in the toolbar.

Result
The reports are generated. You can download them in the "Reports" tab.

15.5.5 Downloading reports (RT Uni)
You have the option of downloading the reports generated by the report jobs to your device.

Depending on which file formats have been set in the report job, you can download the report
either as an Excel file or as a PDF file.

Requirement
● Report jobs have been configured and executed in the "Reports" control.

Procedure
1. Select the "Reports" tab in the "Reports" control.

2. In the "Files" column, select the target format for the desired reports.

3. For each report that you want to download, select the options to the left of the report.

4. Click "Export" in the toolbar.

The reports are downloaded into the download directory of the browser.

You can further edit, distribute, or log the reports. If a report has the target format .xlsx, you can
add the report's data to a pivot table in Excel.

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
970 System Manual, 11/2019, Online help printout

15.5.6 Inconsistencies and error diagnostics (RT Uni)

Note

Inconsistent report jobs are not executed.

The templates available in the "Reports" control are not validated.

Display of inconsistencies and errors
Errors and inconsistencies are displayed as follows:

In the control If job parameters are affected.
Examples:
● No template is set for a report job.
● A tag that triggers a report job is deleted in the engineering system. The project

is reloaded into the device.
In the "Error log"
worksheet of the
report

Errors or inconsistencies affecting the content of the report.
Example: The report evaluates data from a tag that is no longer available in runtime.

As system alarm For errors and inconsistencies that do not affect job parameters or the contents of
the report.
Example: The ExecuteReport system function transfers a report job that does not
exist.

Job parameters
The following values lead to errors and inconsistencies:

Parameter Invalid values Default setting
"Name" Zero, empty or already assigned

name
"New report job"

"Template" Zero, empty or "None".
Name of a template that is not
imported

"None"

"Target name" Zero or empty "NewReportJob[NN]"

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 971

Creating production reports (RT Uni)
15.5 Working with production logs in runtime (RT Uni)

WinCC Engineering V16 - Runtime Unified
972 System Manual, 11/2019, Online help printout

Communicating with controllers 16
16.1 Basics of communication (RT Uni)

16.1.1 Communication between devices (RT Uni)

Communication
The data exchange between two devices is known as communication. The devices can be
interconnected directly or via a network. The networked devices in communication are referred
to as communication partners.

Data transferred between the communication partners is used for various purposes:

● Display processes

● Operate processes

● Output alarms

● Archive process values and alarms

● Document process values and alarms

● Administer process parameters and machine parameters

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 973

Communication partners in the automation system
An automation system consists of the following communication partners:

● PLC
The PLC controls a process by means of a user program.

● HMI device
You use the HMI device to operate and monitor the process.
Communication between the communication partners PLC and HMI device is described
below.
Additional information on other forms of communication is available in the online help of the
TIA Portal in the section "Editing devices & networks".
If the following requirements are met, the PLC and HMI device form an automation system:

– The PLC and HMI device are interconnected.

– The network between the PLC and HMI device is configured.

Network configuration
The basis for all types of communication is a network configuration.

● Every device in a network has a unique address.

● The devices carry out communication with consistent transmission characteristics.

Data exchange using tags
Process values such as temperatures and levels are transferred by tags in Runtime. Process
values are stored in the memory of one of the connected automation systems.

To access the process data with the HMI device, link the external HMI tags to the PLC tags.

For additional information on configuring tags, refer to "Configuring tags (Page 137)".

Communication via a uniform and vendor-neutral interface
With OPC (Openess Productivity Collaboration), WinCC has a uniform and manufacturer-
neutral software interface. This interface enables standardized data exchange between
industrial, office, and manufacturing applications.

For more detailed information, refer to the documentation for OPC.

See also
Supported PLCs (Page 975)

Configuring communication (Page 975)

Communicating with controllers
16.1 Basics of communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
974 System Manual, 11/2019, Online help printout

16.1.2 Supported PLCs (RT Uni)

Overview
Your HMI device can communicate with PLCs from the following lines of controllers:

SIMATIC line of controllers Supported communication channels Comment
SIMATIC S7-1500 PROFINET Parallel communication with multiple

PLCs is possible
SIMATIC S7-300/400 PROFINET Parallel communication with multiple

PLCs is possible

See also
Communication between devices (Page 973)

Configuring communication (Page 975)

16.1.3 Configuring communication (RT Uni)

Introduction
To set up an automation system, you work integrated in the TIA Portal. You configure the
connections in the "Devices & Networks" editor. You use the graphic and tabular network view
to set up the connections.

Requirement
● The network configuration is complete.

● HMI device and controller are available in the hardware catalog.

Note
Non-integrated configuration

If integrated configuration of the HMI connections is not possible, create non-integrated HMI
connections of the HMI device in the "Connections" editor.

Communicating with controllers
16.1 Basics of communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 975

Procedure
To set up an automation system, always follow the steps below:

1. Inserting devices
You drag a PLC and an HMI device from the hardware catalog to the network view of the
"Devices & networks" editor.

2. Configuring devices
Depending on the HMI device used, you add the required communication modules to your
operator panel.

3. Networking devices
In the networking step, you configure the physical connection of the devices.
To connect the devices to the network, you connect the interfaces of the devices with
communication capability using drag and drop.

4. Connecting devices
To set up a logical communication connection between the communication partners, you
create an HMI connection between the networked devices.
The tabular network overview supplements the graphical network view.
In addition, the created HMI connection is also visible in the "Connections" editor of the HMI
device where it can be configured.

See also
Networking HMI device and PLCs (Page 982)

Creating an integrated HMI connection (Page 983)

Creating a non-integrated HMI connection (Page 985)

Communication between devices (Page 973)

Supported PLCs (Page 975)

16.2 Networks and connections (RT Uni)

16.2.1 SIMATIC communication networks (RT Uni)

16.2.1.1 Communication networks (RT Uni)

Overview
Communication networks are a central component of an automation solutions. Industrial
networks fulfill special requirements:

● Coupling of automation systems as well as simple sensors, actuators, and PCs

● Correct transfer of information at the right time

Communicating with controllers
16.2 Networks and connections (RT Uni)

WinCC Engineering V16 - Runtime Unified
976 System Manual, 11/2019, Online help printout

● Robustness against electromagnetic interference, mechanical stresses and soiling

● Flexible adaptation to the production requirements

Industrial networks belong to the LANs (Local Area Networks) and allow communication within
a limited area.

Industrial networks fulfill the following communication functions:

● Process and field communication of the automation systems including sensors and
actuators

● Data communication between automation systems

● IT communication for integrating information technology

Overview of the networks
Your HMI device can communicate over the following networks:

● Industrial Ethernet
The industrial network standard for all levels

● PROFINET
The open Industrial Ethernet standard for automation

The figure below shows an example of a plant configuration:

HMI device in the plant network
You connect an HMI device in the network to SIMATIC S7 modules that have an integrated
interface of the corresponding communication channel.

You can connect multiple HMI devices to one SIMATIC S7 PLC and multiple SIMATIC S7 PLCs
to one HMI device. The maximum number of communication partners that you can connect to
an HMI device is dependent on the HMI device used.

Additional information is available in the documentation for the respective HMI device.

See also
PROFINET (Page 977)

16.2.1.2 PROFINET (RT Uni)

PROFINET
PROFINET is an open standard for industrial automation defined by IEEE 61158 and based on
Industrial Ethernet. PROFINET makes use of IT standards all the way to the field level and
enables plant-wide engineering.

With PROFINET, you realize high-performance automation solutions with stringent real-time
requirements.

Communicating with controllers
16.2 Networks and connections (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 977

Industrial Ethernet
Industrial Ethernet, which is based on IEEE 802.3, enables you to connect your automation
system to your office networks. Industrial Ethernet provides IT services that you can use to
access production data from the office environment.

See also
Communication networks (Page 976)

16.2.2 Connections (RT Uni)

16.2.2.1 HMI connection (RT Uni)

Definition
An HMI connection is a logical connection between an HMI device and a PLC. The HMI
connection enables communication between the communication partners.

 Unlike an S7 connection, the HMI connection is assigned to the HMI device.

Layout
The HMI connection defines the following within the plant network:

● Communication partners
The HMI connection identifies the devices in the plant configuration.

● Communication channel over which these communication partners communicate.
The HMI connection requires a configured network.

● Communication path
The HMI connection defines the interface parameters and the network addresses of the
communication partners.

Communicating with controllers
16.2 Networks and connections (RT Uni)

WinCC Engineering V16 - Runtime Unified
978 System Manual, 11/2019, Online help printout

HMI connection types
The options for addressing external tags depend on the type of HMI connection between
WinCC and the PLC in question. The TIA Portal supports the following types of connection:

● Integrated HMI connection
In the TIA Portal you configure integrated HMI connections between the devices in the
"Devices & Networks" editor. An integrated HMI connection enables an optimized data
exchange.

● Non-integrated HMI connection
In case of a non-integrated connection, the control program can be created outside the
WinCC project. You configure the PLC and the WinCC project independent of each other.
For configuration in WinCC, you only need to know the addresses used in the PLC and their
function.
You use a non-integrated HMI connection, for example, in the following application cases:

– You configure a WinCC project for external PLCs.

– You do not have access to the device configuration of a SIMATIC controller, for example,
because you are working without a STEP 7 license.

You configure non-integrated HMI connections for the HMI device in the "Connections"
editor of the WinCC project.

See also
Creating an integrated HMI connection (Page 983)

Creating a non-integrated HMI connection (Page 985)

Additional connection types (Page 979)

Setting up switch on/switch off of a connection in runtime (Page 986)

16.2.2.2 Additional connection types (RT Uni)

Overview
The following table provides an overview of the connection types that you can use in addition
to the HMI connection for communication to specific device types and areas of application.

Additional information on connection types is available in the online help of the TIA Portal in the
section "Editing devices & networks".

Connection type Description Application
S7 connections Connection type can be used

in all S7 devices
Data exchange between SIMATIC S7 stations

FDL connection Fieldbus Data Link
Security layer
Based on PROFIBUS

Communication with a partner that supports sending and receiving ac‐
cording to the SDA function (Send Data with Acknowledge), e.g. SIMATIC
S5 or PC.

Communicating with controllers
16.2 Networks and connections (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 979

Connection type Description Application
ISO transport
connection

Suitable for large amounts of
data
Based on ISO transport

Communication with a partner that supports sending and receiving data in
accordance with ISO transport, e.g. SIMATIC S5 or PC.

ISO-on-TCP
connection

Transmission Control Proto‐
col/Internet Protocol with the
extension RFC 1006
Corresponds to the standard
TCP/IP

Communication with a partner that supports sending and receiving data in
accordance with ISO-on-TCP, e.g. PC or external system.

TCP connection Transmission Control Proto‐
col/Internet Protocol
Corresponds to the standard
TCP/IP

Communication with a partner that supports sending and receiving data in
accordance with TCP/IP, e.g. PC or external system.

UDP connection User Datagram Protocol
Subnet: Industrial Ethernet

Unsecured transmission of related data fields between two nodes

E-mail connec‐
tion

The mail server with which all
e-mails sent by an IT-CP are
served is defined by the e-
mail connection.

For example, enables the sending of process data, for example, from data
blocks via e-mail using a CP with IT functionality (IT-CP);

PtP connection Pert-to-Peer
Communication between two
equal devices

Communication with external devices. e.g. a printer.

See also
HMI connection (Page 978)

16.3 Device configuration (RT Uni)

16.3.1 Layout of a PC-based HMI device (RT Uni)

Definition
A PC-based HMI device represents the plant process, shows the process values and enables
access to the plant controller via operator inputs.

The HMI device needs a WinCC Runtime software for process visualization and operation. The
device must have the corresponding interfaces and communication drivers to connect the HMI
device to the plant network and the PLC. The hardware basis of a PC-based HMI device is a
PC.

Communicating with controllers
16.3 Device configuration (RT Uni)

WinCC Engineering V16 - Runtime Unified
980 System Manual, 11/2019, Online help printout

Layout in the "Devices & Networks" editor
To configure a PC-based HMI device in the "Devices & Networks" editor, define multiple
components as HMI device:

● WinCC Runtime software
The WinCC Runtime software visualizes your WinCC Runtime project and enables process
operation. The WinCC Runtime software is available in the hardware catalog.

● PC station
The selected PC provides the operating system and the firmware as well as other hardware
equipment. Select a PC that meets your requirements.

● Communication processors
If the selected PC station does not have the necessary interfaces, install the required
communication processors in the PC station.

See also
Configuring HMI device (Page 981)

16.3.2 Configuring HMI device (RT Uni)

Introduction
A corresponding interface is required at both ends to connect the HMI device to the PLC.

Requirements
● The networks are configured.

● HMI device and PLC each support the communication channel of the respective network.

● The network view is open in the "Devices & Networks" editor.

Using WinCC Runtime to configure the configuration PC
1. Drag the WinCC Runtime from the hardware catalog to the work area.

A SIMATIC PC station with WinCC Runtime is shown as graphic in the network view.

2. Select a communication processor for the required interface type in the hardware catalog.

3. Drag the communication processor to the WinCC Runtime.

4. Drag the matching PLC from the hardware catalog to the work area.

Result
You have configured an HMI device with the matching interfaces. You can network the devices.

Communicating with controllers
16.3 Device configuration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 981

See also
Layout of a PC-based HMI device (Page 980)

16.4 Configuring an HMI connection (RT Uni)

16.4.1 Integrated HMI connection (RT Uni)

16.4.1.1 Networking HMI device and PLCs (RT Uni)

Introduction
You can network an HMI device with multiple PLCs. The networking of devices is depicted by
lines that are colored depending on the interface type.

The number of available interfaces and interface types depends on the device.

Requirement
● The "Devices & Networks" editor is open.

● The networks are configured.

● An HMI device is configured in the "Devices & Networks" editor.

● The PLC is configured in the "Devices & Networks" editor.

Procedure
To network an HMI device and a PLC, follow these steps:

1. Open the network view of the "Devices & Networks" editor.

2. Enable the "Networking" mode.

3. Use a drag-and-drop operation to interconnect the interfaces of the desired communication
network of the devices.
A connection is shown as graphic and table in the network view.
The tabular network overview supplements the graphical network view with the following
additional functions:

– You obtain detailed information on the structure and parameter settings of the devices.

– Using the "Subnet" column, you can connect communication-capable components to
subnets that have been created.

Communicating with controllers
16.4 Configuring an HMI connection (RT Uni)

WinCC Engineering V16 - Runtime Unified
982 System Manual, 11/2019, Online help printout

See also
Creating an integrated HMI connection (Page 983)

SIMATIC communication networks (Page 976)

16.4.1.2 Creating an integrated HMI connection (RT Uni)

Introduction
An integrated HMI connection connects an HMI device and a SIMATIC S7 PLC in your project.

Connection resources
Each connection requires connection resources for the end point or transition point on the
devices involved. The number of connection resources is device-specific.

If all connection resources of a communication partner are allocated, no new connection can be
configured.

Requirement
● The networks are configured.

● An HMI device and a SIMATIC PLC are configured and networked.

● The network view is open in the "Devices & Networks" editor.

Create an integrated HMI connection
1. Enable the "Connections" mode.

2. Select the "HMI connection" connection type.
The devices available for connection are highlighted in color.

3. Use a drag-and-drop operation to interconnect the interfaces of the desired communication
channel of the HMI device and PLC with each other.
The HMI connection is shown as graphic and table in the network view.
The HMI connection is shown in the tabular area of the editor in the "Connections" tab.

Note
Change local connection names

You can change the local name for the connection only in the tabular area of the editor.

4. Change the connection parameters in the tabular area according to the requirements of your
project.

Communicating with controllers
16.4 Configuring an HMI connection (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 983

Open the graphic view of the connection partners
1. Select the HMI connection.

2. Click "Highlight HMI connection" and select the HMI connection.
The connection path is shown in the Inspector window under "Properties > General >
General".

Change the connection path
1. Open the graphic view display of the connection partners.

2. Select a different interface in the Inspector window under "Properties > General > General
> Interface".
The existing connection parameters are highlighted as invalid.

3. To validate the connection parameters, click "Find connection path".
The connection parameters are reassigned and validated.

Create an integrated HMI connection in the "Tags" editor
1. Double-click "Tags" in the project tree below your HMI device.

The "Tags" editor opens.

2. Create an HMI tag.

3. Connect the HMI tag to an existing PLC tag of the matching data type.

4. The integrated HMI connection to the PLC is established automatically.

See also
HMI connection (Page 978)

Configuring PROFINET interfaces of a non-integrated HMI connection (Page 989)

Networking HMI device and PLCs (Page 982)

S7-1500 | Integrated HMI connection (Page 996)

S7-300/400 | Integrated HMI connection (Page 998)

16.4.2 Non-integrated HMI connection (RT Uni)

16.4.2.1 Configuring non-integrated connections (RT Uni)

Introduction
A non-integrated HMI connection requires a communication driver and a good understanding
of the address structure of the communication partner.

Communicating with controllers
16.4 Configuring an HMI connection (RT Uni)

WinCC Engineering V16 - Runtime Unified
984 System Manual, 11/2019, Online help printout

Addressing with non-integrated connections
In the case of a project with a non-integrated connection, you always configure a tag connection
exclusively with absolute addressing.

Select the valid data type yourself. If the address of a PLC tag changes in a project with a non-
integrated connection during the course of the project, you also have to make the change in
WinCC. The tag connection is not checked for validity in Runtime. An error message is not
displayed.

Communication drivers
A communication driver is a software component that establishes a connection between a PLC
and an HMI device. The communication driver thus enables the assignment of process values
to HMI tags.

Depending on the HMI device used and the connected communication partner, you select the
interface used as well as the profile and transmission speed.

Basic procedure
The following steps are required to work in your project in a non-integrated connection:

1. Create an HMI connection

2. Select communication drivers and interfaces

3. Address the communication partners

4. Assign the communication network

5. Close the connection

See also
Creating a non-integrated HMI connection (Page 985)

16.4.2.2 Creating a non-integrated HMI connection (RT Uni)

Introduction
A non-integrated connection connects an HMI device to a PLC that is configured outside your
project. You create the non-integrated HMI connection in the "Connections" editor of the HMI
device.

Requirements
● A project is open.

● An HMI device has been created.

Communicating with controllers
16.4 Configuring an HMI connection (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 985

Procedure
To create a non-integrated connection, follow these steps:

1. Double-click "Connections" in the project tree below your HMI device.
The "Connections" editor opens.
Existing integrated connections are identified with .
Existing non-integrated connections are identified with .

2. Create a new connection with "Add".

3. Select the communication driver. Use the communication driver of the required family of
PLCs.

4. Select the required interface of the HMI device in the graphic area of the editor under
"Parameters > [HMI device type] > Interface".
The number of available interfaces on the HMI device depends on the communication driver.

5. Change the connection parameters according to the requirements of your project.

See also
HMI connection (Page 978)

Configuring non-integrated connections (Page 984)

S7-1500 | Non-integrated HMI connection (Page 997)

S7-300/400 | Non-integrated HMI connection (Page 999)

16.4.3 Setting up switch on/switch off of a connection in runtime (RT Uni)

Introduction
If a connection between an HMI device and a PLC is not always required, terminate the
connection in Runtime and establish it again when necessary. This reduces the load on the
communication channel.

Configure a Runtime script for enabling/disabling a connection in runtime.

Note
Alarm system and system diagnostics

After switching off the connection to a PLC, the alarms from this PLC are still being displayed.
The system diagnostics for this PLC is also available.

Requirement
● An HMI connection is configured.

● A button is configured in the HMI device of the HMI connection.

● The "Screens" editor is open.

Communicating with controllers
16.4 Configuring an HMI connection (RT Uni)

WinCC Engineering V16 - Runtime Unified
986 System Manual, 11/2019, Online help printout

Procedure
To configure enabling/disabling of a connection in Runtime, follow these steps:

1. Select a button.

2. Select the event that is to trigger enabling/disabling in runtime under "Properties > Events"
in the Inspector window.

3. Program a script to the event which enables or disables the connection via the "Set
Connection mode" snippet.

Result
Pressing this button triggers enabling/disabling of the connection in Runtime.

See also
Runtime scripting (Page 355)

HMI connection (Page 978)

16.5 Configuring interfaces (RT Uni)

16.5.1 PLCs and Interfaces (RT Uni)

Introduction
A PLC has various types of interfaces.

Interfaces for integrated HMI connections
Your HMI device can communicate with PLCs from the following lines of controllers over the
shown subnets and interfaces:

SIMATIC line of controllers Subnet Interface types of the PLC
SIMATIC S7-1500 PN/IE PROFINET
SIMATIC S7-300/400 PN/IE PROFINET

Communicating with controllers
16.5 Configuring interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 987

Interfaces for non-integrated HMI connections
Your HMI device can communicate over the following communication drivers and interfaces:

SIMATIC line of controllers Communication drivers Interface types on the HMI device

SIMATIC S7-1500 SIMATIC S7-1500 Industrial Ethernet
SIMATIC S7-300/400 SIMATIC S7 300/400 Industrial Ethernet

See also
Requirements for interface configuration (Page 988)

16.5.2 Requirements for interface configuration (RT Uni)
Before you configure the interfaces of an HMI connection, observe the following requirements:

● The configuration of the devices and networks is complete.

● You have access to the data of the network configuration.

● The HMI connection is created.

See also
PLCs and Interfaces (Page 987)

Configuring PROFINET interfaces of a non-integrated HMI connection (Page 989)

16.5.3 PROFINET (RT Uni)

16.5.3.1 PROFINET interfaces (RT Uni)

Introduction
You enter the IP address of the communication partner at the PROFINET interface. The data
you need for this is available in the network configuration of your plant.

PROFINET parameter assignment for integrated HMI connections
You configure the following communication functions depending on the line of controllers:

SIMATIC line of controllers Function
SIMATIC S7-1500 Parallel communication with multiple PLCs

Set IP address in the project or on the device

Communicating with controllers
16.5 Configuring interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
988 System Manual, 11/2019, Online help printout

SIMATIC line of controllers Function
SIMATIC S7-300/400 Parallel communication with multiple PLCs

Set IP address in the project or on the device

PROFINET parameter assignment for non-integrated HMI connections
The following parameters are required to create a non-integrated HMI connection:

● IP address of both communication partners

● Access point for local or network access of the HMI device

You configure the following communication functions depending on the line of controllers:

SIMATIC line of controllers Function
SIMATIC S7-1500 Parallel communication with multiple PLCs
SIMATIC S7-300/400 Parallel communication with multiple PLCs

Slot and rack
Cyclic mode

See also
Configuring PROFINET interfaces of a non-integrated HMI connection (Page 989)

Interface and communication parameters (Page 996)

16.5.3.2 Configuring PROFINET interfaces of a non-integrated HMI connection (RT Uni)

Introduction
The network and device configuration for Industrial Ethernet and the address structure of the
connection partners are described in the online help of the TIA Portal under "Configuring
devices and networks".

CAUTION

Communication via Ethernet

In Ethernet-based communication, the end user is responsible for the security of his data
network.

Targeted attacks can overload the device and interfere with proper functioning.

When setting parameters for the PROFINET interface, you have the following options:

● Set the IP address in the TIA Portal project.

● Set the IP address on the device.

Communicating with controllers
16.5 Configuring interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 989

Requirements
● A network is configured.

● An HMI device and at least one PLC are configured.

● The communication partners are networked over a PROFINET subnet in the "Devices &
Networks" editor.

● The integrated HMI connection between the communication partners is created.

● The network view is open in the "Devices & Networks" editor.

Configure the PROFINET interface of the PLC
1. Click the green PROFINET interface in the PLC.

2. Select the Ethernet addresses for the interface in the Inspector window under "Properties >
General".
The PROFINET interface parameters are displayed in the Inspector window.

3. Configure the IP address according to the data from the network configuration of the plant.
If you set the IP address directly at the device, select the option "IP address is set directly
at the device" instead.

4. If you want to use your own PROFINET device name for the PLC, enable the option
"PROFINET device name is set directly at the device".

Configure the PROFINET interface of the HMI device
1. Click the green PROFINET interface of your HMI device.

2. Select the Ethernet addresses for the interface in the Inspector window under "Properties >
General".
The PROFINET interface parameters are displayed in the Inspector window.

3. Configure the IP address according to the data from the network configuration of the plant.
When you transfer the WinCC project to the HMI device, this IP address is set up directly in
the HMI device.
If you want to fetch the IP address using a different path, enable the option "Use IP protocol".

4. To assign the PROFINET device name for the PLC yourself, deselect the option "Generate
PROFINET device name automatically".

Result
You have configured the PROFINET interfaces of an HMI connection. The HMI device and the
PLC can communicate in Runtime.

Connection resources for HMI connections
HMI connections that are created over the integrated PROFINET interface on the HMI device,
one connection resource is allocated for the endpoint per HMI connection.

One connection resource is also required for the PLC.

Communicating with controllers
16.5 Configuring interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
990 System Manual, 11/2019, Online help printout

See also
PROFINET interfaces (Page 988)

Requirements for interface configuration (Page 988)

Interface and communication parameters (Page 996)

16.6 Configuring communication (RT Uni)

16.6.1 Communicating with SIMATIC S7-1500 (RT Uni)

16.6.1.1 Communication with SIMATIC S7-1500 (RT Uni)

Overview
You configure the following communication channel for communication between the HMI
device and the SIMATIC S7-1500 controller.

● PROFINET

See also
Valid data types for SIMATIC S7-1500 (Page 991)

Symbolic addressing (Page 992)

16.6.1.2 Valid data types for SIMATIC S7-1500 (RT Uni)

Valid data types for connections with SIMATIC S7-1500
The table below lists the data types that can be used when configuring tags.

Data type Length
BOOL 1 bit
BYTE 1 byte
CHAR 1 byte
DATE 2 bytes
DATE_AND_TIME 8 bytes
DINT 4 bytes
DTL 12 bytes
DWORD 4 bytes
INT 2 bytes
LDT 8 bytes

Communicating with controllers
16.6 Configuring communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 991

Data type Length
LINT 8 bytes
LREAL 8 bytes
LTIME 8 bytes
LTIME_OF_DAY 8 bytes
REAL 4 bytes
S5TIME 2 bytes
SINT 1 byte
STRING (2+n) bytes, n = 0 to 254
TIME 4 bytes
TIME_OF_DAY 4 bytes
UDINT 4 bytes
UINT 2 bytes
ULINT 8 bytes
USINT 1 byte
WCHAR 2 bytes
WORD 2 bytes
WSTRING (2+n) 2 bytes, n = 0 to 254

See also
Communication with SIMATIC S7-1500 (Page 991)

Symbolic addressing (Page 992)

16.6.1.3 Symbolic addressing (RT Uni)

Introduction
Data is exchanged between HMI device and PLC via tags.

Depending on the addressed data blocks, you address these tags absolute or symbolic in the
PLC.

● Symbolic addressing
For symbolic addressing, a validity check of the tag connection is performed in runtime. If an
address is changed in the PLC, the change is registered and an error message is issued.
For symbolic addressing, you select the PLC tag via its name and connect it to an external
HMI tag. The valid data type for the external HMI tag is automatically selected by the system.

● Absolute addressing
The linking of tags is not checked in runtime. You select the valid data type of the tags. If the
tag address changes in the PLC, compile and load the HMI device again so that the change
is registered in runtime.

Data blocks and symbolic access
Data blocks with optimized access support only symbolic addressing.

Communicating with controllers
16.6 Configuring communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
992 System Manual, 11/2019, Online help printout

During the symbolic addressing of a data block, the address of an element in the data block is
dynamically assigned and is automatically adopted in the HMI tag in the event of a change.

Neither the connected data block nor the WinCC project must be compiled.

For symbolic addressing of elements in a data block, you only need to recompile and reload the
WinCC project in case of the following changes:

● Name or data type of the connected data block element or of the global PLC tag

● Name or data type of a higher-level structure node of the connected element in the data
block element or global PLC tag

● Number of the connected data block

HMI connections and symbolic access
With symbolic addressing of tags, you create an integrated HMI connection:

● Integrated connection
You address the tags symbolically as well as absolutely over an integrated connection.

● Non-integrated connection
You address the tags only absolutely over a non-integrated connection.
A non-integrated connection is available for all supported PLCs.

Disabling symbolic access
In WinCC, symbolic addressing is the default method.

To change the default setting, follow these steps:

1. Select "Options > Settings > Visualization > HMI tags" in the menu.

2. Activate the "Symbolic access" option.

See also
Communication with SIMATIC S7-1500 (Page 991)

Valid data types for SIMATIC S7-1500 (Page 991)

16.6.2 Communicating with SIMATIC S7-300 / S7-400 (RT Uni)

16.6.2.1 Communication with SIMATIC S7-300 / S7-400 (RT Uni)

Introduction
The S7-300 and S7-400 PLCs are referred to jointly as SIMATIC S7-300/400.

Communicating with controllers
16.6 Configuring communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 993

You configure the following communication channel for communication between an HMI device
and the SIMATIC S7-300/400 controller.

● PROFINET

See also
Valid data types for SIMATIC S7-300 / S7-400 (Page 994)

Cyclic operation (Page 995)

16.6.2.2 Valid data types for SIMATIC S7-300 / S7-400 (RT Uni)

Permitted data types for connections with SIMATIC S7-300/400
The table lists the data types that can be used when configuring tags.

Data type Length
BOOL 1-bit
BYTE 1 byte
CHAR 1 byte
DATE 2 bytes
DATE_AND_TIME 8 bytes
DINT 4 bytes
DWORD 4 bytes
INT 2 bytes
REAL 4 bytes
S5TIME 2 bytes
STRING (2+n) bytes, n = 0 to 254
TIME 4 bytes
TIME_OF_DAY, TOD 4 bytes
WORD 2 bytes

See also
Communication with SIMATIC S7-300 / S7-400 (Page 993)

Cyclic operation (Page 995)

Communicating with controllers
16.6 Configuring communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
994 System Manual, 11/2019, Online help printout

16.6.2.3 Cyclic operation (RT Uni)

Basics of cyclic operation (RT Uni)

Operating principle of cyclic operation
When the "Cyclic operation" option is enabled, the HMI device sends a message frame to the
CPU at the beginning of communication indicating that certain tags are required on a recurring
basis.

The CPU then always transmits the data at the same cyclic interval. This saves the HMI device
from having to output new requests for the data.

When cyclic operation is disabled, the HMI device sends a request whenever information is
required.

Advantages und properties of cyclic operation
The list below shows the advantages und properties of "Cyclic operation" option:

● Cyclic operation reduces data transmission load at the HMI device. The PLC resources are
used to relieve load on the HMI device.

● The PLC only supports a certain number of cyclic services. The HMI device handles the
operation if the PLC cannot provide any further resources for cyclic services.

● The HMI device generates the cycle if the PLC does not support cyclic operation.

● Screen tags are not integrated into cyclic operation.

● Cyclic operation is only set up at the restart of Runtime.

● The HMI device transfers several jobs to the PLC if cyclic operation is enabled, depending
on the PLC.

● The HMI device only transfers one job to the PLC if cyclic operation is disabled.

See also
Configuring cyclic operation (Page 995)

Configuring cyclic operation (RT Uni)

Introduction
You configure cyclic operation for an HMI connection at an HMI connection in the
"Connections" editor of the HMI device.

Communicating with controllers
16.6 Configuring communication (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 995

Requirement
● The devices and networks are configured.

● An HMI connection is created in the "Connections" editor.

Procedure
To enable an HMI connection for cyclic operation, follow these steps:

1. Double-click "Connections" in the project tree below your HMI device.
The "Connections" editor opens.

2. Select the desired HMI connection.
The parameters of the connection are displayed in the graphic overview.

3. Activate "PLC > Cyclic operation".

Result
The PLC then always transmits the required data at the same cyclic interval.

See also
Basics of cyclic operation (Page 995)

16.7 Interface and communication parameters (RT Uni)

16.7.1 S7-1500 (RT Uni)

16.7.1.1 S7-1500 | Integrated HMI connection (RT Uni)

PROFINET interface parameters (RT Uni)
The following table shows the interface parameters of an integrated HMI connection:

Table 16-1 PROFINET parameters of the HMI device

Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
MAC address Specifies the MAC address for the connection type "ISO connection".

This option is only available when the "Use ISO protocol" option is selected.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.

Communicating with controllers
16.7 Interface and communication parameters (RT Uni)

WinCC Engineering V16 - Runtime Unified
996 System Manual, 11/2019, Online help printout

Parameters Description
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

Table 16-2 PROFINET parameters of the PLC

Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

PROFINET device
name

Shows the PROFINET device name or specifies it.
This property is only available when the "Generate PROFINET device name automatically" option
is deactivated.

Converted name Shows the name that is automatically generated from the PROFINET device name and satisfies the
DNS conventions.

Device number Shows the device number by which an IO device can be identified.

16.7.1.2 S7-1500 | Non-integrated HMI connection (RT Uni)

PROFINET interface parameters (RT Uni)
The following table shows the interface parameters of a non-integrated HMI connection:

Table 16-3 PROFINET parameters of the HMI device

Parameters Description
Interface Specifies the communication channel.
Address Specifies the IP address of the device.
Access point Specifies the device name through which the

communication partner can be reached.

Communicating with controllers
16.7 Interface and communication parameters (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 997

Table 16-4 PROFINET parameters of the PLC

Parameters Description
Address Specifies the IP address of the device.

16.7.2 S7-300/400 (RT Uni)

16.7.2.1 S7-300/400 | Integrated HMI connection (RT Uni)

PROFINET interface parameters (RT Uni)
The following table shows the interface parameters of an integrated HMI connection:

Table 16-5 PROFINET parameters of the HMI device

Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
MAC address Specifies the MAC address for the connection type "ISO connection".

This option is only available when the "Use ISO protocol" option is selected.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

Table 16-6 PROFINET parameters of the PLC

Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

Communicating with controllers
16.7 Interface and communication parameters (RT Uni)

WinCC Engineering V16 - Runtime Unified
998 System Manual, 11/2019, Online help printout

Parameters Description
PROFINET device
name

Shows the PROFINET device name or specifies it.
This property is only available when the "Generate PROFINET device name automatically" option
is deactivated.

Converted name Shows the name that is automatically generated from the PROFINET device name and satisfies the
DNS conventions.

Device number Shows the device number by which an IO device can be identified.

16.7.2.2 S7-300/400 | Non-integrated HMI connection (RT Uni)

PROFINET interface parameters (RT Uni)
The following table shows the interface parameters of a non-integrated HMI connection:

Table 16-7 PROFINET parameters of the HMI device

Parameters Description
Interface Specifies the communication channel.
Address Specifies the IP address of the device.
Access point Specifies the device name through which the

communication partner can be reached.

Table 16-8 PROFINET parameters of the PLC

Parameters Description
Address Specifies the IP address of the device.
Expansion slot Specifies the number of the expansion slot of the PLC to be addressed.
Rack Specifies the rack number of the PLC to be addressed.
Cyclic operation Enables/disables cyclic operation.

Communicating with controllers
16.7 Interface and communication parameters (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 999

16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

16.8.1 Troubleshooting for SIMATIC S7-300/400 (RT Uni)

16.8.1.1 Procedure for the localization of errors (RT Uni)

S7 channel rectification in case of connection problems (RT Uni)

Introduction
If you encounter problems during the commissioning of WinCC S7, the following description
provides initial information. The description is for error localization and error correction and
does not replace the WinCC description.

Follow the following instructions to locate the error.

● Create a new project

● Select the correct communication subsystem

● Select the correct channel unit

● Configure the correct AS network address

● Check the system bus

● Check AS with STEP 7

● S7 log function

● Special settings of the S7 channel

● Error codes for connection fault

● API error texts

Error code
The most important error codes are listed in the section "Error codes for connection fault and
errors in functions". If an error occurs with an error code that is not in the table, please call the
WinCC hotline.

For error codes for a connection fault (SIMATIC S7-300/400) see under numbers 0112 to D406.

You will find errors which occur during editing of channel functions with the display "Error xx
occurred in "function name" function!" under the numbers 1 to 100.

See also
Creating a new project (Page 1001)

Selection of the correct communication subsystem (Page 1001)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1000 System Manual, 11/2019, Online help printout

Selection of the correct channel unit (Page 1002)

Configure the correct AS network address (Page 1003)

Checking the bus system (Page 1003)

Checking the AS with STEP 7 (Page 1004)

S7 log function (Page 1004)

Creating a new project (RT Uni)
If you communicate in your current project with several automation systems, create a new
project with a single connection to a automation system. The errors can be easier localized
here.

See also
S7 channel rectification in case of connection problems (Page 1000)

Selection of the correct communication subsystem (Page 1001)

Selection of the correct channel unit (Page 1002)

Configure the correct AS network address (Page 1003)

Checking the bus system (Page 1003)

Checking the AS with STEP 7 (Page 1004)

S7 log function (Page 1004)

Selection of the correct communication subsystem (RT Uni)
The S7 channel communicates via the communication subsystem SAPI-S7 or S7DOS.

SAPI-S7

SAPI-S7 is a single product and is used for the communication to the S7 automation systems.
SAPI-S7 products are adjusted to the corresponding CP. The correct SAPI-S7 product has to
be installed to the available CP during communication via SAPI-S7. The S7 channel uses the
tag services for reading and writing of tags from SAPI-S7.

For more complex functions, e.g. PMC error message processing or the BSEND/BRCV
function, activate the communication subsystem S7DOS.

S7DOS

S7DOS is a part of STEP 7 and is also used for the communication to S7. In addition to the read
and write jobs, the more complex PMC services are also activated during communication via
S7DOS. For clients who have no STEP 7 installed on the WinCC target machine, S7DOS is
also on the WinCC-DVD delivered. For installation of S7DOS see WinCC setup description.

For the single communication subsystems, limitations for supported communication cards are
possible. For information, refer to your current product information.

The S7 channel uses the following method to recognize which communication subsystem will
be used by the S7 channel for communication: It first attempts to load the S7DOS
communication subsystem. If S7DOS cannot be loaded, it attempts to load SAPI-S7. The error

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1001

message "Error during loading of S7 communication driver" will be displayed if SAPI-S7 cannot
be loaded either.

See also
S7 channel rectification in case of connection problems (Page 1000)

Creating a new project (Page 1001)

Selection of the correct channel unit (Page 1002)

Configure the correct AS network address (Page 1003)

Checking the bus system (Page 1003)

Checking the AS with STEP 7 (Page 1004)

S7 log function (Page 1004)

Selection of the correct channel unit (RT Uni)
The selection of the channel unit depends on the communication card in your PC. A specific
type of communication card is assigned to each channel unit.

Communication with the S7 takes place via so-called 'Logical devices'. The name of a logical
device is assigned during installation of the communication card. In the case of some
installations you can assign the name also via "Busprofile".

Depending on the installed communication card, the following defaults are standard:

● "SIMATIC NET PROFIBUS" communication cards: e.g., CP5611, CP5613, CP5623

● "SIMATIC Industrial Ethernet" communication cards: CP_H1_1:

● Slot PLCs: SLOT_PLC

● TCP/IP communication cards: CP-TCPIP

The S7 communication driver differentiates accordingly the following units:

● PROFIBUS communication via the SIMATIC NET PROFIBUS cards (CP5623), which
means logical device: CP_L2_1:

● Industrial Ethernet for communication via SIMATIC Industrial Ethernet cards (e.g., CP1623
or CP1628); which means logical device: CP_H1_1:

● Slot PLC for communication via a Slot PLC;i.e. logical device: SLOT_PLC

● TCP/IP for communication via the TCP/IP protocol; i.e. logical device: CP-TCPIP

During installation of the communication drivers the physical device is assigned via which the
communication takes place.

You can change the default "logical device names" of the channel unit via the unit-specific
setting of the system parameter.

See also
S7 channel rectification in case of connection problems (Page 1000)

Creating a new project (Page 1001)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1002 System Manual, 11/2019, Online help printout

Selection of the correct communication subsystem (Page 1001)

Configure the correct AS network address (Page 1003)

Checking the bus system (Page 1003)

Checking the AS with STEP 7 (Page 1004)

S7 log function (Page 1004)

Configure the correct AS network address (RT Uni)
For example, the TSAPs have a fixed setting for the S7 network address. This does not usually
need to be configured. The set address as well as the rack and the slot number still have to be
configured.

Check the configured network address with the AS configured network address.

The rack number and the slot number have only to be specified, if the communication takes
place on AS side via a communication processor and not via the MPI interface installed on the
CPU. In this case specify the rack and the slot number of the CPU that is to be addressed. If MPI
interface installed in the CPU is used, enter the value 0 for rack and slot number.

See also
S7 channel rectification in case of connection problems (Page 1000)

Creating a new project (Page 1001)

Selection of the correct communication subsystem (Page 1001)

Selection of the correct channel unit (Page 1002)

Checking the bus system (Page 1003)

Checking the AS with STEP 7 (Page 1004)

S7 log function (Page 1004)

Checking the bus system (RT Uni)
Check the correct setup of the bus system.

SIMATIC NET PROFIBUS
● Check the network for communication stations with the same station address.

● Check if the highest station address (HSA) is correctly set for all communication stations.

● Check if an enabled device, e.g. an AS, is connected at the start and the end of the
PROFIBUS.

● Check if the terminating resistors are correctly enabled or disabled. The terminating
resistors may only be enabled at the first and the last bus terminal.

● If you have an MPI cable, connect the AS directly to your MPI card or your CP5623.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1003

SIMATIC Industrial Ethernet
● Check the network for communication stations with the same Ethernet addresses.

See also
S7 channel rectification in case of connection problems (Page 1000)

Creating a new project (Page 1001)

Selection of the correct communication subsystem (Page 1001)

Selection of the correct channel unit (Page 1002)

Configure the correct AS network address (Page 1003)

Checking the AS with STEP 7 (Page 1004)

S7 log function (Page 1004)

Checking the AS with STEP 7 (RT Uni)
If you have installed STEP 7, check if you can access the automation system with STEP 7. If
problems occur, follow the STEP 7 instructions for error correction.

See also
S7 channel rectification in case of connection problems (Page 1000)

Creating a new project (Page 1001)

Selection of the correct communication subsystem (Page 1001)

Selection of the correct channel unit (Page 1002)

Configure the correct AS network address (Page 1003)

Checking the bus system (Page 1003)

S7 log function (Page 1004)

S7 log function (RT Uni)
The S7 channel has a logbook function. You can use this file to write the most important status
changes and errors to an ASCII file on an external memory. These messages can be used to
analyze a communication problem.

The individual messages are described below:

Start and end messages

● S7 channel DLL started

● S7 channel DLL terminated

Unit activated or deactivated

● S7 channel unit "unitname" activated

● S7 channel unit "unitname" deactivated

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1004 System Manual, 11/2019, Online help printout

Version information

● S7DOS version: Version string

● S7CHN version: Version string

Communication error

● Cannot connect to "connectionname": Errorcode 0xhhhh ffff

The message is displayed if communication to the corresponding automation device cannot be
established immediately after WinCC is activated. If the connection was established correctly
at least once, the following message is displayed if errors occur:

● Connectionerror nnn " connectionname": Errorcode 0xhhhh ffff

 Description
nnn Number of connection terminations for this connection
Connectionname Connection name
hhhh 1. Error display in hexa S7DOS / SAPI-S7
ffff 2. Error display in hexa S7DOS / SAPI-S7

Channel API error

● Channel API error: Errorstring

The error string 'errorstring' is passed by the channel to the WinCC Explorer. Depending on the
significance of the error, the error string may or may not be displayed in a notice box. For a
description of the error strings, please see the API Error Text.

● Max. count of API errors reached - API logbook deactivated

Errors on the API interface can cyclically occur depending on the error and function. To avoid
filling the logbook file with these error messages, a maximum of 32 messages are output for an
API error.

General channel error messages

● Cannot write storage data

● Cannot read storage data / use default data

● Storage data illegal or destroyed / use default data

● No storage data / use default data

Initialization messages

● Devicename in unit "unitname" changed from "old devicename" to "new devicename"

Message when maximum file length is exceeded

● Max. logbooksize reached - Logbook deactivated

In order to avoid filling of the data medium only with the logbook file, the logbook output has a
length monitoring. As soon as the specified length is reached, the logbook is deactivated. The
message is only output, when message output causes the max. file length to be exceeded. No
message is output, if the file length is changed with an editor or the maximum file length is
reduced in the INI file.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1005

The output is not time critical, because the logbook functions are called only during activate/
deactivate and in the case of problems of the communication process.

Example of a logbook protocol:
17.09.1996/15:16:18.33
0

S7 channel DLL started

17.09.1996/15:18:05.38
0

S7DOS version: @(#)TIS-Block Library DLL Version X3.060-DEB-BASIS

17.09.1996/15:18:05.49
0

S7CHN version: V2.0 / Sep 16 1996 / 18:42:48

17.09.1996/15:18:05.60
0

S7 channel unit "S7-MPI" activated

17.09.1996/15:36:48.49
0

Cannot connect to "MPI_CPU_3": Errorcode 0xFFDF 4107

17.09.1996/15:43:29.06
0

Connectionerror 1 "MPI_CPU_4": Errorcode 0xFFDF 410E

17.09.1996/16:43:44.83
0

Connectionerror 2 "MPI_CPU_4": Errorcode 0xFFDF 410E

17.09.1996/17:45:29.96
0

Connectionerror 3 "MPI_CPU_4": Errorcode 0xFFDF 410E

17.09.1996/18:54:02.63
0

Connectionerror 4 "MPI_CPU_4": Errorcode 0xFFDF 410E

17.09.1996/22:56:47.68
0

S7 channel unit "S7-MPI" deactivated

17.09.1996/22:56:56.74
0

S7 channel DLL terminated

The logbook texts are not language-dependent with the exception of "Channel API Errorstring"
and are always displayed in English.

The S7 logbook is enabled by default. The logbook is stored in WinCC diagnose folder.

To settings and assigning parameters of the logbook function, see "Setup of an S7 logbook.

See also
S7 channel rectification in case of connection problems (Page 1000)

Creating a new project (Page 1001)

Selection of the correct communication subsystem (Page 1001)

Selection of the correct channel unit (Page 1002)

Configure the correct AS network address (Page 1003)

Checking the bus system (Page 1003)

Checking the AS with STEP 7 (Page 1004)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1006 System Manual, 11/2019, Online help printout

Special settings of the S7 channel (RT Uni)

Special settings of the S7 channel (RT Uni)
Edit with an ASCII-Editor, e. g. NOTEPAD.EXE, a file with name S7CHN.INI. Via the entries in
the INI file you can modify the properties of the S7 channel. The S7CHN.INI file is expected in
the directory which also contains the S7 communication driver "SIMATIC S7-300/400.CHN". If
no file S7CHN.INI is found, the properties are not modified. The file is set to Windows INI file
conventions.

[section]

key=string

In the following the relevant parameters for modification of S7 channel are described. You just
have to apply the lines in the INI file which create the setting you want. Comply with the
specified examples:

● Change the default of the logical device name of the channel unit

● Change CP type of a channel unit

● Setup S7 logbook

Additional specific settings:

● Modify channel characteristics via the S7chn.ini file

See also
Change the default of the logical device name of a channel unit (Page 1007)

Changing the CP type of a channel unit (Page 1008)

Setup of an S7 logbook (Page 1009)

s7chn.ini (Page 1010)

Change the default of the logical device name of a channel unit (RT Uni)
[Unit:unitname]

CpName = name
Name

Logical device name of the communication card (for example: CP_L2_1:).

Example: You want to set the channel unit "PROFIBUS" to a new logical device name
"mein_cp".

 [Unit:PROFIBUS]

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1007

CpName = mein_cp

Note

The modification via INI file is only for setup of the default. The setting of the logical device name
takes place via the unit specific system parameter setting.

See also
Special settings of the S7 channel (Page 1007)

Changing the CP type of a channel unit (Page 1008)

Setup of an S7 logbook (Page 1009)

s7chn.ini (Page 1010)

Changing the CP type of a channel unit (RT Uni)
[Unit:unitname]

CpName = name
CpType = type
Name

Logical device name of the communication card (for example: CP_L2_1:).

Type

Type of the communication card (for example: L2). The following settings are available:

● MPI

● L2

● H1

Example: You want to set the channel unit "PROFIBUS" to a new logical device name "cp_neu".
You want to activate the connection configuration mask to configure the AS network address
to enter a special AS address according to SCI convention.

CpName = cp_neu
CpType = NNN

Note

Only change the CP type if you want to activate the connection configuration mask to configure
the AS network address to enter a special AS address according to SCI convention.

See also
Special settings of the S7 channel (Page 1007)

Change the default of the logical device name of a channel unit (Page 1007)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1008 System Manual, 11/2019, Online help printout

Setup of an S7 logbook (Page 1009)

s7chn.ini (Page 1010)

Setup of an S7 logbook (RT Uni)
[Logbook]

FileName = C:\TMP\S7CHN.LOG
MaxKbFileSize = 32
MaxCycleBuffer= 2
Selection = FF.FF.FF.FF
FileName
Name of the diagnostics file incl. path specification. If no path is specified, the path of the called
module is used. The name of the diagnostic file should be unique in the first 6 characters. In the
circular buffer mode the file name is limited to maximum 6 characters and completed with the
current cycle number 01 to 99. (Example: FileName = C:\TMP\S7CHN.LOG). The specified
folder has to be available when the communication driver is started. The folder is not
automatically created by S7 channel DLL.

MaxKbFileSize
Maximal length of the diagnostic file in k byte. If the maximal length is reached, the saving
process is completed or switched to another file, depending on the "MaxCycleBuffer" setting.
(Example: MaxKbFileSize = 32)

MaxCycleBuffer
Maximum number of circular buffer files. If the parameter is not specified or
"MaxCycleBuffer=0" is specified, only one file is created. For input of a number 2..99 a new file
is created if the maximum file length is reached. In the circular buffer mode the file name is
limited to maximum 6 characters and completed with the current cycle number 01..99. If the
maximum buffer number is reached, the saving process of the files continues with the file 01.
(Example: MaxCycleBuffer = 2) ==> writing in files: S7CHN01.LOG -> S7CHN02.LOG ->
S7CHN01.LOG ...

Selection
Number of the message to be saved. The selection is specified as 32 bit hexastring. Set for
each desired kind of message the corresponding bit. (Example: Selection=FFFFFFFF). In
order to simplify the input, an ' ' or '.' character can be inserted byte by byte. (Example:
Selection = FF.FF.FF.FF)

The individual selection ID has the following values:

Selection
 ID

Value

00.00.00.01 Start and end error message
00.00.00.02 Error message if unit activated/deactivated
00.00.00.04 Version information
00.00.00.08 Communication errors
00.00.00.10 Channel API error

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1009

Selection
 ID

Value

00.00.00.20 General channel error messages
00.00.00.40 Initialization messages

The selection = FF.FF.FF.FF causes all logbook error messages to be output. The output is not
time critical, because the logbook functions are called only during activate/deactivate and in the
case of problems of the communication process.

See also
Special settings of the S7 channel (Page 1007)

Change the default of the logical device name of a channel unit (Page 1007)

Changing the CP type of a channel unit (Page 1008)

s7chn.ini (Page 1010)

s7chn.ini (RT Uni)
The characteristics of the S7 channel can be modified via the S7CHN.INI file. The file is only for
test or diagnostics and is not required for the normal operation.

Since the runtime characteristics of the S7 channel can be significantly changed using the INI
file described below, the options for modifying this file should only be used for internal testing
or error analysis!

The interpretation and modification of the parameters is only intended for "insiders". Therefore,
we have not gone into more detail on the meaning and application of the parameters and
constants.

 ; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 ; !!!!! A T T E N T I O N !!!!! ===========================
 ; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 ; The S7CHN.INI is not required for the runtime! Only for
 ; for testing and diagnostics. *) default without S7CHN.INI

 ;[Debug]
 ;DebugMode = 1 ; 0 = off *), 1 = DebugMessage, 2 = S7 Console
 ;DebugLevel = 101 ; 100 = Info, 101 = Error *), 102 = CHN API, 103 = Trace, 104 = List
 ;DebugTime = 1 ; 0 = off, 1 = on *)

 ;[SAPI]
 ;TraceTarget = 1 ; 0 = BUFFER *), 1 = NEW_FILE
 ;TraceSelect = 65535 ; 1 = ADMIN_SERVICES *), 65535 = SELECT_ALL
 ;TraceDepth = 104 ; 0 = OFF *), 101 = INTERFACE, 103 = LIB0, 104 = LIB0_PDU

 ;[Timer]
 ;TimerMode = 1 ; 0 = external, 1 = internal *)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1010 System Manual, 11/2019, Online help printout

 ; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 ;TimerCycle = 1000 ; cycle time in milliseconds
 ;CycleConnInit = 4000 ; Cycle time for autom. connection establishment
 ;FunTimeout = 10000 ; Timeout time for function calls
 ;CloseTimeout = 10000 ; Timeout time Close for unit deactivation
 ;MaxAsCycle = 5000 ; Max. cycle for cyclic read jobs by AS

 ;[Channel]
 ;UnitStorage = 1 ; Storage Read access: 0 = off, 1 = on
 ;LocalSlotId = 0 ; Setting of the local slot number in the TSAP
 ;ThreadModel = 1 ; Thread Model (0 ohne, 1 mit, 2 CHNCAP_REENTRANT)
 ;S7String = 1 ; String processing (0 with, 1 without control word)

 ;[Driver]
 ;ComSystem = 0 ; 0 = auto *), 1 = SAPI, 2 = S7DOS
 ;CnfAmqCalling = 0 ; max. rec.-jobs without acknowledgement (0 default)
 ;CnfAmqCalling = 0 ; max. send.-jobs without acknowledgement (0 default)

 ;[Unit:Industrial Ethernet]
 ;CpName = CP_H1_1:
 ;CpType = NNN

 ;[Diagnosis]
 ;ChkStopState = 0 ; Stop check: 0 = off, 1 = on *)
 ;ChkLifeTime = 60000 ; cycle time for lifebeat monitoring in milliseconds 0 = off
 ;LifeTimeAck = 15000 ; lifebeat acknowledgement timeout in milliseconds

 ;[Logbook]
 ;FileName = C:\TMP\S7CHN.LOG
 ;MaxKbFileSize = 20
 ;MaxCycleBuffer= 2
 ;Selection = FF.FF.FF.FF

 ;[ChnTrace]
 ;FileName = C:\TMP\S7CHN.TRC
 ;MaxKbFileSize = 50 ; max. length of the diagnostic file in k byte
 ;MaxCycleBuffer= 10 ; max. number circular buffer files
 ;DebugMode = 0 ; 0 = Output in file, 1 = Output via 'OutputDebugString()’
 ;TimeStampMode = 2 ; 0 = no time stamp, 1 oder 2 = with time stamp
 ;Selection = 00.00.30.27
 ; 00 00 00 01 // General alarms
 ; 00 00 00 02 // Connection status
 ; 00 00 00 04 // S7 Function calls # Tags services
 ; 00 00 00 08 // S7 Function calls # Tags services

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1011

 ; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 ; 00 00 00 10 // S7 Function call data
 ; 00 00 00 20 // Message event # Tags services
 ; 00 00 00 40 // Message event Tags services
 ; 00 00 00 80 // Message event data

 ; 00 00 01 00 // Message on start processing

 ; 00 00 10 00 // S7 raw data function
 ; 00 00 20 00 // S7 raw data

 ; 00 01 00 00 // S7 Channel API # Tags services
 ; 00 02 00 00 // S7 Channel API Tags services
 ;MaxDump = 512 ; Max. number bytes on data trace (Hex-Dump) of the channel

diagnosis

See also
Special settings of the S7 channel (Page 1007)

Change the default of the logical device name of a channel unit (Page 1007)

Changing the CP type of a channel unit (Page 1008)

Setup of an S7 logbook (Page 1009)

16.8.1.2 Error codes (RT Uni)

Error codes for connection faults (SIMATIC S7-300/400) (RT Uni)
The most important error codes are listed in this section. If an error occurs with an error code
that is not in the table, please call the WinCC hotline.

● Error 0112 (Page 1014)

● Error 4022 (Page 1014)

● Error 4102 (Page 1014)

● Error 4107 (Page 1014)

● Error 410E (Page 1015)

● Error 4110 (Page 1015)

● Error 4116 (Page 1015)

● Error 411A (Page 1015)

● Error 411C (Page 1016)

● Error 4230 (Page 1013)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1012 System Manual, 11/2019, Online help printout

● Error 4231 (Page 1016)

● Error 4232 (Page 1018)

● Error 42B0 (Page 1016)

● Error 42B1 (Page 1016)

● Error 42B2 (Page 1016)

● Error 42B3 (Page 1017)

● Error 42B5 (Page 1017)

● Error 42B7 (Page 1017)

● Error 42B8 (Page 1017)

● Error 42C0 (Page 1017)

● Error 42C2 (Page 1020)

● Error 42D2 (Page 1020)

● Error 7000 (Page 1020)

● Error 7001 (Page 1020)

● Error 7002 (Page 1020)

● Error 7003 (Page 1021)

● Error 7004 (Page 1021)

● Error 7005 (Page 1021)

● Error 7006 (Page 1021)

● Error 7007 (Page 1022)

● Error 7008 (Page 1022)

● Error 7101 (Page 1022)

● Error 7102 (Page 1022)

● Error 7900 (Page 1022)

● Error 8204 (Page 1023)

● Error 8305 (Page 1024)

● Error 8404 (Page 1024)

● Error 8405 (Page 1024)

● Error 8500 (Page 1024)

● Error D405 (Page 1024)

● Error D406 (Page 1025)

Error 4230 - L4_SCI_E_UNPLUGGED (RT Uni)
No further active partner available.

● PC not switched to the bus or power plug not correctly plugged.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1013

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 0112 - INVALID_PARAM (RT Uni)
An incorrect parameter was transferred to the communication subsystem S7DOS.

● Message processing or CPU Stop Monitoring enabled and an outdated S7DOS version
used.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 4022 - S7DOS_SRV_TIMEOUT (RT Uni)
No feedback from AS:

● AS did not respond to job within the timeout period.

● Station address available several times on the bus.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 4102 - L4_INVALID_REQ (RT Uni)
Request block not permitted.

● An invalid request block was returned by the communication driver.

● A not yet processed request block was returned after a CLOSE_REQ.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 4107 - L4_OK_CLOSED_RESP (RT Uni)
Connection was terminated.

● Rack/Slot not right configured.

● Number of maximum permitted connections in AS exceeded.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1014 System Manual, 11/2019, Online help printout

Error 410E - L4_REM_ABORT (RT Uni)
Connection was aborted.

● AS or CP disabled or reset.

● AS not connected to bus or error in bus system.

● Number of maximum permitted connections in AS exceeded.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 4110 - L4_LOC_TIMEOUT (RT Uni)
No connection established. AS denies connection setup.

● Wrong internet address configured.

● AS disabled.

● AS not connected to bus or error in bus system.

● Number of maximum permitted connections in AS exceeded.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 4116 - L4_CONN_REJECT (RT Uni)
No connection established. AS denies connection setup.

● Rack/Slot not right configured. For external CP module, the slot of the CPU module has to
be indicated.

● Number of maximum permitted connections in AS exceeded.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 411A - L4_ILLEGAL_ADDRESS (RT Uni)
Invalid address.

● An invalid network address was specified during connection configuration.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1015

Error 411C - L4_NETWORK_ERROR (RT Uni)
Network error.

● A fatal error was encountered in the network.

● The network address or the segment ID was configured incorrectly.

● Communication module defective.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 4231 - L4_SCI Error 4231 - L4_SCI (RT Uni)
BUS disrupted.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B0 - L4_DLL_E_NO_HW (RT Uni)
No communication hardware found.

● Communication module defective.

● Communication module not installed correctly.

● Wrong port address defined.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B1 - L4_DLL_E_HW_DEFECT (RT Uni)
Communication module defective.

● Communication module not installed correctly.

● Wrong port address defined.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B2 - L4_DLL_E_CNF (RT Uni)
● Driver configured incorrectly or invalid parameter in the registry.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1016 System Manual, 11/2019, Online help printout

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B3 - L4_DLL_E_BAUDRATE (RT Uni)
Incorrect baudrate or incorrect interrupt vector defined.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B5 - L4_DLL_E_TS (RT Uni)
The defined local participant number (TS_ADR) is already assigned.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B7 - L4_DLL_E_INT_NOT_PROV (RT Uni)
The defined interrupt vector (IRQ) is not available on the communication module.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42B8 - L4_DLL_E_INT_BUSY (RT Uni)
The defined interrupt vector (IRQ) is already allocated on the communication module.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42C0 - L4_DLL_E_NO_FILE (RT Uni)
The selected communication driver cannot be installed. File not found.

● Communication driver not installed correctly.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1017

Error 4232 - L4_DLL_E_HSA (RT Uni)
Incorrect maximum number of set stations.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

1. S7DOS Error display (RT Uni)
This value indicates the error detecting module. The value is not relevant for the initial error
analysis.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

1. SAPI-S7 Error display (RT Uni)
This value indicates the "S7_MINI_DB_RESPONSE_CODE". The value is not relevant for the
initial error analysis.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

2. SAPI-S7 Error display (RT Uni)
This value indicates the "s7_last_detailed_err_no". The table
"s7_last_detailed_err_nos7_last_detailed_err_no" includes a list of SAPI-S7 error codes
without additional details.

In case of problems with SAPI-S7, read the SAPI-S7 documentation or contact the SINEC or
WinCC hotline.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

s7_last_detailed_err_no (RT Uni)

Table 16-9

Error Decimal Hexa
S7_ERR_NO_ERROR 0 00
S7_ERR_UNKNOWN_ERROR 1 01
S7_ERR_WRONG_CP_DESCR 2 02
S7_ERR_NO_RESOURCE 3 03

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1018 System Manual, 11/2019, Online help printout

Error Decimal Hexa
S7_ERR_INVALID_PARAMETER 7 07
S7_ERR_TOO_LONG_DATA 8 08
S7_ERR_TOO_MANY_DLL_USERS 9 09
S7_ERR_WRONG_IND_CNF 10 0A
S7_ERR_SERVICE_NOT_SUPPORTED 11 0B
S7_ERR_INVALID_CREF 20 14
S7_ERR_CONN_NAME_NOT_FOUND 23 17
S7_ERR_INVALID_ORDERID 30 1E
S7_ERR_ORDERID_USED 31 1F
S7_ERR_OBJ_UNDEFINED 50 32
S7_ERR_OBJ_ATTR_INCONSISTENT 51 33
S7_ERR_OBJ_ACCESS_DENIED 53 35
S7_ERR_INVALID_DATA_SIZE 80 50
S7_ERR_RECEIVE_BUFFER_FULL 81 51
S7_ERR_FW_ERROR 90 5A
S7_ERR_MINI_DB_TYPE 100 64
S7_ERR_MINI_DB_VALUE 101 65
S7_ERR_SERVICE_VFD_ALREADY_USED 112 70
S7_ERR_SERVICE_CONN_ALREADY_USED 113 71
S7_ERR_CONN_ABORTED 120 78
S7_ERR_INVALID_CONN_STATE 121 79
S7_ERR_MAX_REQ 122 7A
S7_ERR_CONN_CNF 123 7B
S7_ERR_INVALID_CYCL_READ_STATE 130 82
S7_ERR_INSTALL 140 8C
S7_ERR_INTERNAL_ERROR 141 8D
S7_ERR_NO_SIN_SERV 142 8E
S7_ERR_NO_LICENCE 143 8F
S7_ERR_SYMB_ADDRESS 150 96
S7_ERR_SYMB_ADDRESS_INCONSISTENT 151 97

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

No help found for this error. (RT Uni)
The help function contains only the most important error codes. Please contact the WinCC
hotline.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1019

Error 42C2 - L4_DLL_E_LOGDEV (RT Uni)
The logical device is not defined in the registry.

● Communication driver not installed correctly.

● Entry damaged or deleted in the registry.

● Check the setting of the logical device name with the "Set PG/PC interface" program.

● Check the setting for the logical device name in the "System parameter - Device" mask.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 42D2 - L4_DLL_E_NO_SMC (RT Uni)
The connection to the adapter is disturbed.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7000 - CEC_UDEACT (RT Uni)
● Unit will be deactivated.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7001 - CEC_STPCHK (RT Uni)
Connection closed due to Stop check.

● The connection was terminated by the channel because a "STOP", "HOLD" or
"DEFECTIVE" VMD status was detected for the CPU.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7002 - CEC_LACKTO (RT Uni)
Lifebeat acknowledgement error.

● The connection was terminated because the acknowledgment of the lifebeat frame was not
received within the expected period.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1020 System Manual, 11/2019, Online help printout

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7003 - CEC_RAWFKT (RT Uni)
Connection closed via raw data function

● The connection function was activated via a raw data function.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7004 - CEC_OIDERR (RT Uni)
Order ID invalid

● The order ID that has to be processed is invalid.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7005 - CEC_DTLERR (RT Uni)
Data length incorrect.

● In the received PDU the data length is greater than the expected data length or 0. This
display is output, for example, when an odd number of bytes is read from an AS314
prototype CPU (314-1AE00-0AB0).

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7006 - CEC_CONERR (RT Uni)
Connection closed or deactivated.

● Connection was terminated. That is why the job was rejected.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1021

Error 7007 - CEC_VMDERR (RT Uni)
It is not permitted to determine VMD status via lifebeat frame.

● The connection was terminated by the channel because a "STOP", "HOLD" or
"DEFECTIVE" VMD status was detected for the CPU.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7008 - CEC_CONPRJ (RT Uni)
Connection data incorrect or corrupted.

● No connection parameters have been configured.

● The configured connection parameters are not permitted.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7101 - CEC_NORAM1 (RT Uni)
No memory available.

● No free memory could be allocated during creation of order list.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7102 - CEC_NORAM2 (RT Uni)
No memory available.

● No free memory could be allocated during creation of tag feedback data area.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 7900 - CEC_S7DOSE (RT Uni)
Necessary S7DOS version not loaded.

● A function was configured (for example, PMC message processing) that requires a specific
version of the communication subsystem S7DOS.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1022 System Manual, 11/2019, Online help printout

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

The connection is ready to use. (RT Uni)

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

The connection is currently being initialized (RT Uni)
Communication is only possible after the completion of the initialization.

● If the state is pending for several seconds, an overloading of the communication on the AS
side might be the reason for this.

● Check the PM configuration in your AS.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

The connection to the AS is established (RT Uni)
The CPU is in STOP mode.

● To communicate with the CPU via WinCC, switch the CPU to RUN mode.

● You have the possibility to also monitor the PLC in STOP mode. System Diagnostics and
Alarming can continue to be run in this way.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 8204 - L7_DEF_OBJ_INCONSISTENT (RT Uni)
The object's type format is inconsistent.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1023

Error 8305 - L7_FUNC_NOT_AVAIL (RT Uni)
Functionality not available.

● AS-CPU type does not support the configured function.

● AS CPU does not contain the most recent firmware status.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 8404 - L7_FATAL_ERR (RT Uni)
AS protocol error.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 8405 - L7_CPU_IN_PROTECTED_STATE (RT Uni)
The remote block is in status DISABLE (PBK). The function cannot be executed.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error 8500 - L7_PDU_SIZE_ERR (RT Uni)
Wrong PDU size.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Error D405 - L7_DGS_FKT_PAR_SYNTAX_ERR (RT Uni)
Service is not supported or syntax error for function parameters.

● AS-CPU type does not support the configured function.

● AS CPU does not contain the most recent firmware status.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1024 System Manual, 11/2019, Online help printout

Error D406 - L7_NO_INFO (RT Uni)
Desired information not available.

● The requested data are not available.

● In the case of AS300 the message also occur, if two station at the same time access the
desired data.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

S7 connection status (RT Uni)
Internal function correctly completed.

In this Property Page, the current connection status of the corresponding unit is displayed. You
can use the displayed error code to quickly localize a communication error.

Select the corresponding connection and press the <F1> key, or double-click the error code.

Column Description
Name Connection name
Status Connection status:

 Ready
The connection is ready to use.

 Faulty
The connection is faulty. An error code output in the Error col‐
umn.

 CPU Stop
The AS is in STOP mode.

 init
The connection is being initialized or uninitialized.

Fault Error code in hexadecimal.
Note:
In each case the error code that occurred first is displayed.

PDU length The PDU length is displayed here in bytes after the commec‐
tion has been established.

Number of errors Number of connection problems that occurred.
Note:
A connection problem is only counted if an available connec‐
tion is disturbed , i.e. switches from 'available' to 'disturbed' or
'CPU Stop'.

Asyn. Events Number of asynchronous S7DOS events.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1025

Note

The table can contain additional columns that are not described here. These data are intended
for additional error diagnostics and not relevant for the user.

See also
Error codes for connection faults (SIMATIC S7-300/400) (Page 1012)

16.8.1.3 Internal error codes and constants (RT Uni)

Internal error codes and constants (RT Uni)
The following tables contain the most important error codes and constants. The information is
intended for "insiders". Therefore, we have not gone into more detail on the meanings of the
codes and constants.

● iNA960 messages

● SCI messages

● S7DOS Function types

● S7DOS Error codes

● S7DOS Trace function

iNA960 messages (RT Uni)

Table 16-10

General iNA960 messages:
OK_RESP 1 0x01 Request executed with no errors
OK_EOM_RESP 3 0x03 Data block received with no errors
OK_DECIDE_REQ_RESP 5 0x05 Request executed with no errors
OK_CLOSED_RESP 7 0x07 Connection terminated by local user

iNA960 Error messages:
INVALID_REQ 2 0x02 Incorrect request block
NO_RESOURCES 4 0x04 No resources free in CP
UNKNOWN_REFERENCE 6 0x06 Incorrect OPEN reference defined
BUFFER_TOO_SHORT 8 0x08 User buffer too short
BUFFER_TOO_LONG 10 0x0A User buffer too long
ILLEGAL_REQ 12 0x0C Incorrect "negot_options" defined

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1026 System Manual, 11/2019, Online help printout

iNA960 Error messages:
REM_ABORT 14 0x0E Connection terminated by remote

station
LOC_TIMEOUT 16 0x10 Timeout
UNKNOWN_CONN_CLASS 18 0x12 Unknown connection class
DUP_REQ 20 0x14 Connection already established
CONN_REJECT 22 0x16 Connection request rejected by remote
NEGOT_FAILED 24 0x18 Connection termination incorrect

negot option
ILLEGAL_ADDRESS 26 0x1A Incorrect transport address
NETWORK_ERROR 28 0x1C Bus or CP faulted
PROTOCOL_ERR 30 0x1E Protocol error
ILLEGAL_RB_LENGTH 32 0x20 Incorrect request block length

See also
Internal error codes and constants (Page 1026)

SCI messages (RT Uni)
See description in the "SINEC Communication Interface SCI" manual (A/5-15).

SCI messages
SCP_OK 0 0x00 No error
SCP_INCONS 201 0xC9 Minor device number is not 00
SCP_RESOURCE 202 0xCA DPRAM memory request invalid
SCP_CONFIG 203 0xCB Configuration error (NUM_PROCS)
SCP_NOCONFIG 204 0xCC SCP driver not configured
SCP_PARAM 206 0xCE Incorrect mode
SCP_DEVOPEN 207 0xCF Open already performed
SCP_BOARD 208 0xD0 Board not inserted/recognized
SCP_SOFTWARE 209 0xD1 IRQ error or software not found
SCP_MEM 210 0xD2 Low memory in DPRAM
SCP_MODE 211 0xD3 Download process not yet completed
SCP_LOADER 212 0xD4 No response from loader
SCP_SIGNAL 213 0xD5 Process started asynchronously
SCP_NOMESS 215 0xD7 No message arrived for the process
SCP_USERMEM 216 0xD8 Buffer length length_of_buffer too small
SCP_WINDOW 217 0xD9 Too many SEND calls
SCP_TIMEOUT 219 0xDB Timeout on SCP
SCP_ATTACH 220 0xDC Reset not executed/channel still active
SCP_ILLEGAL_REQUEST 221 0xDD Incorrect request
SCP_ERECOVERF 223 0xDF Buffer not retrieved with scp_receive
SCP_ECLOSED 224 0xE0 All buffers assigned for the connection
EUSERMAX 225 0xE1

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1027

SCI messages
SCP_EINTR 226 0xE2
SCP_BOARD_OPEN 231 0xE7
SCP_NO_WIN_SERV 233 0xE9
EPROTECT 234 0xEA License not found

SCI messages
SCP_DB_FILE_DOES_NOT_EXIST 240 0xF0
SCP_DB_FILE_CLOSE_NOT_OK 241 0xF1
SCP_SEND_NOT_SUCCESSFUL 242 0xF2
SCP_RECEIVE_NOT_SUCCESSFUL 243 0xF3
SCP_NO_DEVICE_AVAILABLE 244 0xF4
SCP_ILLEGAL_SUBSYSTEM 245 0xF5
SCP_ILLEGAL_OPCODE 246 0xF6
SCP_BUFFER_TOO_SHORT 247 0xF7
SCP_BUFFER_1_TOO_SHORT 248 0xF8
SCP_ILLEGAL_PROTOCOL_SEQUENCE 249 0xF9
SCP_ILLEGAL_PDU_ARRIVED 250 0xFA
SCP_REQUEST_ERROR 251 0xFB
SCP_NO_LICENSE 252 0xFC

Additional online DLL messages on the SCP interface
E_TIMER_INIT 768 0x0300 WIN Settimer call unsuccessful
E_INIT_COM 769 0x0301
E_NO_HW 784 0x0310 MPI module not found
E_HW_DEFECT 785 0x0311 Problem with the hardware
E_CNF 786 0x0312 Incorrect configuration parameter
E_BAUDRATE 787 0x0313 Incorrect baudrate/incorrect IntVector
E_HSA 788 0x0314 Incorrect HSA configured
E_TS 789 0x0315 Configured address already assigned
E_OCC 790 0x0316 HW_Device already assigned
E_INT_NOT_PROV 791 0x0317 Interrupt not available
E_INT_BUSY 792 0x0318 Interrupt allocated
E_SAP 793 0x0319 SAP deactivate: SAP not allocated
E_UNPLUGGED 794 0x031a No remote station found
E_SYNI 795 0x031b Syni error occurred
E_AMPRO 796 0x031c AMPRO 2 reported a system error
E_BUFFSIZE 797 0x031d No buffer of this size created
E_NO_FILE 800 0x0320 DLL/VxD File not found or entries in registry damaged
E_NO_ENTRY 801 0x0321 Address does not exist in DLL
E_VERSION 816 0x0330 Version conflict between SMC driver and SMC firmware
E_COMCNF 817 0x0331 Problem with the COM port configuration

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1028 System Manual, 11/2019, Online help printout

Additional online DLL messages on the SCP interface
E_NO_SMC 818 0x0332 SMC no longer responds
E_COMMBADID 819 0x0333 COM port is not configured
E_COMMOPEN 820 0x0334 COM port is not available
E_SMCBUSY 821 0x0335 Serial driver is currently in use with another configuration
E_SMCMODEM 822 0x0336 No connection currently exists to a PC/MPI cable
E_SMCNOLEG 823 0x0337 PC/MPI cable refuses job, required authorization is

missing
E_ONLINE 896 0x0380 Internal error at the IOCTL interface
E_LOGDEV 897 0x0381 Logical device not in registry
E_L2DRIVER 898 0x0382 L2DRIVER entry is missing in the registry
E_L4DRIVER 900 0x0384 L4DRIVER entry is missing in the registry
E_SYSERROR 1023 0x03FF System error

See also
Internal error codes and constants (Page 1026)

S7DOS Function types (RT Uni)

Table 16-11

S7DOS Function types
S7O_S7_EVENT 1
S7O_S7AG_BESY_UPDATE 2
S7O_S7AG_BUB_CYCL_READ_CREATE 3
S7O_S7AG_BUB_CYCL_READ_START 4
S7O_S7AG_BUB_CYCL_READ_STOP 5
S7O_S7AG_BUB_CYCL_READ_DELETE 6
S7O_S7AG_BUB_READ_VAR 7
S7O_S7AG_BUB_WRITE_VAR 8
S7O_S7AG_COMPRESS 9
S7O_S7AG_LINK_IN 10
S7O_S7AG_MEM_MODE 11
S7O_S7AG_MSG_MODE 12
S7O_S7AG_PASSWORD 13
S7O_S7AG_READ_SZL 14
S7O_S7AG_READ_TIME 15
S7O_S7AG_RESUME 16
S7O_S7AG_START 17
S7O_S7AG_STOP 18
S7O_S7AG_TEST 19
S7O_S7AG_TEST_DELETE 20
S7O_S7AG_WRITE_TIME 21

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1029

S7DOS Function types
S7O_S7BLK_DELETE 22
S7O_S7BLK_FINDFIRST 23
S7O_S7BLK_FINDNEXT 24
S7O_S7BLK_READ 25
S7O_S7BLK_WRITE 26
S7O_S7DB_CREATE 27
S7O_S7DB_OPEN 28
S7O_S7DB_COPY 29
S7O_S7DB_CLOSE 30
S7O_S7DB_DELETE 31
S7O_S7DOS_RELEASE 32
S7O_S7NET_GET_LIFE_LIST 33
S7O_S7NET_GET_DIRECT_PLC 34
S7O_S7DP_SET_SLAVE_ADDRESS 35
S7O_S7DP_SLAVE_DIAGNOSE 36
S7O_S7AG_PMC_MSG_MODE 37
S7O_S7AG_PMC_ON_OFF 38
S7O_S7AG_BRCV 39
S7O_S7AG_BSND 40
S7O_S7AG_PMC_ACK 41
S7O_S7AG_PMC_MLDG 42
S7O_S7AG_BUB_CYCL_READ_CREATE_CNF 43
S7O_S7AG_MSG_MODE_CNF 44
S7O_S7AG_PMC_UPDATE 45
S7O_S7L7_DOWNLOAD_DOMAIN 128
S7O_S7L7_UPLOAD_DOMAIN 129

See also
Internal error codes and constants (Page 1026)

S7DOS Error codes (RT Uni)

Table 16-12

Define Dec Hex Error Message (Stand 7.1.99)
INVALID_BLOCK_TYPE_NUM 272 0110 Invalid block type or invalid block number.
INVALID_PARAM 274 0112 Invalid parameter.
INVALID_BLOCK_TYPE 275 0113 Invalid block type.
BLOCK_NOT_FOUND 276 0114 Block not found.
BLOCK_ALREADY_EXIST 277 0115 The block is already available.
BLOCK_IS_PROTECTED 278 0116 The block is read-only.
BLOCK_TOO_LARGE 279 0117 The block is too large.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1030 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
INVALID_BLOCK_NUM 280 0118 Invalid block number.
INCORRECT_PASSWORD 281 0119 You have entered an incorrect password.
PG_RESOURCE_ERROR 282 011A PG-Resources error.
PLC_RESOURCE_ERROR 283 011B AS resource error.
PROTOCOL_ERROR 284 011C Protocol error.
TOO_MANY_CPU_BLKS 285 011D Too many blocks (module specific limitation).
DATABASE_DISCONNECTED 286 011E No connection to the database or S7DOS han‐

dle is invalid.
USER_BUFFER_TOO_SHORT 287 011F The application buffer is too small.
END_OF_BLOCK_LIST 288 0120 End of block list.
CALLOC_ERROR 320 0140 Insufficient memory available.
REQ_INI_ERR 321 0141 The job cannot be processed because of miss‐

ing resources.
SIMULATION_ERR 368 0170 The simulator could not be found.
DRIVER_NOT_INST 384 0180 The driver is not installed: Incompatible param‐

eter or invalid driver handle.
DRIVER_ALREADY_OPEN 385 0181 The driver is already open or too many chan‐

nels are open.
VERSION_MISMATCH 448 01C0 The versions are incompatible.
TABLE_STRUCT_MISMATCH 449 01C1 The field setup to the opened database does

not correspond to the expected setup.
NO_VALID_SELECTION 450 01C2 s7blk_findnext() was called before s7blk_find‐

first().
HEADER_MEMO_INCONSISTEN‐
CY

451 01C3 The length format in the block header does not
correspond to the actual length of the section
in the data storage system.

ID_FILE_ERROR 452 01C4 A problem occurred during processing of Last-
ID file.

WRONG_BLOCK_FORMAT 453 01C5 Incorrect block format.
FILE_NOT_FOUND 454 01C6 File not found.
INVALID_BESY_KOMP 455 01C7 Invalid Besy Update Component.
DBCPY_TARGET_EXISTS 456 01C8 The database specified as target is already

available.
WR_TABLE_ALREADY_LOCKED 457 01C9 The database is already locked by another ap‐

plication.
SKIP_UNEXPECTED_ERROR 458 01C

A
An unexpected error occurred during position‐
ing in the database.

DHCLOSE_ERROR 459 01C
B

An invalid DATA4 pointer was transferred to
the dhclose() call.

LIB_NOT_FOUND 460 01C
C

The TBI-DLL could not be loaded.

FKT_NOT_FOUND 461 01C
D

A function in the dynamic downloaded DLL
could not be found.

STPCPY_NOT_FOUND 462 01C
E

The StopCopy-DLL could not be loaded.

FILE_ACCESS_ERROR 463 01C
F

Access protection violation.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1031

Define Dec Hex Error Message (Stand 7.1.99)
PASSWORD_NOT_FOUND 464 01D0 The password was not found.
DIAGNOSE_NOT_STARTED 480 01E0 Diagnostics are disabled.
DIAGNOSE_DATA_NOT_AVAILA‐
BLE

481 01E1 No diagnostics data are available.

DIAGNOSE_DATA_INCONSISTENT 482 01E2 The diagnostic data are inconsistent.
NOT_IMPLEMENTED 496 01F0 Function is not implemented.
INTERN_ERR 511 01FF System error.
L7_UNKNOWN_ROSCTR 2049 0801 Internal error code, is being mapped.
L7_UNKNOWN_CN_ID 2050 0802 Internal error code, is being mapped
L7_UNKNOWN_DIENSTKENN 2051 0803 Internal error code, is being mapped
L7_TOO_MUCH_BLOCKS 2052 0804 Internal error code, is being mapped
L7_WRONG_FLAGS 2053 0805 S7 protocol: Invalid flags.
L7_INTERNAL_ERR 2054 0806 Internal error code, is being mapped
L7_UNKNOWN_ID1_ERR 2055 0807 Internal error code, is being mapped
L7_SEND_ERR 2064 0810 S7 protocol: Data could not be correctly sent.
L7_RECEIVE_ERR 2065 0811 S7 protocol: No job for the received data could

be found.
L7_DIAG_ERR_UPDATE 3456 0D80 A diagnostic error has occurred.
EPR_VCC_ERROR 8208 2010 Internal error code, is being mapped
EPR_VPP_ERROR 8209 2011 Internal error code, is being mapped
EPR_NO_ADAPT 8210 2012 EPROM: The memory card adapter is missing.
EPR_REM_EXT_ADAPT 8211 2013 EPROM: The external memory card adapter

has to be removed.
EPR_NO_MEM_CARD 8212 2014 EPROM: The memory card is missing.
EPR_CHECK_SUM_ERR 8213 2015 Internal error code, is being mapped
EPR_LEN_ERR 8214 2016 Internal error code, is being mapped
EPR_MOD_ADR_ERR 8215 2017 Internal error code, is being mapped
EPR_READ_ONLY 8216 2018 Internal error code, is being mapped
EPR_NOT_IMPLEMENT 8217 2019 Internal error code, is being mapped
EPR_AREA_NOT_PRES 8218 201A Internal error code, is being mapped
EPR_ALGO_UNKNOWN 8219 201B EPROM: Unknown configuration algorithm.
EPR_MOD_CHANGE 8220 201C EPROM: The memory card was changed with‐

out authorization.
EPR_NO_OPEN 8221 201D Internal error code, is being mapped
EPR_ILEG_BREAK 8222 201E Internal error code, is being mapped
EPR_NO_FLASH 8223 201F Internal error code, is being mapped
EPR_LEN_SEC_ERR 8224 2020 Internal error code, is being mapped
EPR_ADR_SEC_ERR 8225 2021 Internal error code, is being mapped
EPR_ADR_ERR 8226 2022 Internal error code, is being mapped
EPR_DB_SHRT_ERR 8227 2023 Internal error code, is being mapped
EPR_MODE_ERR 8228 2024 Internal error code, is being mapped
EPR_PROG_ERR 8229 2025 EPROM: Hardware error in the memory card.
EPR_PROG0_ERR 8230 2026 Internal error code, is being mapped
EPR_ERA_ERR 8231 2027 Internal error code, is being mapped

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1032 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
EPR_RD_KENN_ERR 8232 2028 Internal error code, is being mapped
EPR_CMP_ERR 8233 2029 Internal error code, is being mapped
EPR_EMP_ERR 8234 202A EPROM: The memory card is not empty.
EPR_EE_WR_ERR 8235 202B Internal error, is being mapped
EPR_EE_TIMOUT_ERR 8236 202C Internal error, is being mapped
EPR_SYS_ERR 8237 202D EPROM: Internal error.
EPR_WR_PROT 8238 202E EPROM: Read-only memory card.
EPR_NO_EXPOWER 8239 202F EPROM: The external power supply is missing.
EPR_MINUS_12V_ERR 8240 2030 Internal error, is being mapped
EPR_REF_SP_ERR 8241 2031 Internal error, is being mapped
EPR_DEV_NOT_SUPPORTED 8242 2032 EPROM: The EPROM driver cannot support

the set configuration interface on this comput‐
er.

EPR_PROM_ENTR_ERR 8256 2040 EPROM: External prommer is missing.
EPR_NO_BIOS_CENTADR 8257 2041 Internal error, is being mapped
EPR_QOUT_FACT_ERR 8258 2042 EPROM: Hardware error on the external prom‐

mer.
EPR_QUEUE_BUSY 8259 2043 Internal error, is being mapped
EPR_TIMER_ERR 8272 2050 Internal error, is being mapped
EPR_WRONG_WIN_MODE 8288 2060 Internal error, is being mapped
EPR_NO_GLOBAL_MEM 8289 2061 Internal error, is being mapped
EPR_PROGAS_ERR 8324 2084 EPROM: Configuration interface error.
EPR_FATAL_ERR 8328 2088 Internal error, is being mapped
EPR_ERR_KEYNOTFOUND 8452 2104 Internal error, is being mapped
EPR_ERR_RECBUFLEN 8470 2116 Internal error code, is being mapped
EPR_ERR_BLK_LEN 8488 2128 Internal error, is being mapped
EPR_ERR_FILEFULL 8534 2156 Internal error, is being mapped
EPR_DRV_NOT_INST 8560 2170 Internal error, is being mapped
EPR_DRV_ALREADY_OPEN 8561 2171 Internal error, is being mapped
EPR_INVALID_DRV_HANDLE 8562 2172 Internal error, is being mapped
EPR_DRIVER_NOT_OPEN 8563 2173 Internal error, is being mapped
EPR_WRONG_DEVICE_NAME 8564 2174 Internal error, is being mapped
EPR_NO_FLASH_AREA 8566 2176 EPROM: No flash area is available on the

memory card.
EPR_WRONG_APPL_KEN 8567 2177 EPROM: The memory card has an incorrect

application ID.
EPR_MOD_CONTENS_UNKNOWN 8568 2178 EPROM: The content of the memory card can‐

not be interpreted.
EPR_MOD_CHKSUM_ERR 8569 2179 A growler error has occurred in the content of

the memory card.
EPR_PROGRAMMING_ERR 8592 2190 EPROM: A configuration error has occurred.
SRVERR_NO_CONV_ESTABLISH‐
ED

16394 400A No communication with the S7OTBL server is
possible. The server is not started.

SRVERR_SYS_ERROR 16399 400F System error during the S7OTBL server client
communication.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1033

Define Dec Hex Error Message (Stand 7.1.99)
NO_LIST_ENTRY 16415 401F No corresponding entry is available in the

asynchronous list.
LOCAL_ALLOC_ERR 16416 4020 No local memory is available.
LOCAL_LOCK_ERR 16417 4021 The local memory cannot be locked.
S7DOS_SRV_TIMEOUT 16418 4022 Timeout during waiting on WM_ENDE_L7.
WRONG_WIN_MODE 16480 4060 Incorrect operating mode in Windows.
NO_GLOBAL_MEM 16481 4061 No global memory is available.
L4_OK_RESP 16641 4101 Internal error code, is being mapped
L4_INVALID_REQ 16642 4102 Online: Internal error.
L4_OK_EOM_RESP 16643 4103 Online: OK_EOM_RESPONSE.
L4_NO_RESOURCES 16644 4104 Online: No resources in the driver are availa‐

ble.
L4_OK_DECIDE_REQ_RESP 16645 4105 Internal error code, is being mapped
L4_UNKNOWN_REFERENCE 16646 4106 Online: Unknown shortcut.
L4_OK_CLOSED_RESP 16647 4107 Online: The connection was terminated.
L4_BUFFER_TOO_SHORT 16648 4108 Internal error code, is being mapped
L4_NO_SRD_RSP 16649 4109 Online: Sending and receiving of data is not

acknowledged.
L4_BUFFER_TOO_LONG 16650 410A Internal error code, is being mapped
L4_OK_REJECT_CONN_RESP 16651 410B Internal error code, is being mapped
L4_ILLEGAL_REQ 16652 410C Internal error code, is being mapped
L4_REM_ABORT 16654 410E Online: Connection was terminated.
L4_LOC_TIMEOUT 16656 4110 Online: No connection was established. The

station does not respond.
L4_UNKNOWN_CONN_CLASS 16658 4112 Internal error code, is being mapped
L4_DUP_REQ 16660 4114 Online: The connection already exists.
L4_CONN_REJECT 16662 4116 Online: No connection was established. The

partner refuses to establish the connection.
L4_NEGOT_FAILED 16664 4118 Internal error code, is being mapped
L4_ILLEGAL_ADDRESS 16666 411A Online: Invalid address.
L4_NETWORK_ERROR 16668 411C Online: Network error.
L4_PROTOCOL_ERR 16670 411E Internal error code, is being mapped
L4_ILLEGAL_RB_LENGTH 16672 4120 Internal error code, is being mapped
L4_PPI_T_TI_ERROR 16674 4122 Internal error code, is being mapped
L4_NO_RESOURCE 16897 4201 Online: No resources in the driver are availa‐

ble.
L4_CONNECTION_EXIST 16898 4202 Internal error code, is being mapped
L2_OPEN_DONE 16899 4203 Internal error code, is being mapped
L4_SCI_STATION_NA 16913 4211 Online: No station is available on the subnet.
L4_SCI_STATION_DS 16914 4212 Online: The station is not online.
L4_SCI_STATION_NO 16915 4213 Online: Too many stations.
L4_SCI_NOTIMPLEMENTED 16917 4215 Online: The function is not implemented or is

invalid in the current context.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1034 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
L4_SCI_E_DPX2_ERROR 16918 4216 Online: Incorrect station address of the DP

Slave or error message of the DP Slave.
L4_NO_CONFIG_FOUND 16936 4228 The bus parameters could not be retrieved au‐

tomatically (ONLINE). No stations at the bus
that send bus parameter frames.
Set your MPI/PROFIBUS interface manually.

L4_ONLY_BAUDRATE_FOUND 16937 4229 Online: Only the baud rates could be retrieved.
L4_ONLY_PROFILE_FOUND 16938 422A Online: Only the profile could be retrieved.
L4_SCI_E_UNPLUGGED 16944 4230 Online: No other active station is available.
L4_SCI_E_SYNI 16945 4231 Online: The bus is faulted.
L4_DLL_E_HSA 16946 4232 Online: Incorrect maximal number of stations

(HIGHEST_ADR).
L4_SCI_E_AMPRO 16947 4233 Online: System error.
L4_DLL_E_TIMER_INIT 17056 42A0 Online: The Windows timer cannot be set.
L4_DLL_E_INIT_COM 17057 42A1 Online: The COM interface cannot be initial‐

ized or opened.
L4_DLL_E_NO_HW 17072 42B0 Online: No hardware found.
L4_DLL_E_HW_DEFECT 17073 42B1 Online: The hardware is defective.
L4_DLL_E_CNF 17074 42B2 Online: The driver is configured incorrectly or

the registry contains invalid parameters.
L4_DLL_E_BAUDRATE 17075 42B3 Online: An incorrect baud rate or an incorrect

interrupt vector is set, or the local MPI address
is greater than the maximum station address.

L4_DLL_E_TS 17077 42B5 Online: The set local station address
(TS_ADR) is already assigned.

L4_DLL_E_OCC 17078 42B6 Online: The hardware device (DEVICE) can‐
not be used several times.

L4_DLL_E_INT_NOT_PROV 17079 42B7 Online: The defined interrupt vector (IRQ) is
not available on this module.

L4_DLL_E_INT_BUSY 17080 42B8 Online: The set interrupt vector (IRQ) is al‐
ready allocated.

L4_DLL_E_SAP 17081 42B9 Internal error code, is being mapped
L4_DLL_E_NO_FILE 17088 42C0 Online: The selected communication driver

cannot be loaded; the file was not found.
L4_DLL_E_NO_ENTRY 17089 42C1 Online: The function is not realized on the loa‐

ded communication driver.
L4_DLL_E_LOGDEV 17090 42C2 Online: The logical device is not defined in the

registry.
L4_DLL_E_VERSION 17104 42D0 Online: The output inventory of driver and

adapter or PC/MPI cable are incompatible.
L4_DLL_E_COMCNF 17105 42D1 Online: No interrupt of PC/MPI cable was re‐

ceived.
L4_DLL_E_NO_SMC 17106 42D2 Online: The connection to the adapter is dis‐

turbed.
L4_DLL_E_COMMBADID 17107 42D3 Online: The COM interface is not configured

under Windows.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1035

Define Dec Hex Error Message (Stand 7.1.99)
L4_DLL_E_COMMOPEN 17108 42D4 Online: The COM interface is currently unavail‐

able.
L4_DLL_E_SMCBUSY 17109 42D5 Online: The serial driver is currently used by

another application with another configuration.
L4_DLL_E_SMCMODEM 17110 42D6 Online: There is still no remote connection or

logical connection to the TS Adapter.
L4_DLL_E_SMCNOLEG 17111 42D7 Online: The TS Adapter refuses the job due to

missing required legitimation.
L4_LIB_WIN_SYS_ERR 17120 42E0 Online: Windows system error in communica‐

tion driver.
L4_LIB_NO_GLOBAL_MEM 17134 42E

E
Online: No global memory is available.

L4_LIB_NO_SIN_SERV 17135 42EF Online: SIN_SERV is not started.
L4_SCI_STATION_NOT_ONLINE 17146 42FA Online: The station is not online.
L4_SCI_RB_ERR 17147 42FB Internal error code, is being mapped
L4_SCI_MAX_REQ_NR 17148 42F

C
Internal error code, is being mapped

L4_SCI_DRV_ALREADY_OPEN 17149 42F
D

Internal error code, is being mapped

L4_SCI_DRV_ERR 17150 42FE Internal error code, is being mapped
L4_SCI_DRV_NOT_INST 17151 42FF Internal error code, is being mapped
NO_LOC_SUBNET_ENTRY 17153 4301 Invalid local subnet number in the file

S7DPMPI.INI.
NO_TABLE_ENTRY 17154 4302 The station on this subnet is unavailable.
WRONG_RACK_SLOT 17155 4303 Incorrect rack/slot in the module table.
WRONG_NODENAME 17156 4304 Incorrect format of the node name in

S7db_open (online).
INVALID_S7_TABUF 17157 4305 Invalid S7-Transport_Address_Buffer.
INVALID_S7_WUSERID 17158 4306 The job cannot be found. Incorrect wUserID or

incorrect Window handle.
L7_DPT_ERROR 17456 4430 The data record cannot be read/written.
RES_VON 28672 7000 The area from 0x7000 to 0x7fff is reserved for

applications.
RES_BIS 32767 7FFF The area from 0x7000 to 0x7fff is reserved for

applications.
L7_INVALID_CPU_STATE 32769 8001 The function is invalid in this operating mode,

or an incorrect minimum scan cycle time is set.
L7_DOMAIN_LOADING_ERR 32771 8003 S7 protocol error: A domain transfer error has

occurred. The domain content (e.g. block) is
incorrect.

L7_S5_INTERN_ERR 33023 80FF S7 protocol: Internal error.
L7_COMMON_ERR 33024 8100 Application, general error: Unknown service

for the remote module.
L7_MISSING_CONTEXT 33028 8104 The service is not supported. An unknown er‐

ror in PDU adapter or service has occurred.
L7_DEF_OBJ_INCONSISTENT 33284 8204 The object's type format is inconsistent.
L7_ALREADY_COPIED 33285 8205 A copied object's variant is available.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1036 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
L7_NO_RAM 33537 8301 The memory space on the module is not

enough or the specified memory medium is not
available.

L7_NO_RESOURCE 33538 8302 A resource bottleneck is available or the pro‐
cessor resources are unavailable.

L7_ERRCOD_INI_NO_RES 33540 8304 Domain: An additional simultaneous upload‐
ing is no longer possible. A resources bottle‐
neck is available.

L7_FUNC_NOT_AVAIL 33541 8305 The functionality is not available. A resources
bottleneck is available.

L7_INVALID_SEQUENCE 33793 8401 S7 protocol error: Incorrect sequence of serv‐
ices (e.g. during loading or uploading of a
block).

L7_WRONG_PI_STATE 33794 8402 Error during the service sequence. The service
cannot be performed due to the mode of the
addressed object.

L7_FATAL_ERR 33796 8404 S7 protocol: A significant error has occurred.
The function cannot be executed.

L7_CPU_IN_PROTECTED_STATE 33797 8405 The remote block is in status DISABLE (PBK).
The function cannot be executed.

L7_PDU_SIZE_ERR 34048 8500 S5 protocol error: Wrong PDU size.
L7_SERVICE_CANCELED 34051 8503 The service has been prematurely canceled.
L7_NO_OBJ_ACCESS 34561 8701 The object access is not supported.
L7_INVALID_ADDRESS 34562 8702 S7 protocol error: Access to a remote object

was rejected.
L7_OBJECT_ACCESS_DENIED 34563 8703 Access error: Access to a remote object was

rejected.
L7_ACCESS_ERR_OBJ 34564 8704 Access error: The object is damaged.
L7_INVALID_REQ_NB 53249 D001 D001: Protocol error: Job number is invalid.
L7_INVALID_REQ_VER 53250 D002 D002: Parameter error: Job variant is invalid.
L7_INVALID_FKT 53251 D003 D003: Parameter error: The function is invalid.
L7_INVALID_REQ_STAT 53252 D004 D004: Parameter error: Job status is invalid.
L7_INVALID_END_OF_REQ 53253 D005 D005: Parameter error: Job termination is in‐

valid.
L7_INVALID_ABORT_OF_CONN 53254 D006 D006: Parameter error: The ID for the connec‐

tion termination is invalid.
L7_INVALID_NB_OF_BUF 53255 D007 D007: Parameter error: The number of buffer

elements is invalid.
L7_INVALID_GEAR_DOWN 53256 D008 D008: Parameter error: The reduction factor is

invalid.
L7_INVALID_NB_OF_EXEC 53257 D009 D009: Parameter error: The execution number

is invalid.
L7_INVALID_TRIG_EVENT 53258 D00

A
D00A: Parameter error: The trigger event is
invalid.

L7_INVALID_TRIG_COND 53259 D00
B

D00B: Parameter error: The trigger require‐
ment is invalid.

L7_TRIG_EVENT_ERR_NO_BLK 53265 D011 D011: Parameter error: The block is not avail‐
able.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1037

Define Dec Hex Error Message (Stand 7.1.99)
L7_TRIG_EVENT_WRONG_OFF 53266 D012 D012: Parameter error: Incorrect address in

the block.
L7_TRIG_EVENT_ERR_BLKTYP 53267 D013 D013: Parameter error: The block type is inva‐

lid.
L7_TRIG_EVENT_BLK_IS_MOD 53268 D014 D014: Parameter error: The block is being de‐

leted/overloaded.
L7_TRIG_EVENT_ERR_VARADDR 53269 D015 D015: Parameter error: The tag address is in‐

valid.
L7_TRIG_EVENT_ERR_FOUND_BL 53270 D016 D016: Parameter error: No block can be acti‐

vated.
L7_TRIG_EVENT_ERR_SYS_TRIG‐
GER

53271 D017 D017: Parameter error: The SYS trigger num‐
ber is invalid.

L7_TRIG_COND_PATH_ERR 53285 D025 D025: Parameter error: The path is invalid.
L7_TRIG_COND_ACC_ERR 53286 D026 D026: Parameter error: The access type is in‐

valid.
L7_TRIG_COND_NB_OF_DB_ERR 53287 D027 D027: Parameter error: The number of DBs is

invalid.
L7_SEGMENT_NEXT_ERR 53297 D031 D031: Protocol error: CN-ID, S-ID or ID1 in the

following segment do not match the first seg‐
ment.

L7_SEGMENT_LEN_ERR 53298 D032 D032: Parameter error: Incorrect length of the
buffer result.

L7_REQUEST_LEN_ERR 53299 D033 D033: Protocol error: Job length is invalid.
L7_PARAM_CODING_ERR 53311 D03

F
D03F: Coding error: Other error in the param‐
eter part (e.g. reserve bytes do not equal
NULL).

L7_STALI_ID_ERR 53313 D041 D041: Data error: The stali ID is invalid.
L7_VAR_ADDR_ERR 53314 D042 D042: Data error: The tag address is invalid.
L7_REQ_DOES_NOT_EXIST 53315 D043 D043: Data error: The referenced job is not

available.
L7_INVALID_VAR_VALUE 53316 D044 D044: Data error: The tag value is invalid.
L7_BASP_ERR 53317 D045 D045: Data error: Quitting the BASP control

(ODIS) during HOLD is invalid.
L7_MEASUREMENT_ERR 53318 D046 D046: Data error: The measuring level during

runtime measuring is invalid.
L7_HIERARCHY_ERR 53319 D047 D047: Data error: The hierarchy for 'Read job

list' is invalid.
L7_INVALID_DEL_ID 53320 D048 D048: Data error: The delete ID for 'Delete job'

is invalid.
L7_INVALID_SUB_ID 53321 D049 D049: The replace ID for 'Replace job' is inva‐

lid.
L7_INVALID_ENTRANCE_DATA 53322 D04

A
D04A: Error during execution of 'programsta‐
tus'.

L7_DATA_CODING_ERR 53343 D05
F

D05F: Coding error: Other error in the data
part (e.g. reserve bytes do not equal NULL, ...).

L7_REQ_MEM_ERR 53345 D061 D061: Resource error: No memory for the job
is available.

L7_FULL_REQ_LIST 53346 D062 D062: Resource error: The job list is full.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1038 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
L7_TRIG_EVENT_IS_USED 53347 D063 D063: Resource error: The trigger event is al‐

located.
L7_TOO_SMALL_BUF 53348 D064 D064: Resource error: The memory space for

an element of the result buffer is too small.
L7_TOO_MANY_BUF 53349 D065 D065: Resource error: The memory space for

several elements of the result buffer is too
small.

L7_NO_TIMER_AVAIL 53350 D066 D066: Resource error: Another job allocates
the timer for the runtime measurement.

L7_PBUS_ALREADY_USED 53351 D067 D067: Resource error: Another job allocates
the P bus during 'Control selection'.

L7_INVALID_FKT_IN_STATE 53377 D081 D081: Operation mode error: The function in
the current operation mode is invalid.

L7_OPERATION_STATE_ERR 53378 D082 Operation mode error: Operating mode HOLD
cannot be quit.

L7_PROT_LEVEL_ERR 53409 D0A
1

D0A1: Protection and coding: The function in
the current protection level is not allowed.

L7_MOD_FKT_ERR 53410 D0A
2

D0A2: Protection and coding: The memory-
modifying OVS function is running.

L7_CTRL_IS_INST 53411 D0A
3

D0A3 Protection and coding: "Control selec‐
tion" is already set up.

L7_FORCE_IS_INST 53412 D0A
4

D0A4: Protection and coding: "Forcing" is al‐
ready set up.

L7_NO_REF_TO_REF 53413 D0A
5

D0A5: Protection and coding: The current job
references another job in the communication
partner which is not available.

L7_TE_AT_ONCE_REQ 53414 D0A
6

D0A6: Protection and coding: The job cannot
be locked/unlocked.

L7_REQ_NO_DELETE 53415 D0A
7

D0A7: Protection and coding: The job cannot
be deleted because e.g. it is currently being
read.

L7_REQ_NO_CHANGE 53416 D0A
8

D0A8: Protection and coding: The job cannot
be replaced because e.g. it is currently being
read or deleted.

L7_REQ_NO_READ 53417 D0A
9

D0A9: Protection and coding: The job cannot
be read because e.g. it is currently being de‐
leted.

L7_TIME_LIMIT 53418 D0A
A

D0AA: Timeout in process mode is exceeded.

L7_INVALID_INSTRUCT_PARAM 53419 D0A
B

D0AB: The job parameter are invalid in proc‐
ess moe.

L7_INVALID_INSTRUCT_DATA 53420 D0A
C

D0AC: The job data are invalid in process moe.

L7_OPERA‐
TIONS_MODE_REACHED

53421 D0A
D

D0AD: Operating mode is already set.

L7_TRIG_EVENT_ON_OTH‐
ER_CONN

53422 D0A
E

D0AE: The breakpoint is set using another
connection. The job cannot be manipulated.

L7_VAR_ACC_ERR 53441 D0C
1

D0C1: Processing warning: During accessing
tags at least one error was detected.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1039

Define Dec Hex Error Message (Stand 7.1.99)
L7_BZUE_TO_STOP 53442 D0C

2
D0C2: Processing warning: Operating mode
transition in STOP/HOLD during function call.

L7_BZUE_AFTER_VAR_ACC 53443 D0C
3

D0C3: Processing warning: Operating mode
transition and access error: Access errors oc‐
curred during loading of the tag(s).

L7_FKT_TIMEOUT 53444 D0C
4

D0C4: Processing warning: Timer overflow
during the runtime measuring.

L7_MOD_BLK_ERR 53445 D0C
5

D0C5: Processing warning: The blocks have
been deleted/uploaded since transition STOP.

L7_REF_REQ_WAS_DEL 53446 D0C
6

D0C6: Processing error: The referenced job
was deleted, because all jobs, that referenced
it, were deleted.

L7_REQ_WAS_DEL_AFTER_BZUE 53447 D0C
7

D0C7: Processing error: The job was deleted
due to quitting of the operating mode STOP.

L7_EMPTY_STALI_ID 53448 D0C
8

D0C8: Processing error: The status block was
interrupted, because an empty stali ID was de‐
tected during processing.

L7_VERL_STAT_RES_HGOB 53449 D0C
9

D0C9: Processing warning: Quitting the status
area via reset of the background OB.

L7_VERL_STAT_RES_HGOB_ZU‐
GERR

53450 D0C
A

D0CA: Processing warning: Quitting the status
area via reset of the background OB and ac‐
cess error during reading of the tags before
quitting.

L7_OUTPUT_LOCK_PA_ON 53451 D0C
B

D0CB: The output lock of the I/O outputs is
again enabled.

L7_SHORT_RESULT 53452 D0C
C

D0CC: The data range for the test functions is
limited by the timeout.

L7_INVALID_BL_NAME 53761 D201 D201: Syntax error in block name.
L7_INVALID_ARGUMENT 53762 D202 D202: Syntax error in the function parameters.
L7_INVALID_BL_TYPE 53763 D203 Internal error code, is being mapped
L7_NO_LINKED_BLK 53764 D204 Internal error code, is being mapped
L7_BL_ALREADY_INSERTED 53765 D205 D205: A linked block is already available in the

RAM; no conditional copying is possible.
L7_INVALID_BL_NUMBER 53766 D206 D206: A linked block is already available in the

EPROM; no conditional copying is possible.
L7_BL_IN_ROM 53767 D207 At least one block is already available in the

EPROM.
L7_TOO_MANY_COPIED_BL 53768 D208 The maximum number of copied (unlinked)

blocks on the module has been exceeded.
L7_MISSING_BL 53769 D209 D209: At least one unspecified block on the

module is unavailable.
L7_TOO_MANY_BL_INS 53770 D20

A
D20A: The maximum number of modules that
could be linked with one job was exceeded.

L7_TOO_MANY_BL_DEL 53771 D20
B

D20B: The maximum number of modules that
could be deleted with one job was exceeded.

L7_NO_AE 53772 D20
C

D20C: The OB cannot be copied, as the cor‐
responding runtime level is not available.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1040 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
L7_INVALID_YB 53773 D20

D
The SDB cannot be evaluated (e.g. unknown
number).

L7_NO_MORE_BL 53774 D20
E

D20E: No block available.

L7_INVALID_BL_LEN 53775 D20
F

D20F: The module-specific maximum block
size was exceeded.

L7_BLK_NB_ERR 53776 D210 D210: The block number is invalid.
L7_RUNTIME_REL_ATTRIB_ERR 53778 D212 D212: Incorrect header attribute (runtime rele‐

vant).
L7_TOO_MANY_SDB 53779 D213 D213: Too many SDBs.
L7_INVALID_BL 53780 D214 D214: Incorrect context in the block.
L7_INVALID_USER_PROG 53781 D215 D215: Incorrect user program.
L7_USER_PROG_ERR 53782 D216 D216: Invalid user program- clear/reset mod‐

ule.
L7_SDB0_PROTECTION_ERR 53783 D217 D217: The specified protection level in the

SDB0 is invalid.
L7_ACT_PAS_ATTRIB_ERR 53784 D218 D218: Incorrect attribute (active/passive).
L7_BL_LEN_ERR 53785 D219 D219: Incorrect block lengths (e.g. incorrect

length of the first section or the whole block).
L7_LOCAL_DATA_LEN_ERR 53786 D21

A
D21A: The length of the local data (e.g. odd.
for OB<20, local data length/ data stack too
large) or read-only ID is incorrect.

L7_COMPRESS_ERR 53787 D21
B

D21B: The module cannot compress, or the
compress process was prematurely interrup‐
ted.

L7_WRONG_CPU_LIMITS 53789 D21
D

D21D: The transferred dynamic qualified
project specifications are invalid. They do not
match the removal of CPU or the current user
program.
Check your settings and transfer them again.

L7_SDB_LINK_IN_ERR 53790 D21
E

D21E: Error during configuration of external
modules inside linking of a SDB.

L7_INVALID_LANGUAGE 53792 D220 D220: The language setting is invalid.
L7_MPI_PARAM_ERR 53793 D221 D221: Error in the SDB for the connection

management (incorrect MPI parameter in the
SDB0 or error in the connection description
(SDBs)).

L7_IK_PARAM_ERR 53794 D222 D222: Error in the SDB with GD configuration
(incorrect parameter in the GD-SDB).

L7_PBK_PARAM_ERR 53795 D223 D223: Error in instance DB for PBK, or the
maximum number of instance DBs was excee‐
ded.

L7_PMC_ERR 53796 D224 There is an error in the setup of the SCAN-
SDB.

L7_DP_ERR 53797 D225 There is an error in the setup of the DP-SDB.
L7_BLK_STRUCT_WRONG 53798 D226 D226: A structure error occurred in a module.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1041

Define Dec Hex Error Message (Stand 7.1.99)
L7_BL_TOO_LONG 53808 D230 D230: Incorrect resource specification. The

block is longer than specifed, or the informa‐
tion provided at start of loading does not match.

L7_OB_WITHOUT_AE 53809 D231 D231: At least one loaded the OB cannot be
copied, because the corresponding runtime
level is not available.

L7_LOAD_PRG_BLK_NB_ERR 53810 D232 D232: At least one block number of a loaded
module is invalid.

L7_EPR_BLK_ALREADY_EXIST 53811 D233 At least one loaded module is already availa‐
ble in EPROM.

L7_BLK_LOADING_2X 53812 D234 D234: The block is available twice in the speci‐
fied memory medium or in the job.

L7_BLK_WRONG_CRC 53813 D235 D235: The block contains a checksum error.
L7_BLK_NO_CRC 53814 D236 D236: The block contains no checksum error.
L7_COORD_RULE 53824 D240 D240: The coding regulations were violated.
L7_FEW_PROT_LEVEL 53825 D241 D241: The protection level of the function is too

small.
L7_SECURITY_LEVEL 53826 D242 AS protection error.
L7_OSUPDATE_WRONG_VER 53840 D250 D250: The update and module ID or the output

release do not match.
L7_OSUPDATE_ORDER_ERR 53841 D251 D251: Incorrect sequence in the operation sys‐

tem components.
L7_OSUPDATE_CHECKSUM_ERR 53842 D252 D252: Checksum error.
L7_OSUPDATE_NO_LOADER 53843 D253 D253: There is no runtime download available,

an update is only via the memory card possible.
L7_OSUPDATE_MEM_ERR 53844 D254 D254: Memory error in operating system.
L7_COMPILE_ERR 53888 D280 D280: Compiling error in AS 300.
L7_KOOR1_TRIGGER_ACTIVE 53921 D2A

1
D2A1: An additional block function or a trigger
on a block is active. Close the other online
function.

L7_KOOR2_TRIGGER_ACTIVE 53922 D2A
2

D2A2: A trigger is active on a block. Terminate
the test function.

L7_KOOR3_TRIGGER_NOT_AC‐
TIVE

53923 D2A
3

D2A3: The block is not active (sequenced) or
the block has to be deleted. Repeat the func‐
tion later.

L7_KOOR4_BLOCK_IN_WORK 53924 D2A
4

D2A4: The block is currently processed by an‐
other block function. Repeat the function later.

L7_KOOR6_PRG_SAVE 53926 D2A
6

D2A6: Saving and changing the user program
are simultaneously impossible. Repeat the
function later.

L7_KOOR7_BLOCK_NOT_RUN‐
NING

53927 D2A
7

D2A7: The block has the attribute ́ Unlinked´or
is not being processed. A test function on this
block is impossible.

L7_KOOR8_TST_RUNNING 53928 D2A
8

D2A8: A running test function prevents the
CPU configuration. Terminate the test function.

L7_KOOR9_CPU_PARAM 53929 D2A
9

D2A9: The CPU is currently being re-config‐
ured. "Load user program" is simultaneously
impossible. Repeat the function later.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1042 System Manual, 11/2019, Online help printout

Define Dec Hex Error Message (Stand 7.1.99)
L7_KOOR4_BGR_PARAM 53930 D2A

A
D2AA: Modules are being currently re-config‐
ured. Repeat the function later.

L7_H_CPU_REORG_MEM 53931 D2A
B

D2AB: Modifying the dynamic qualified project
specifications is active. The user program is
being re-evaluated.
Wait until the end of the reevaluation and re‐
peat your job.

L7_INVALID_SZL_ID 54273 D401 D401: Invalid SZL-ID.
L7_INVALID_INDEX 54274 D402 D402: Invalid INDEX.
L7_DGS_CONN_ALREADY_AN‐
NOU

54275 D403 D403: The service is already signed in/signed
out (diagnose/PMC).

L7_MAX_USER_NB 54276 D404 D404: The maximum station number was
reached.

L7_DGS_FKT_PAR_SYNTAX_ERR 54277 D405 D405: Service is not supported or syntax error
for the function parameters.

L7_NO_INFO 54278 D406 D406: The desired information is not available.
L7_DIAGNOSE_ERR 54279 D407 A diagnostics error has occurred.
L7_DIAG_ERR_UPDATE 54280 D408 A diagnostics error has occurred.
L7_DIAG_ERR_DPBUS 54281 D409 A diagnostic error has occurred on the DB bus.
L7_PRT_FKT_PAR_SYNTAX_ERR 54785 D601 D601: Syntax error in function parameter.
L7_PASSWORD_ERR 54786 D602 D602: You have entered an incorrect pass‐

word.
L7_PRT_CONN_ALREADY_ANNOU 54787 D603 D603: The connection is already allowed.
L7_PRT_CONN_ALREADY_FREE 54788 D604 D604: The connection is already approved.
L7_NO_PASSWORD 54789 D605 D605: Not allowed due to unavailable passord.
L7_INVALID_VAR_ADDR 55297 D801 D801: At least one tag address is invalid..
L7_UNKNOWN_REQ 55298 D802 D802: The specified job is not available.
L7_INVALID_REQ_STATUS 55299 D803 D803: Invalid job status.
L7_INVALID_CYCLIC_TIME 55300 D804 D804: Invalid cycle time (time basis or multiple

is invalid).
L7_NO_MORE_CYCLIC_REQ 55301 D805 D805: An additional cyclic reading job cann not

be set up.
L7_INVALID_CYCLIC_REQ_STATE 55302 D806 D806: The referenced job is in a status, in

which the requested function cannot be exe‐
cuted.

L7_CYCLIC_TIME_TOO_SHORT 55303 D807 D807: Interruption of the function due to over‐
load, i.e., the processing of the reading cycle
takes longer than the set cycle time.

L7_WRONG_TSY_FORMAT 56321 DC0
1

DC01: Error in the specification of date and
time.

L7_H_CPU_IS_MASTER 57857 E201 E201: CPU is already master:
L7_H_CPU_AUA_MODULE 57858 E202 E202: Link-up and update impossible due to

different user program in flash module.
L7_H_CPU_AUA_FW 57859 E203 E203: Link-up and update impossible due to

different firmware.
L7_H_CPU_AUA_MEM 57860 E204 E204: Link-up and update impossible due to

different memory expansion.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1043

Define Dec Hex Error Message (Stand 7.1.99)
L7_H_CPU_AUA_SYNC 57861 E205 E205: Abort link-up/update due to synchroni‐

zation error.
L7_H_CPU_AUA_KOORD 57862 E206 E206: Reject link-up/update due to coordina‐

tion violation.
L7_INVALID_ID2 61185 EF01 S7 protocol error: Error in ID2: In the job only

00H is valid.
L7_MISSING_CAPABILITY 61186 EF02 S7 protocol error: Error in ID2: The production

facility record is not available.
DEMO_RETURN_CODE 65281 FF01 The function in the demo version is invalid.

See also
Internal error codes and constants (Page 1026)

S7DOS Trace function (RT Uni)
The S7DOS trace can be controlled via the following registry entry:

HKEY_LOCAL_MACHINE/SOFTWARE/SIEMENS/SINEC/TrcParams
"Format"="long"
"Output"="file"
"Level"="0x71000000"

Format
The "Format" parameter can be set to "long" or "short". This affects the line layout of a trace line.
A time stamp is input for "long".

Output
The "Output" parameter determines where the output is saved. If output is set to "file", the
outputs are written to C:\tmp\S7FILE1.TRC or C:\tmp\S7FILE2.TRC. These files are limited to
approx. 2 MB and are written according to the alternating buffer principle.

Level
The parameter level determines what kind of outputs are saved in the tracefile. This parameter
is a bit-by-bit "OR" logic operation of the following constants:

Level
S7TRCAI 0x10000000UL Application Interface
S7TRCL7 0x01000000UL Lower Interface (Layer 7 PDUs)
S7TRCL4 0x40000000UL Lower Interface (Layer 4)
S7TRCL2 0x20000000UL Lower Interface (Layer 2)

If all possible trace outputs have to be activated, the level has to be set to ‘0x7FFFFFFF’. The
information is evaluated on activation of S7DOS. At this time the folder C:\tmp has to be
available. The folder is not automatically created by S7DOS.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1044 System Manual, 11/2019, Online help printout

See also
Internal error codes and constants (Page 1026)

16.8.1.4 API error texts (RT Uni)

API error messages
The most important error messages of S7 channel are listed in this section. If an error with an
error code that is not in the table occurs, please call the WinCC hotline.

● Error during initialization of the S7 communication driver for 'unitname' unit 'devicename'
device.

● Error during loading the S7 communication driver.

● For the configured functions is a S7DOS version xx or higher necessary.

● Error xx occurred in 'functionname' function

Error during initialization of the S7 communication driver for 'unitname' unit 'devicename' device. (RT Uni)
An error occurred while the communication drivers were being initialized.

● The configured device is not available.

● An error occurred during the device driver is activated.

● Copy protection error occurred.

● The bus connector to the MPI card is not inserted.

See also
API error messages (Page 1045)

Error during loading the S7 communication driver (RT Uni)
The communication subsystem SAPI-S7 or S7DOS could not be loaded.

● Communication driver not installed correctly.

● The DLLs required by the communication driver could not be loaded correctly.

● Path setting incorrect or required communication drivers deleted or moved.

See also
API error messages (Page 1045)

For the configured functions is a S7DOS version xx or higher necessary. (RT Uni)
Functions were configured (for example, PMC message processing) that are not supported by
the installed communication subsystem.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1045

See also
API error messages (Page 1045)

Error xx occurred in 'functionname' function (RT Uni)
The error indication xx occurred during the processing of the specified channel function.

The most important error codes are listed in this section. If an error occurs with an error code
that is not included in this table, please call the hotline.

See also
API error messages (Page 1045)

Error 1 - EC_NOIMPL - Function not implemented (RT Uni)
The called function is not implemented in the S7 channel.

See also
API error messages (Page 1045)

Error 2 - EC_STRUFE - structure error (RT Uni)
The language DLLs do not belong to the installed S7 channel.

See also
API error messages (Page 1045)

Error 3 - EC_ILEGAL - Function call not permitted (RT Uni)
The call of the function with the transferred parameters in S7 channel is not allowed

See also
API error messages (Page 1045)

Error 4 - EC_NO_RAM - No free memory (RT Uni)
The S7 channel could not create the memory that is required for the function.

See also
API error messages (Page 1045)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1046 System Manual, 11/2019, Online help printout

Error 5 - EC_NOFILE - File not available (RT Uni)
The specified file is not available.

See also
API error messages (Page 1045)

Error 6 - EC_LNGERR - Error during switching languages (RT Uni)
An error occurred while switching languages.

See also
API error messages (Page 1045)

Error 7 - EC_UNITNV - Invalid unit ID (RT Uni)
The specified UNIT-ID is invalid.

See also
API error messages (Page 1045)

Error 8 - EC_NOUNIT - No unit available (RT Uni)
The specified UNIT is not available.

See also
API error messages (Page 1045)

Error 9 - EC_UNITNA - Unit not active (RT Uni)
The specified UNIT is not active.

See also
API error messages (Page 1045)

Error 10 - EC_PTRERR - Incorrect pointer (RT Uni)
The pointer that is transferred in the function call is incorrect.

See also
API error messages (Page 1045)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1047

Error 11 - EC_TIMERR - Error during starting the internal timer (RT Uni)
An error occurred during starting of the internal timer.

See also
API error messages (Page 1045)

Error 12 - EC_S7LERR - Error during loading of the S7 communication driver (RT Uni)
The communication subsystem SAPI-S7 or S7DOS could not be loaded.

● Communication driver not installed correctly.

● The DLLs that are required by the communication driver could not be loaded correctly.

● Path setting incorrect or required communication drivers deleted or moved.

See also
API error messages (Page 1045)

Error 13 - EC_S7IERR - Error during initializing of the S7 communication driver (RT Uni)
An error occurred during initializing of the S7 communication driver.

● The configured device is not available.

● An error occurred during the device driver is activated.

● Copy protection error occurred.

● The bus connector to the MPI card is not inserted.

See also
API error messages (Page 1045)

Error 14 - EC_CONERR - Connection fault (RT Uni)
A read/write job was sent to a disrupted connection.

See also
API error messages (Page 1045)

Error 15 - EC_PARERR - Incorrect parameter supply (RT Uni)
An incorrect parameter was specified during a function call.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1048 System Manual, 11/2019, Online help printout

See also
API error messages (Page 1045)

Error 16 - EC_DATERR - Data error occurred (RT Uni)
The transferred connection data are invalid or damaged.

See also
API error messages (Page 1045)

Error 17 - EC_CONDAT - Incorrect connection data (RT Uni)
The transferred connection data are invalid or damaged.

See also
API error messages (Page 1045)

Error 18 - EC_WNDERR - SINEC Windows incorrect (RT Uni)
The SINEC Windows required for the communication could not be created.

See also
API error messages (Page 1045)

Error 19 - EC_RAWERR - Error occurred in the raw data structure (RT Uni)
The transferred raw data job is invalid or incorrect parameters were specified.

See also
API error messages (Page 1045)

Error 20 - EC_INTRDY - Internal function completed (RT Uni)
Internal function correctly completed.

See also
API error messages (Page 1045)

Error 21 - EC_EVNERR - EventNumber in MemberName n incorrect (RT Uni)
Internal function correctly completed.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1049

Tag configuration for status processing incorrect.

See also
API error messages (Page 1045)

Error 22 - EC_GETERR - Error during GETVALUECB (RT Uni)
Internal function correctly completed.

An error occurred during the function GETVALUECB

See also
API error messages (Page 1045)

Error 23 - EC_EVMERR - EventMember variables incomplete (RT Uni)
Internal function correctly completed.

Tag configuration for status processing incorrect.

See also
API error messages (Page 1045)

Error 24 - EC_EIDERR - WinCC EV_ID for status processing incorrect (RT Uni)
Internal function correctly completed.

Tag configuration for status processing incorrect.

See also
API error messages (Page 1045)

Error 25 - EC_S7DOSV - function available after S7DOS version xx (RT Uni)
Internal function correctly completed.

Functions were configured (for example, PMC message processing) that are not supported by
the installed communication subsystem.

See also
API error messages (Page 1045)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1050 System Manual, 11/2019, Online help printout

Error 26 - EC_EVSTDE - data not permitted during writing of .EventState (RT Uni)
Internal function correctly completed.

During writing of an .EventState tag incorrect data were transferred.

See also
API error messages (Page 1045)

Error 27 - EC_CONSTR - Configured connection too long as string (RT Uni)
Internal function correctly completed.

The data of the configured connection result in string with invalid length.

See also
API error messages (Page 1045)

Error 28 - EC_PDULEN - Configured data length greater than PDU length (RT Uni)
Internal function correctly completed.

The data length of a configured tag exceeds the maximum PDU length.

The permitted data length for a PDU length of 240 byte is 208 byte. A PDU length of 240 bytes
is usual for AS300 and for communication via SAPI-S7.

For a PDU length of 480 bytes, 448 bytes can be transferred. A PDU length of 480 bytes is usual
for AS400.

See also
API error messages (Page 1045)

Error 29 - EC_OBJERR - configured data area is not supported (RT Uni)
Internal function correctly completed.

The configured data area (for example area 0x80 I/O) is not supported.

See also
API error messages (Page 1045)

Error 30 - EC_SYSPAR - Error during the setting of the system parameters (RT Uni)
Internal function correctly completed.

An error occurred during the setting of the system parameters.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1051

See also
API error messages (Page 1045)

Error 31 - EC_SYPWRT - error during writing of the system parameters (RT Uni)
Internal function correctly completed.

An error occurred during the writing of the system parameters in the storage file.

See also
API error messages (Page 1045)

Error 32 - EC_NOVARI - Error during GetTagInfo call (RT Uni)
Internal function correctly completed.

An error occurred during call GetTagInfo.

See also
API error messages (Page 1045)

Error 33 - EC_ACKERR - Error during acknowledge via EventState (RT Uni)
Internal function correctly completed.

An error was reported during the sending of jobs to the AS.

See also
API error messages (Page 1045)

Error 34 - EC_LCKERR - Error during Lock/Release via EventState (RT Uni)
Internal function correctly completed.

An error was reported during the sending of jobs to the AS.

See also
API error messages (Page 1045)

Error 35 - EC_AUAOVL - buffer overflow during link-up and update (RT Uni)
Internal function correctly completed.

A buffer overflow due to excess number of jobs occurred during link-up and update.

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1052 System Manual, 11/2019, Online help printout

See also
API error messages (Page 1045)

Error 100 - EC_VATERR - Incorrect type of transferred tag (RT Uni)
Internal function correctly completed.

Transferred tag not from the right type

See also
API error messages (Page 1045)

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1053

Communicating with controllers
16.8 Troubleshooting of connection errors (commissioning) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1054 System Manual, 11/2019, Online help printout

Communicating with OPC (RT Uni) 17
17.1 OPC UA (RT Uni)

OPC UA (Unified Architecture) is platform-independent technology.

You use the OPC interface to link the devices and applications from various manufacturers in
a standardized manner.

See also
Using OPC in WinCC (Page 1055)

Basics of the WinCC OPC UA server (Page 1056)

Compatibility (Page 1057)

Security concept of OPC UA (Page 1058)

Configuring an HMI device as an OPC UA server (Page 1060)

17.2 Using OPC in WinCC (RT Uni)

Configuration
You can use an HMI device as OPC UA server. The OPC server provides process values from
the WinCC data management for one or more OPC clients.

Application
An OPC client accesses process values and their properties over the OPC interface. Properties
of a process value are, for example, time stamp and quality code.

The OPC server supports the following types of access by the OPC client:

● Read/write process values

● Filter process values

● Monitor process values

HMI device as OPC server
An HMI device as OPC server makes the data available to other applications. The applications
can run on the same HMI device or on HMI devices in the connected network environment.

The following schematic diagram shows the use of MS Excel as an OPC client that displays
process values of the OPC server:

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1055

See also
OPC UA (Page 1055)

Basics of the WinCC OPC UA server (Page 1056)

Compatibility (Page 1057)

Security concept of OPC UA (Page 1058)

Configuring an HMI device as an OPC UA server (Page 1060)

OPC server configuration (Page 1061)

17.3 Basics of the WinCC OPC UA server (RT Uni)

Supported certificates
The WinCC OPC UA server is installed as Windows service with WinCC and started
automatically.

The WinCC OPC UA server supports only the "UA-TCP UA-SC UA Binary" communication
profile and the following server profiles:

● Embedded UA Server Profile

● Standard UA Server Server

For detailed information on these profiles refer to the website of the OPC Foundation (https://
opcfoundation.org/).

URL of the WinCC OPC UA server
You access the WinCC OPC UA server via the following URL:

● "opc.tcp://[HostName]:[Port]"

Parameter Description
HostName Placeholder for the computer name. Is used automatically
Port Port number. "4890" is set by default.

The used port number is adjustable.

Communicating with OPC (RT Uni)
17.3 Basics of the WinCC OPC UA server (RT Uni)

WinCC Engineering V16 - Runtime Unified
1056 System Manual, 11/2019, Online help printout

https://opcfoundation.org/
https://opcfoundation.org/

Discovery server
WinCC supports the "Discovery server". The Discovery server is by default installed on the HMI
device as Windows service.

The Discovery server provides information about the OPC UA server to the UA clients
registered on the server.

On the WinCC OPC UA server you configure whether and on which Discovery servers the
WinCC OPC UA server registers during runtime start.

See also
Configuring an HMI device as an OPC UA server (Page 1060)

OPC UA (Page 1055)

Using OPC in WinCC (Page 1055)

Compatibility (Page 1057)

Security concept of OPC UA (Page 1058)

OPC UA services support (Page 1063)

Permitted data types (OPC) (Page 1064)

OPC server configuration (Page 1061)

17.4 Compatibility (RT Uni)
Support of the mentioned specifications is checked regularly by the "Compliance Test Tool"
(CTT) of the OPC Foundation. Interoperability with OPC products of other manufacturers is
ensured through the participation in "OPC Interoperability Workshops".

The test results submitted are published on the website of the OPC Foundation. The results can
be called up from there using the search term "OPC Self-Certified Products".

See also
OPC UA (Page 1055)

Using OPC in WinCC (Page 1055)

Basics of the WinCC OPC UA server (Page 1056)

Security concept of OPC UA (Page 1058)

Configuring an HMI device as an OPC UA server (Page 1060)

Communicating with OPC (RT Uni)
17.4 Compatibility (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1057

17.5 Security concept of OPC UA (RT Uni)

Introduction
The WinCC OPC UA server uses different communication protocols for encrypted data
exchange, e.g. TCP/IP or HTTP. For authorization between WinCC OPC UA server and OPC
UA client certificates are exchanged.

Note
Notes on IT security

When configuring the OPC UA server, observe the information on IT Security in the "Readme"
section of the TIA Portal online help.

Security concept
The WinCC OPC UA server and each OPC UA client authorize themselves mutually by
exchanging certificates.

By default, the WinCC OPC UA server creates during installation a self signed instance
certificate.

Certificates represent the authentication mechanism of OPC UA applications. Each application
has its own instance certificate and thereby identifies itself within the public key infrastructure.

The certificates used by the WinCC OPC UA server are stored via the settings in the
configuration file "OpcUaServerWinCCUA.xml".

Instance certificate of WinCC OPC UA server
Each WinCC OPC UA server for secure operation requires a separate instance certificate with
a private key. The certificate is only valid on the respective PC and may be used only by the
WinCC OPC UA server installed there.

● Instance certificate
When you install the server, a self-signed instance certificate of the server is created and
stored in the certificate folder of the server. You can distribute the instance certificate to
other secure OPC clients.

● Private key
The private key for this certificate is only stored in the certificate folder. Access to the folder
with the private key is restricted to the administrator. The storage location of the private key
is specifiedi n the configuration file in the XML path "SecuredApplication/
ApplicationtCertificate/". You can change the storage location, if necessary.
The following path is set by default:
[ApplicationPath]\PKI\WINCC-OPC-UA-Server
Storage path for das instance certificate: \WinCCUA\bin\PKI\OPCUA\certs
Storage location for the private key: \WinCCUA\bin\PKI\OPCUA\private

Communicating with OPC (RT Uni)
17.5 Security concept of OPC UA (RT Uni)

WinCC Engineering V16 - Runtime Unified
1058 System Manual, 11/2019, Online help printout

Example of instance certificate configuration

Client certificates not accepted
If a UA client accesses the WinCC OPC UA server without its trusted certificate, the WinCC
OPC UA server rejects the secured communication. The server copies the client certificate to
the folder for rejected certificates.

You define the storage for rejected certificates with the configuration file of the WinCC OPC UA
server, for example,

To enable secured communication with this client, you will have to move the rejected certificate
to the certificate memory for trusted certificates.

Security settings
The following table lists the security settings supported by the WinCC OPC UA server:

SecurityPolicy Message Security Mode
Basic128Rsa151 Sign SignAndEncrypt
Basic2562 Sign SignAndEncrypt
Basic256Sha2563 Sign SignAndEncrypt

1 Certificate exchange with depth of encryption of 128 bit.
2 Certificate exchange with depth of encryption of 256 bit.
Sign: The data packages are signed with the certificates, but not encoded
SignAndEncrypt: The data packages are signed with the certificates and encoded

Communicating with OPC (RT Uni)
17.5 Security concept of OPC UA (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1059

User identification
For user account identification of an OPC UA client, the WinCC OPC UA server supports the
following methods:

● "Anonymous"
To disable support of anonymous users, delete the entry in the configuration file of the
WinCC OPC UA server.

● "User name / Password".
The respective user account must be known in the user administration of the operating
system of the WinCC OPC UA server. In the TIA Portal user administration you assign the
global access right "OPCUAServer_GlobalAccess" to the user.

See also
OPC UA (Page 1055)

Using OPC in WinCC (Page 1055)

Basics of the WinCC OPC UA server (Page 1056)

Compatibility (Page 1057)

Configuring an HMI device as an OPC UA server (Page 1060)

OPC UA services support (Page 1063)

Permitted data types (OPC) (Page 1064)

17.6 Configuring an HMI device as an OPC UA server (RT Uni)

Requirement
An HMI device has been created and networked.

Procedure
To configure an HMI device as an OPC UA server, follow these steps:

1. Open the "Runtime settings" of the HMI device in the project tree.

2. Enable "Services > Operate as OPC server".

3. Configure the server settings in the configuration file of the OPC UA server.

4. Save the project.

5. Download the project to the HMI device.

6. Start runtime on the HMI device.

Result
The HMI device can be reached as OPC server in runtime.

Communicating with OPC (RT Uni)
17.6 Configuring an HMI device as an OPC UA server (RT Uni)

WinCC Engineering V16 - Runtime Unified
1060 System Manual, 11/2019, Online help printout

See also
OPC UA (Page 1055)

Using OPC in WinCC (Page 1055)

Basics of the WinCC OPC UA server (Page 1056)

Compatibility (Page 1057)

Security concept of OPC UA (Page 1058)

17.7 OPC server configuration (RT Uni)

17.7.1 Structure of the configuration file (RT Uni)

Introduction
You configure the WinCC OPC UA server in the configuration file "OpcUaServerRTIL.xml".

File location
The project-specific configuration file "OpcUaServerRTIL.xml" is stored in the WinCC Unified
installation directory under:

"<WinCCUnified>\bin"

<SecuredApplication> section
In this section the OPC UA application security is set.

Section Description
<Secured Application>
 <BaseAddresses>
 <...></...>
 </BaseAddresses>

Address and port number
The parameter [HostName] is the placeholder for the computer name and
is determined during runtime.
Example:
<BaseAdresses>
 <ua:String>opc.tcp://
 [HostName]:5210</ua:String>
</BaseAdresses>

Communicating with OPC (RT Uni)
17.7 OPC server configuration (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1061

Section Description
 <SecurityProfileUris>
 <SecurityProfile>
 <...></...>
 </SecurityProfile>
 ...
 </SecurityProfileUris>

Security policies
● You enable the setting with "true".
● You disable the setting with "false".
All active OPC clients with this certificate are thus disabled.
Example:
<SecurityProfile>
 <ProfileUri>http://opcfoundation.org/
 UA/SecurityPolicy#Basic128Rsa15</ProfileUri>
 <Enabled>false</Enabled>
</SecurityProfile>

 <ApplicationCertificate>
 <TrustedCertificateStore>
 <RejectedCertificatesStore>
 <...>

Storage location of the certificates

</Secured Application>

<ServerConfiguration> section
The parameters for data transmission and authentication are set in this section.

<ServerConfiguration>
 <SecurityPolicies>
 <SecurityPolicy>
 <...></...>
 </SecurityPolicy>
 ...
 </SecurityPolicies>

Message Security Modes
To deactivate a security setting, delete the entire entry.
Example:
<SecurityPolicy>
 <ProfileUri>http://opcfoundation.org/
 UA/SecurityPolicy#Basic128Rsa15
 </ProfileUri>
 <MessageSecurityModes>SignAndEncrypt
 </MessageSecurityModes>
</SecurityPolicy>

 <UserTokenPolicies>
 <UserTokenPolicy>
 <...></...>
 </UserTokenPolicy>
 ...
 </UserTokenPolicies>

User authentication
To deactivate a setting, delete the entire entry.
Example
<UserTokenPolicy>
 <TokenType>
 <!--[User]-->
</TokenType>
</UserTokenPolicy>
Use the "Anonymous" setting only for test and diagnostics purposes.

</ServerConfiguration>

Communicating with OPC (RT Uni)
17.7 OPC server configuration (RT Uni)

WinCC Engineering V16 - Runtime Unified
1062 System Manual, 11/2019, Online help printout

See also
Configuring an OPC UA server (Page 1063)

17.7.2 Configuring an OPC UA server (RT Uni)

Opening the configuration file
1. Open the Windows Explorer.

2. Navigate to the directory "<WinCCUnified-InstallationDirectory>\bin".

3. Open the configuration file "OpcUaServerRTIL.xml".

Changing the port number of the WinCC OPC UA server
1. If necessary, change the port number 4890 under <BaseAdresses>.

Do not use a port number that is already assigned to another application.

Configuring a WinCC OPC UA server
1. Configure the OPC UA application security in the section <SecuredApplication>.. 　

2. Configure the data transmission and authentication in the
section <ServerConfiguration>.

See also
Structure of the configuration file (Page 1061)

17.8 OPC UA services support (RT Uni)

Introduction
The WinCC OPC UA server supports the following described functionality based on the "OPC
UA 1.02" specification of the OPC Foundation.

OPC UA Service Sets
The following table shows the supported OPC UA Service Sets:

OPC UA Service Sets Services
Discovery Service Set FindServers

GetEndpoints
Secure Channel Service
Session Service Set

All

Communicating with OPC (RT Uni)
17.8 OPC UA services support (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1063

OPC UA Service Sets Services
View Service Set Browse

BrowseNext
Attribute Service Set Read

Write
Subscription Service Set CreateSubscription

SetPublishingMode
Publish
RePublish
DeleteSubscription

MonitoredItem Service Set CreateMonitoredItems
SetMonitoringMode
DeleteMonitoredItems

See also
Basics of the WinCC OPC UA server (Page 1056)

Security concept of OPC UA (Page 1058)

17.9 Permitted data types (OPC) (RT Uni)

Permitted data types
The following table lists the data types supported by the WinCC OPC servers:

OPC data type WinCC data type
BOOLEAN BOOL
SBYTE SINT
INT16 INT
INT32 DINT
INT64 LINT
BYTE USINT
UINT16 UINT
UINT32 UDINT
UINT64 ULINT
FLOAT REAL
DOUBLE LREAL
DOUBLE LTIME*
CDATETIME DATETIME
INT64 -
BYTE BYTE
UINT16 WORD
UINT32 DWORD

Communicating with OPC (RT Uni)
17.9 Permitted data types (OPC) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1064 System Manual, 11/2019, Online help printout

OPC data type WinCC data type
UINT64 LWORD
BYTESTRING RAW
STRING STRING
STRING CHAR*
STRUCTURE STRUCT

* Read-only access

See also
Basics of the WinCC OPC UA server (Page 1056)

Communicating with OPC (RT Uni)
17.9 Permitted data types (OPC) (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1065

Communicating with OPC (RT Uni)
17.9 Permitted data types (OPC) (RT Uni)

WinCC Engineering V16 - Runtime Unified
1066 System Manual, 11/2019, Online help printout

Performance features (RT Uni) 18
18.1 General technical data (RT Uni)

18.1.1 Permitted special characters (RT Uni)

Introduction
The following table shows the restrictions that must be observed when allocating names.

Permitted characters

Name Restriction
Device name The following constraints apply to the assignment of the device name:

● Do not use the following characters:
– , ; : ! ? " ' ^ ´ ` ~ _+ = / \ ¦ @ * # $ % & § ° () [] { } < >
– Spaces

● Use upper case only.
● The first character must be a letter.
● The first 12 characters of the device name must be unique.

Object names The use of the following special characters is not supported:
● Pipe (|)
● Slash (/), inverted slash (\)
● Dot (.) , Comma (,), Semicolon (;), Colon (:)
● Quotation marks ("), Apostrophe (')
● Angle brackets (<), (>)
● Tilde (~), Hash (#), Dollar sign ($), Asterisk (*)
● Question mark (?)
The use of the following control characters is not supported:
● \x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F

\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F
When creating scripts, also consider the restrictions relating to special characters of the programming
language.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1067

18.2 SIMATIC Unified Comfort Panel (RT Uni)

Unified Comfort Panel
The following tables of performance features help you to assess whether your project conforms
to the system limits of a given HMI device.

The specified maximum values are not additive. It cannot be guaranteed that configurations
running on the devices at the full system limits will be functional.

Furthermore, the complexity of configuring the screens, such as the number of objects per
screen, the number of tag connections, cycle times and scripts, has a significant influence on
the open screen times and the performance in runtime.

In addition to the specified limits, allowances must be made for restrictions imposed by
configuration memory resources.

Tags

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of tags in the project 8000 8000
Number of elements per array 1600 1600

Alarms

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of alarm classes 32 32
Number of discrete alarms 9000 9000
Number of analog alarms 300 300
Length of an alarm in characters 512 512
Number of alarm texts per interrupt 10 10
Number of process values per alarm 10 10
Number of queued alarm events 750 750

Screens

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of screens 1200 1200
Number of lower-level screen windows 10 10
Number of objects per screen 800 1200
Number of objects from the "Controls" area per screen 40 80
Number of tags per screen 600 800

Performance features (RT Uni)
18.2 SIMATIC Unified Comfort Panel (RT Uni)

WinCC Engineering V16 - Runtime Unified
1068 System Manual, 11/2019, Online help printout

Parameter sets

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of parameter set types -- --
Number of parameter set type elements -- --
Number of parameter sets -- --
Reserved memory for data records in the internal Flash -- --

Logs

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of logs 50 50
Number of logging tags, SQLite 5000 5000
Number of logging tags, Microsoft SQL -- --
Number of entries per log (including all log segments) 500000 500000

Trends

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of trends 600 600
Number of trends per trend view 20 20
Number of trend areas per trend view 2 5

Text lists and graphics lists

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of graphics lists 750 750
Number of text lists 750 750
Number of entries per text or graphics list 750 750
Number of graphic objects 6000 6000
Number of text elements 60000 60000

Scripts

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of scripts 600 600
Number of functions per function list 25 25

Performance features (RT Uni)
18.2 SIMATIC Unified Comfort Panel (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1069

Scheduler

 Unified Comfort
7-12"

Unified Comfort 15-22"

Number of tasks, time- or event-triggered 70 70

Communication

 Unified Comfort
7-12"

Unified Comfort 15-22"

Number of S7 connections 1) 16 16
1) SIMATIC NET is required to use more than 11 connections.

Reporting

 Unified Comfort
7-12"

Unified Comfort 15-22"

Number of templates -- --
Number of report tasks -- --
Number of report tasks started at the same time -- --
Number of reports executed at the same time -- --

OPC UA

 Unified Comfort
7-12"

Unified Comfort 15-22"

Number of connected OPC UA clients 3 3

Languages

 Unified Comfort
7-12"

Unified Comfort 15-22"

Number of runtime languages 32 32

User administration

 Unified Comfort
7-12"

Unified Comfort 15-22"

Number of roles 50 50
Number of predefined function rights 20 20
Number of users 200 200

Performance features (RT Uni)
18.2 SIMATIC Unified Comfort Panel (RT Uni)

WinCC Engineering V16 - Runtime Unified
1070 System Manual, 11/2019, Online help printout

Project

 Unified Comfort
7-12"

Unified Comfort 15-22"

Size of the project files on the device < 100 MB < 100 MB

18.3 SIMATIC Unified PC

Unified PC based
The following tables of performance features help you to assess whether your project conforms
to the system limits of a given HMI device.

The specified maximum values are not additive. It cannot be guaranteed that configurations
running on the devices at the full system limits will be functional.

Furthermore, the complexity of configuring the screens, such as the number of objects per
screen, the number of tag connections, cycle times and scripts, has a significant influence on
the open screen times and the performance in runtime.

In addition to the specified limits, allowances must be made for restrictions imposed by
configuration memory resources.

Tags

 SIMATIC Unified PC
Number of PowerTags 600000 (depends on the license)
Number of internal tags 200000
Number of elements per array 2000

Alarms

 SIMATIC Unified PC
Number of alarm classes 32
Number of discrete alarms 200000
Number of analog alarms 10000
Length of an alarm in characters 512
Number of alarm texts per interrupt 10
Number of process values per alarm 10
Number of alarms for every second (continuous load) 20
Number of queued alarm events unlimited
Number of alarms for every 10 seconds (alarm burst) 8000

Performance features (RT Uni)
18.3 SIMATIC Unified PC

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1071

Screens

 SIMATIC Unified PC
Maximum size in the engineering system 10,860 * 6,110 pixels
Maximum size in Runtime 4,096 * 2,160 pixels
Number of screens 2000
Number of lower-level screen windows unlimited
Number of objects per screen 1500
Number of tags per screen 1000

Parameter sets

 SIMATIC Unified PC
Number of parameter set types 750
Number of parameter set type elements 1000
Number of parameter sets 2000

Logs

 SIMATIC Unified PC
Number of logs 1000
Number of logging tags, SQLite 5000
Number of logging tags, Microsoft SQL Maximum number of PowerTags
Number of entries per log (including all log segments) 500000
Number of entries per second 30000

Trends

 SIMATIC Unified PC
Number of trends 1000
Number of trends per trend view 60
Number of trend areas per trend view 5

Text lists and graphics lists

 SIMATIC Unified PC
Number of graphics lists 1000
Number of text lists 2000
Number of entries per text or graphics list 3500
Number of graphic objects unlimited
Number of text elements unlimited

Performance features (RT Uni)
18.3 SIMATIC Unified PC

WinCC Engineering V16 - Runtime Unified
1072 System Manual, 11/2019, Online help printout

Scripts

 SIMATIC Unified PC
Number of scripts unlimited
Number of functions per function list 50

Scheduler

 Unified PC based
Number of tasks, time- or event-triggered 200

Communication

 SIMATIC Unified PC
Number of S7 connections 1) 128
1) SIMATIC NET is required to use more than 11 connections.

Reporting

 SIMATIC Unified PC
Number of templates 500
Number of report tasks 500
Number of report tasks started at the same time 20
Number of reports executed at the same time 5

OPC UA

 Unified PC based
Number of connected OPC UA clients 10

Languages

 SIMATIC Unified PC
Number of runtime languages 32

User administration

 SIMATIC Unified PC
Number of roles 50
Number of predefined function rights 20
Number of users 200

Performance features (RT Uni)
18.3 SIMATIC Unified PC

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1073

Plant objects

 SIMATIC Unified PC
Number of plant object types 400
Number of plant object instances 65000
Number of hierarchy levels unlimited

Performance features (RT Uni)
18.3 SIMATIC Unified PC

WinCC Engineering V16 - Runtime Unified
1074 System Manual, 11/2019, Online help printout

Runtime API (RT Uni) 19
19.1 Basics (RT Uni)

Task of the runtime API
Runtime API describes the open programming interface of WinCC Unified Scada RT. With the
Runtime API, you can use the internal functions of WinCC in your own applications. With an
ODK client, you can read out all the objects of the Runtime system and change their Runtime
attributes, for example, for tags or alarms.

The ODK is optimized for the processing of mass data when special objects are used, for
example the reading or writing of 1000 tags in one pass.

Note

Siemens is not liable for and does guarantee the compatibility of the data and information
transported via the API interfaces with third-party software.

We expressly point out that improper use of the API interface can result in data loss or
production downtimes.

Requirement
● Programming environment is installed, e.g. MS Visual Studio

● WinCC Runtime Unified Scada RT is installed.

Application of C++ and .NET
The Runtime API makes all the interfaces available for the access to the runtime system in the
languages C++ and C#.

Name-based addressing of objects
The objects of the Runtime system are addressed by their name and the full name path.

The name path of objects consists of several components and has the following syntax:

[SystemName::][ObjectName][.ElementPath][:SubElementName]
● SystemName

Name of a Runtime systems (optional)
If the "SystemName" is omitted, the object is searched for on the local runtime system.

● ObjectName
Name of a tag or a structure

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1075

● ElementPath
Element of a structure

● SubElementName
Subelement of an object, e.g. alarm or logging tag of a tag.

Examples for access to different object types:

● Simple tag: MyRTSystem::MySimpleTag
● Structure tag: MyRTSystem::Motor.Temperature
● Alarm of a simple tag: MyDiscreteTag:MyDiscreteAlarm
● Alarm of a structure tag: Motor.Temperature:MyAnalogAlarm
● Logging tag: MySimpleTag:MyLoggingTag
● Connection: MyRTSystem::MyHmiConnection

19.2 Changes to the API (RT Uni)

Changes compared to previous version
The following changes were made at the following interfaces:

Runtime API (RT Uni)
19.2 Changes to the API (RT Uni)

WinCC Engineering V16 - Runtime Unified
1076 System Manual, 11/2019, Online help printout

Version 15 to 15.1

Context Version 15 Version 15.1 Lan‐
guag
e

Description

Assemblies Siemens.Runtime.HmiIL.In‐
terfaces.dll
Siemens.Run‐
time.HmiIL.Alarms.dll
Siemens.Runtime.HmiIL.dll
Siemens.Run‐
time.HmiIL.Tags.dll
Siemens.Run‐
time.HmiIL.PlantModel.dll
Siemens.Runtime.HmiIL.Ta‐
gLogging.dll
Siemens.Run‐
time.HmiIL.AlarmLogging.dll
Siemens.Run‐
time.HmiIL.Connections.dll
Siemens.Run‐
time.HmiIL.Umc.dll

Siemens.Runtime.HmiUni‐
fied.Interfaces.dll
Siemens.Runtime.HmiUni‐
fied.dll
Siemens.Runtime.HmiUni‐
fied.dll
Siemens.Runtime.HmiUni‐
fied.Tags.dll
Siemens.Runtime.HmiUni‐
fied.PlantModel.dll
Siemens.Runtime.HmiUni‐
fied.TagLogging.dll
Siemens.Runtime.HmiUni‐
fied.AlarmLogging.dll
Siemens.Runtime.HmiUni‐
fied.Connections.dll
Siemens.Runtime.HmiUni‐
fied.Umc.dll

C# Assemblies renamed.

HmiILRt.lib
HmiILRt.dll
HmiILRtAlarms.dll
HmiILRtTags.dll
HmiILRtPlantModel.dll
HmiILRtTagLogging.dll
HmiILRtAlarmLogging.dll
HmiILRtConnections.dll
HmiILRtUmc.dll

HmiUnifiedRt.lib
HmiUnifiedRt.dll
HmiUnifiedRtAlarms.dll
HmiUnifiedRtTags.dll
HmiUnifiedRtPlantModel.dll
HmiUnifiedRtTagLogging.dll
HmiUnifiedRtAlarmLog‐
ging.dll
HmiUnifiedRtConnections.dll
HmiUnifiedRtUmc.dll

C++

 Siemens.Run‐
time.HmiIL.Pma.Interfa‐
ces.dll

C# New: Assemblies for the PI Option
Performance Insight

 OneOeeODK.dll C++

Runtime API (RT Uni)
19.2 Changes to the API (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1077

Context Version 15 Version 15.1 Lan‐
guag
e

Description

Namespaces Siemens.Runtime.HmiIL.In‐
terfaces

Siemens.Runtime.HmiUni‐
fied

C# Namespaces renamed.

Siemens::Run‐
time::HmiIL::Cpp
Siemens::Run‐
time::HmiIL::Common::Cpp
Siemens::Run‐
time::HmiIL::Alarms::Cpp
Siemens::Run‐
time::HmiIL::Logging::Cpp
Siemens::Run‐
time::HmiIL::Connec‐
tion::Cpp
Siemens::Run‐
time::HmiIL::PlantMo‐
del::Cpp
Siemens::Run‐
time::HmiIL::Tags::Cpp
Siemens::Run‐
time::HmiIL::Umc::Cpp

Siemens::Runtime::HmiUni‐
fied::Rt
Siemens::Runtime::HmiUni‐
fied::Common
Siemens::Runtime::HmiUni‐
fied::Alarms
Siemens::Runtime::HmiUni‐
fied::Logging
Siemens::Runtime::HmiUni‐
fied::Connection
Siemens::Runtime::HmiUni‐
fied::PlantModel
Siemens::Runtime::HmiUni‐
fied::Tags
Siemens::Runtime::HmiUni‐
fied::Umc

C++

 Siemens::Runtime::HmiUni‐
fied::Pma

C# New: Namespaces for the PI Option
Performance Insight

 Siemens::Runtime::HmiUni‐
fied::PMA

C++

BrowseLog‐
gingTag

 BrowseLoggingTag.cs has
been removed und replaced
by ILoggingTags

C# BrowseLoggingTag has been re‐
placed.

 IOdkRtBrowseLoggingTag.h
has been removed und re‐
placed by ILoggingTags

C++

ILoggedTag‐
Value

Int32 Quality { get; set; } UInt16 Quality { get; set; } C# Data type changed
GetQuality(OUT int32_t* val‐
ue)

GetQuality(OUT uint16_t*
value)

C++

IAlarmResult UInt64 Id { get; } UInt32 Id { get; } C# Data type changed
GetId(OUT uint64_t * value) GetId(OUT uint32_t * value) C++
Byte State { get; } HmiAlarmState State { get; } C# Enumerations introduced for State

und SourceType.UInt16 SourceType { get; } HmiAlarmSourceType Sour‐
ceType { get; }

ILoggedAlarm‐
Result

Byte State { get; } HmiAlarmState State { get; } C# Enumerations introduced for State
und SourceType.Byte SourceType { get; } HmiAlarmSourceType Sour‐

ceType { get; }
Enum.cs Added to the enumerations

"None = 0"
C# All enumerations begin with 0.

IPlantObject GetLoggingTags method
has been removed

C# GetLoggingTags has been removed.

 GetLoggingTags method
has been removed

C++

Runtime API (RT Uni)
19.2 Changes to the API (RT Uni)

WinCC Engineering V16 - Runtime Unified
1078 System Manual, 11/2019, Online help printout

Context Version 15 Version 15.1 Lan‐
guag
e

Description

IPlantObject‐
PropertySet

void Write(); IList<IErrorResult> Write(); C# Supplies a list with instances of "IEr‐
rorResult" instances.

Write(); Write(HmiUnified::Rt::IError‐
ResultEnumerator** ppE‐
numerator);

C++ Supplies an "IErrorResultEnumera‐
tor" instance.

IPlantModel GetPlantObjectByPath has
been removed

C# Obsolete method GetPlantObjectBy‐
Path has been removed. Can be re‐
placed by GetPlantObject.

 C++

UMC.cs Added to the enumeration
ServerStatus "None = 0"

C# All enumerations begin with 0.

19.3 Creating a minimal ODK client (RT Uni)

Introduction
An ODK client uses the ODK API to access objects of the WinCC Unified system.

In the following, an ODK client is created for use of the Runtime API in the C# and C++
languages.

The programs only contain the most needed components of a simple client. They form the
framework for all the subsequent runtime code examples in this documentation. See also
section AUTOHOTSPOT.

Note

You will find additional programming examples on the installation medium in the file "Support
\Openness\Siemens.Unified.Openness_SDK_<version number>.zip" in the subdirectory"ODK
\samples".

Requirement
● Development environment is installed.

● The ODK SDK was extracted locally on your computer. You will find the ODK SDK in the
"Support\Openness" folder on the WinCC Unified DVD in the file
"Siemens.Unified.Openness_SDK_<version number>.zip".

Note

If you create a C++ ODK client, you must set the system tag "PATH=C:\Program Files
\Siemens\Automation\WinCCUnified\bin" and perform a restart.

Runtime API (RT Uni)
19.3 Creating a minimal ODK client (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1079

Procedure C# client
1. Create a new .NET project in the development environment.

2. Carry out the following project settings:

– Target framework is .NET 4.6.

– ODK client is "Release" version for the x64 platform.

3. Create references to the following assembly: Siemens.Runtime.HmiUnified.Interfaces.dll
(Copy Local = False)
You will find the assembly in the local folder to which you have extracted
Openness_SDK.zip, in the subfolder "ODK\bin".

4. Create a program with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using Siemens.Runtime.HmiUnified;

namespace Siemens.Runtime.HmiUnified.TestClient
{
 class Program
 {

 static void Main(string[] args)
 {
 try
 {
 using (IRuntime runtime = Runtime.Connect())
 {
 //do runtime operations
 }
 }
 catch (Exception ex)
 {
 System.Console.WriteLine(string.Format("Exception occured
{0}", ex.Message));
 }
 }
 }
}

Procedure C++ client
1. Create a new C++ project in the development environment.

2. Set the following include directories for required headers:

– <Local folder to which you have extracted the ODK SDK>\ODK\include\ODK

– <Local folder to which you have extracted the ODK SDK>\ODK\include\ODK\include\CF

Runtime API (RT Uni)
19.3 Creating a minimal ODK client (RT Uni)

WinCC Engineering V16 - Runtime Unified
1080 System Manual, 11/2019, Online help printout

3. Create references to the following libraries in "<Local folder to which you have extracted the
ODK SDK>\ODK\include\ODK\lib":

– HmiUnifiedRt.lib

– CfCore.lib

4. Create a reference to the following directory as "Additional Library Directory":

– <Local folder to which you have extracted the ODK SDK>\ODK\lib

5. Create a program with the following code:

#include <CfTL>

#include "IOdkRt.h"
#include "IOdkRtTag.h"
#include "IOdkRtTagLogging.h"
#include "IOdkRtAlarm.h"
#include "IOdkRtAlarmLogging.h"
#include "IOdkRtCpm.h"
#include "IOdkRtConnection.h"
#include "IOdkRtUmc.h"

#include <stdio.h>
#include <tchar.h>
#include <iostream>

using namespace Siemens::Runtime::HmiUnified;
using namespace Siemens::Runtime::HmiUnified::Common;
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 CCfString projectName = L"";
 IRuntimePtr pRuntime;

 if(CF_SUCCEEDED(Connect(projectName, &pRuntime)
 {
 // do runtime operations here
 }
 return 0;
}

Result
The program core of an ODK client is created.

You can complete the program with the fragments from the following code examples for ODK-
API.

Runtime API (RT Uni)
19.3 Creating a minimal ODK client (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1081

19.4 Authorizing users (RT Uni)

Introduction
Before the ODK client can be used, all users that run the ODK client must be authorized.

Note

Only authenticated users can access the data of a project over the Runtime API with an ODK
client.

Requirement
WinCC Unified RT setup has been carried out completely on the Runtime computer.

Procedure
Add the user who corresponds to the logged-on Windows user on the Runtime computer to the
Windows user group "SIMATIC HMI" in the Windows user administration.

Result
When the ODK client is connected to the Runtime system, the logged-on Windows user is
authenticated via the user administration of the Runtime computer.

If one of the checks fails, the ODK client does not establish a connection (error: "Authentication
error" or "User has no access right").

19.5 Startup and shutdown behavior of an ODK application (RT Uni)

19.5.1 Autostart of an ODK application (RT Uni)
You have the possibility of starting ODK applications automatically on start-up of the device.

Requirement
Runtime is configured in such a way that it automatically started on start-up of the device
without a user having to be logged on. (Default setting)

Runtime API (RT Uni)
19.5 Startup and shutdown behavior of an ODK application (RT Uni)

WinCC Engineering V16 - Runtime Unified
1082 System Manual, 11/2019, Online help printout

Procedure
In the Windows Task Scheduler, create a task which starts the ODK application on start-up of
the device.

Note
User Service Mode

To use the ODK application in Service Mode, configure the security options in the dialog
"Create task" in such a way that a user does not have to be logged on for starting the task.

Under Windows 10 activate the option "Run whether user is logged on or not".

Result
The "Connect" method of IRuntime wait for a maximum of ten minutes after the start of the ODK
application until the Runtime has started up.

19.5.2 Shutdown behavior (RT Uni)
You have the option to be notified by the system on shutdown of Runtime, for example, to start
cleanup work on the client.

For this purpose, subscribe the system tag "@SystemActivationState" for monitoring.
"@SystemActivationState" signals whether Runtime is active and can have the following
values:

● System startup in progress (1)

● System started (activated) (2)

● System stopped (3)

● System shutdown in progress (4)

● System restart in progress (5)

Value 4 is the trigger to start cleanup work.

Note
Interface calls on shutdown

Do not call any functions of the ODK interfaces while the system is shut down.

19.5.3 Restart behavior (RT Uni)

Tags subscribed for monitoring
After Runtime is restarted, you can continue to use the existing subscriptions.

Runtime API (RT Uni)
19.5 Startup and shutdown behavior of an ODK application (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1083

19.6 Syntax of the alarm filter (RT Uni)
With an AlarmSubscription, a filter can be transferred so that not all active alarms of the alarm
system are notified, but only those which match the filter. The filter syntax is based on SQL
syntax. However, only the WHERE instruction is relevant. The keyword "WHERE" must be
omitted.

Operators
The following operators can be used in the filter string of the alarm filter:

Operator Description Example
= equal to Name = 'Recipe246'
<> not equal Value <> 0.0
> greater than Value > 25.0
< less than Value < 75.0
>= greater than or equal to Value >= 25.0
<= less than or equal to Value <= 75.0
OR, || logical OR State = 1 OR State = 3
AND, && logical AND Value >= 25.0 AND Value

<= 75.0
BETWEEN within a range Value BETWEEN 25.0 AND

75.0
NOT BETWEEN outside a range Value NOT BETWEEN 25.0

AND 75.0
LIKE string corresponds to the string string Name LIKE 'Motor*'
NOT LIKE string does not correspond to the string string Name NOT LIKE 'Valve*'
IN (v1, v2, …) corresponds to one or more values State IN (1, 4, 7)
NOT IN (v1, v2, …) does not correspond to one or more val‐

ues
State NOT IN (0, 2, 3,
5, 6)

(…) brackets expressions Value <= 75.0 AND
(State = 1 OR State = 3)

Precedence of the operators:

Rank Operators
1 ● Relational operators:

=, <>, >, <, >=, <=
● LIKE
● IN
● BETWEEN

2 NOT
3 AND, &&
4 OR, ||
5

Runtime API (RT Uni)
19.6 Syntax of the alarm filter (RT Uni)

WinCC Engineering V16 - Runtime Unified
1084 System Manual, 11/2019, Online help printout

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Name LIKE ‘Motor*’

Reference = <1.*.15>1
? Replaces 1 character Name = ‘Recipe?’

19.7 Locale IDs of the supported languages (RT Uni)
At the AlarmSubscription, there is a Language property which defines the language of the alarm
filter and the language of the alarm texts. In this case, a locale ID from the table below must be
entered.

The following table contains the Microsoft locale IDs of the languages supported in the TIA
Portal:

Language Country/Region LocaIe ID
Afrikaans South Africa 1078
Albanian Albania 1052
Armenian Armenia 1067
Azerbaijani (Cyrillic) Azerbaijan 2092
Azerbaijani (Latin) Azerbaijan 1068
Basque Basque country 1069
Belarusian Belarus 1059
Bulgarian Bulgaria 1026
Chinese Chinese (Hong Kong S.A.R.) 3076
Chinese Chinese (Macao S.A.R.) 5124
Chinese Chinese (Singapore) 4100
Chinese Chinese (Taiwan) 1028
Chinese Chinese (PR China) 2052
Danish Denmark 1030
German Germany 1031
German Liechtenstein 5127
German Luxembourg 4103
German Austria 3079
German Switzerland 2055
English Australia 3081
English Belize 10249
English United Kingdom 2057
English Ireland 6153
English Jamaica 8201
English Canada 4105
English Caribbean 9225
English New Zealand 5129
English Philippines 13321

Runtime API (RT Uni)
19.7 Locale IDs of the supported languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1085

Language Country/Region LocaIe ID
English Zimbabwe 12297
English South Africa 7177
English Trinidad and Tobago 11273
English USA 1033
Estonian Estonia 1061
Faroese Faroe Islands 1080
Finnish Finland 1035
French Belgium 2060
French France 1036
French Canada 3084
French Luxembourg 5132
French Monaco 6156
French Switzerland 4108
Galician Galicia 1110
Georgian Georgia 1079
Greek Greece 1032
Hindi India 1081
Indonesian Indonesia 1057
Icelandic Iceland 1039
Italian Italy 1040
Italian Switzerland 2064
Japanese Japan 1041
Kazakh Kazakhstan 1087
Catalan Catalonia 1027
Kyrgyz Kyrgyzstan 1088
Konkani India 1111
Korean Korea 1042
Croatian Croatia 1050
Latvian Latvia 1062
Malay Brunei Darussalam 2110
Malay Malaysia 1086
Macedonian Macedonia, FYRM 1071
Mongolian (Cyrillic) Mongolia 1104
Dutch Belgium 2067
Dutch Netherlands 1043
Norwegian (Bokmal) Norway 1044
Norwegian (Nynorsk) Norway 2068
Polish Poland 1045
Portuguese Brazil 1046
Portuguese Portugal 2070
Romanian Romania 1048
Russian Russia 1049
Sanskrit India 1103

Runtime API (RT Uni)
19.7 Locale IDs of the supported languages (RT Uni)

WinCC Engineering V16 - Runtime Unified
1086 System Manual, 11/2019, Online help printout

Language Country/Region LocaIe ID
Swedish Finland 2077
Swedish Sweden 1053
Serbian (Cyrillic) Serbia and Montenegro (former‐

ly)
3098

Serbian (Latin) Serbia and Montenegro (former‐
ly)

2074

Slovakian Slovakia 1051
Slovenian Slovenia 1060
Spanish Argentina 11274
Spanish Bolivia 16394
Spanish Chile 13322
Spanish Costa Rica 5130
Spanish Dominican Republic 7178
Spanish Ecuador 12298
Spanish El Salvador 17418
Spanish Guatemala 4106
Spanish Honduras 18442
Spanish Columbia 9226
Spanish Mexico 2058
Spanish Nicaragua 19466
Spanish Panama 6154
Spanish Paraguay 15370
Spanish Peru 10250
Spanish Puerto Rico 20490
Spanish Spain 3082
Spanish Uruguay 14346
Spanish Venezuela 8202
Swahili Kenya 1089
Tatar Russia 1092
Thai Thailand 1054
Czech Czech Republic 1029
Turkish Turkey 1055
Ukrainian Ukraine 1058
Hungarian Hungary 1038
Uzbek (Cyrillic) Uzbekistan 2115
Uzbek (Latin) Uzbekistan 1091
Vietnamese Vietnam 1066

19.8 Code samples (RT Uni)
ODK is supplied with code samples for using the Runtime interfaces. Open the local folder to
which you have extracted the file "Support\Openness
\Siemens.Unified.Openness_SDK_<version number>.zip".

Runtime API (RT Uni)
19.8 Code samples (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1087

You will find the code samples in the subfolder "\ODK\samples".

Using the code samples in the help
To reduce the complexity of the code samples and enable better readability, the examples in
the help deliberately exclude troubleshooting and freeing up memory.

The application programmer must add these elements during programming.

Constructs affected under C#
● Exception handling with try…catch…finally

try
{
 …
}
catch (Exception ex)
{
 …
}
finally
{
}

● Freeing up memory with Dispose or using (…)
See also section AUTOHOTSPOT.

For a description of how to evaluate ODK-specific errors, see section AUTOHOTSPOT.

Constructs affected under C++
● Freeing up allocated memory

● Null pointer check: if (pObject != nullptr) {…}
● Error code check: if (CF_SUCCEEDED(errorCode) {…}
For a description of how to evaluate ODK-specific errors, see section AUTOHOTSPOT.

19.9 Description of the C# interfaces (RT Uni)

19.9.1 Releasing objects (RT Uni)

Creating objects with GetObject
In .NET-ODK, you create the objects with the "GetObject" method, for example:

ITagSet odkTagSet = runtime.GetObject<ITagSet>();

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1088 System Manual, 11/2019, Online help printout

Memory is created internally for the object. In .NET, the Garbage Collector automatically
releases the memory when an object is no longer needed. However, the memory is released
at an indefinite time.

Note

The indefinite execution of the Garbage Collector may cause the memory to increase and
appear as if it is not being released again. The real reason for this is that the Garbage Collector
has not yet started!

Releasing objects created with GetObject
The ODK client should release the memory of objects created using the "GetObject" method as
soon as the object is no longer needed.

The following cases must be distinguished here:

● Using the objects by synchronous ODK methods

● Using the objects by asynchronous ODK methods

Example when using synchronous ODK methods
When releasing objects used by synchronous ODK methods, use the keyword using:

Copy code
try
{
 using (ITag myTag = runtime.GetObject<ITag>("Tag1"))
 {
 IProcessValue value = myTag.Read(HmiReadType.Cache); // Reads synchronous
 }
}
catch (OdkException ex)
{
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1089

Example when using asynchronous ODK methods
When you release objects that are used by asynchronous ODK methods, you can use the
"Dispose" method. This can be called in the callback method:

Copy code
try
{
 ITagSet odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add(new string[] { "Tag1", "Tag2" });

 // Assign callback function
 odkTagSet.OnReadResult += odkTagSet_OnReadResult;
 odkTagSet.ReadAsync();// Reads asynchronous
}
catch (OdkException ex)
{
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
}

void odkTagSet_OnReadResult(ITagSet sender, IList<IProcessValue> values, bool completed)
{
 try
 {
 …
 }
 catch (OdkException ex)
 {
 …
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose(); // Release memory
 }
 }
}

19.9.2 Interfaces of the Runtime environment (RT Uni)

19.9.2.1 IRuntime (RT Uni)

Description
The C# interface "IRuntime" specifies properties and methods for handling the Runtime
system. The "Connect" method of the "Runtime" class is called to establish the connection to
the Runtime system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1090 System Manual, 11/2019, Online help printout

Members "Runtime"
The class implements the following method:

"Connect" method
Connect to a Runtime project.

● Connect to locally run Runtime project. Logged-on Windows user is authenticated.
IRuntime Connect()

● Connect to locally run Runtime project. The logged-on Windows user is not authenticated;
instead, the user is specified as a parameter.

Note

Can only be used in a future version!

IRuntime Connect(string userName, string password)
– user

User name

– password
Password

● Connect to a specific Runtime project. Logged-on Windows user is authenticated.

Note

Can only be used in a future version!

IRuntime Connect(string value)
value
Name of a Runtime project

● Connect to a specific Runtime project. The logged-on Windows user is not authenticated;
instead, the user is specified as a parameter.

Note

Can only be used in a future version!

IRuntime Connect(string value, string userName, string password)
– value

Name of a Runtime project

– user
User name

– password
Password

"Dispose" method
Enable Runtime system with all resources.

void Dispose()

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1091

Members "IRuntime"
The following properties and methods are specified in the interface:

"ProjectName" property
Name of the current project

Note

Can only be used in a future version!

string ProjectName { get; }

"UserName" property
Name of the logged-on user

string UserName { get; }

"Product" property
Return version information and installed options of the Runtime system as "IProduct" object.

IProduct Product { get; }

"GetObject" method
Create a new instance of an object type T in a project.

T GetObject<T>(params object[] parameters)
The object type T adopts the following values:

● ITag, ITagSet or ITagSetQCD
Access to tags

● IAlarm, IAlarmSet or IAlarmSubscription
Access to alarm logging

● ILoggedTag or ILoggedTagSet
Access to logging tags

● IAlsrmLogging or IAlarmLoggingSubscription
Access to logged alarms

● IUserManagement
Access to user management

● IConnection or IConnectionSet
Access to connections

parameters
Optional: A name or array with names of objects of the respective object type

"GetOption" method
Return an installed option of the Runtime system as "IOption" object using the name.

IOption GetOption(string optionName)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1092 System Manual, 11/2019, Online help printout

optionName
Name of the installed option

Example
Initialize the ODK and establish a connection to the active project of the Runtime system.

Copy code
public static IRuntime runtime = null;

public void Connect()
{
 try
 {
 // Connect to running project
 runtime = Siemens.Runtime.HmiUnified.Runtime.Connect();
 }
 catch (Exception ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

Initialize an "IProduct" object and output the technical product version of the Runtime system:

public void GetVersionInfo(IRuntime runtime)
{
 IProduct product = runtime.Product;
 IVersionInfo version = product.Version;
 System.Console.WriteLine(string.Format("Product version: {0}.{1}.{2}.{3}",
version.Major, version.Minor, version.ServicePack, version.Update));

 ...

}

Access a tag with the name "Tag1":

public void ReadSingleTagSync()
{
 try
 {
 using (ITag myTag = runtime.GetObject<ITag>("Tag1"))
 {
 ...//further tag processing
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1093

See also
IProduct (Page 1094)

IErrorResult (Page 1098)

19.9.2.2 IProduct (RT Uni)

Description
The C# interface "IProduct" specifies properties for handling product information of the Runtime
system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties are specified in the interface:

"Options" property
Return installed options of the Runtime system as a list of "IOption" objects.

IList<IOption> Options { get; }

"Version" property
Return version structure of the Runtime system as "IVersionInfo" object.

IVersionInfo Version { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1094 System Manual, 11/2019, Online help printout

Example
The version of the "IProduct" object is read out and iterated via the installed "IOption" objects:

Copy code
public void GetVersionInfo(IRuntime runtime)
{
 try
 {
 IProduct product = runtime.Product;
 IVersionInfo version = product.Version;

 if (product.Options.Count > 0)
 {
 foreach (IOption op in product.Options)
 {
 IVersionInfo opVersion = op.Version;

 // Iterate through options and get version
 ...
 }
 }
 }
 catch (Exception ex)
 {
 System.Console.WriteLine(string.Format("Exception occured {0}", ex.Message));
 }
}

See also
IRuntime (Page 1090)

IOption (Page 1095)

IVersionInfo (Page 1097)

19.9.2.3 IOption (RT Uni)

Description
The C# interface "IOption" specifies properties and methods for handling installed product
options of the Runtime system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of an installed option of the Runtime system

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1095

String Name { get; }

"Version" property
Return version structure of an installed option of the Runtime system as "IVersionInfo" object.

IVersionInfo Version { get; }

"GetObject" method
Create new instance of an object type T of the option.

T GetObject<T>(params object[] parameters)
● T

The value defines a specific object type of the option.

● parameters
Optional: A parameter or array with parameters for the object type of the option

Example
Instantiate and use installed options with name "MyOptionName":

Copy code
public void GetOptionObject()
{
 //load option component by name
 IMyOption rtOption = (IMyOption)runtime.GetOption("MyOptionName");

 //create a instance of the option object IMyOptionObject
 IMyOptionObject optionObject = rtOption.GetObject<IMyOptionObject>();
 try
 {
 string strMethod = optionObject.MyMethod();
 string strProperty = optionObject.MyProperty;
 }
 catch (OdkException ex)
 {
 //It is an option error?
 if (ex.ErrorSubCategory == MyOptionConstants.MYOPTION_ERRORCATEGORY)
 {
 //Handle option specific error
 if (ex.ErrorCode == (uint)MyErrorCodes.E_UNKNOWN_NAME)
 {
 //get error description
 string errorDescription = ex.Message;
 }
 }
 }
}

See also
IProduct (Page 1094)

IVersionInfo (Page 1097)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1096 System Manual, 11/2019, Online help printout

19.9.2.4 IVersionInfo (RT Uni)

Description
The C# interface "IVersionInfo" specifies properties for handling version information of the
Runtime system.

Members
The following properties are specified in the interface:

"Major" property
Main version of the Runtime system or of an installed option

uint16 Major { get; }

"Minor" property
Minor version of the Runtime system or of an installed option

uint16 Minor { get; }

"ServicePack" property
Service pack of the Runtime system or of an installed option

uint16 ServicePack { get; }

"Update" property
Update version of the Runtime system or of an installed option

uint16 Update { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1097

Example
Information about the installed "IOption" options of the runtime system is output:

Copy code
public void GetVersionInfo(IRuntime runtime)
{
 try
 {
 IProduct product = runtime.Product;
 IVersionInfo version = product.Version;
 System.Console.WriteLine(string.Format("Product version: {0}.{1}.{2}.{3}",
version.Major, version.Minor, version.ServicePack, version.Update));

 if (product.Options.Count > 0)
 {
 foreach (IOption op in product.Options)
 {
 IVersionInfo opVersion = op.Version;

 // Iterate through options and get version
 System.Console.WriteLine(string.Format("Option name: {0}", op.Name));
 System.Console.WriteLine(string.Format("Option version: {0}.{1}.{2}.{3}",
opVersion.Major, opVersion.Minor, opVersion.ServicePack, opVersion.Update));
 }
 }
 }
 catch (Exception ex)
 {
 System.Console.WriteLine(string.Format("Exception occured {0}", ex.Message));
 }
}

See also
IProduct (Page 1094)

IOption (Page 1095)

19.9.3 Error-handling interfaces (RT Uni)

19.9.3.1 IErrorResult (RT Uni)

Description
The C# interface "IErrorResult" specifies properties of error results in runtime.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1098 System Manual, 11/2019, Online help printout

Members
The following properties are specified in the interface:

"Error" property
Error code of an error

int32 Error { get; }

"Name" property
Name of the associated object of the data source

string Name { get; }

Example
Error output when writing a TagSet:

Copy code
public void WritePartlyNotExistingTagSetSync()
{
 try
 {
 using (ITagSet odkTagSet = runtime.GetObject<ITagSet>())
 {
 odkTagSet.Add("Tag1", 1);
 odkTagSet.Add("Tag2", 2);
 odkTagSet.Add("NotExistingTag1", 1);
 odkTagSet.Add("NotExistingTag2", 2);

 IList<IErrorResult> writeResult = odkTagSet.Write();

 foreach (var result in writeResult)
 {
 if (result.Error != 0)
 {
 System.Console.WriteLine(string.Format("Write tag '{0}' failed, error
code {1}", result.Name, result.Error));
 }
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

See also
IRuntime (Page 1090)

IErrorInfo (Page 1100)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1099

19.9.3.2 IErrorInfo (RT Uni)

Description
The C# interface "IErrorInfo" specifies methods and properties for handling error codes.

Members
The following properties and methods are specified in the interface:

"Error" property
Error code of an error

int32 Error { get; }

"GetErrorDescription" method
Output an error description for the error code.

string GetErrorDescription(uint32 Error)
Error
Error code that is passed by the ODK client.

See also
IErrorResult (Page 1098)

19.9.3.3 OdkException (RT Uni)

Description
In the case of exceptions, the ODK triggers an OdkException in the .Net environment. The
OdkException can be caught by try-catch blocks and evaluated.

The "OdkException" class inherits all properties and methods of the .NET class "Exception".

Members "OdkException"
The following objects and methods are also implemented in the "OdkException" class for all
properties and methods of the .NET class "Exception".

"OdkException" method
● Trigger exception without message.

OdkException()
● Trigger exception with message and error description.

OdkException(string message)
message
Description of the error

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1100 System Manual, 11/2019, Online help printout

● Trigger exception with message and error description. Trigger additional exception with
reference to triggering exception.
OdkException(string message, Exception innerException)
– message

Description of the error

– innerException
Triggering exception

● Trigger exception with serialized data.
OdkException(SerializationInfo info, StreamingContext context)
– info

Serialized data of the exception

– context
Describes the origin or target of the serialized data.

"ErrorCode" property
Error code of the exception

UInt32 ErrorCode { get; }

"ErrorSubCategory" property
Subcategory of an error code

UInt32 ErrorSubCategory { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1101

Example
Exception handling using the example of optional components:

Copy code
public void GetOptionObject()
{
 //load option component by name
 IMyOption rtOption = (IMyOption)runtime.GetOption("MyOptionName");
 //create a instance of the option object IMyOptionObject
 IMyOptionObject optionObject = rtOption.GetObject<IMyOptionObject>();
 try
 {
 string strMethod = optionObject.MyMethod();
 string strProperty = optionObject.MyProperty;
 }
 catch (OdkException ex)
 {
 //It is an option error?
 if (ex.ErrorSubCategory == MyOptionConstants.MYOPTION_ERRORCATEGORY)
 {
 //Handle option specific error
 if (ex.ErrorCode == (uint)MyErrorCodes.E_UNKNOWN_NAME)
 {
 //get error description
 string errorDescription = ex.Message;
 }
 }
 }
}

19.9.4 Interfaces of the tags (RT Uni)

19.9.4.1 IProcessValue (RT Uni)

Description
The C# interface "IProcessValue" specifies properties and methods for values of process tags
of the Runtime system. The "IProcessValue" interface provides values from the result of a read
operation or monitoring.

Members
The following properties are specified in the interface:

"Name" property
Name of the tag

string Name { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1102 System Manual, 11/2019, Online help printout

"Value" property
Value of the tag at the moment of the read operation.

object Value { get; }

"Quality" property
Quality code of the read operation of the tag.

uint32 Quality { get; }

"TimeStamp" property
Time stamp of the last successful read operation of the tag.

DateTime TimeStamp { get; }

"Error" property
Error code of the last read or write operation of the tag.

int32 Error { get; }

Example
Output properties of the "IProcessValue" object that is returned by the ITag.Read method:

Copy code
public void ReadSingleTagSync()
{
 try
 {
 using (ITag myTag = runtime.GetObject<ITag>("Tag1"))
 {
 IProcessValue value = myTag.Read(HmiReadType.Cache); // Reads value from Cache
 System.Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}
Quality: {3}", value.Name, value.TimeStamp, value.Value, value.Quality));
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

See also
ITag (Page 1104)

ITagSet (Page 1106)

ITagSetQCD (Page 1114)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1103

19.9.4.2 ITag (RT Uni)

Description
The C# interface "ITag" specifies properties and methods for handling tags of the Runtime
system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

The methods trigger an exception in the case of an error.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of the tag that is read with the "Read" method.

string Name { get; set; }

"Read" method
Read process value and properties of the tag synchronously from the Runtime system.

IProcessValue Read(HmiReadType type = HmiReadType.Cache)
type
The enumeration "HmiReadType" specifies the origin of the tag value:

● HmiReadType.Cache (default parameter): Reads the tag value from the tag image. If no
subscription exists, the tag is subscribed.

● HmiReadType.Device: Reads the tag value directly from the AS. The tag image is not
used.

"Write" method
Write process value of the tag synchronously in the Runtime system.

void Write(
 object value,
 HmiWriteType type = HmiWriteType.NoWait)
● value

Value of the tag

● type
The enumeration "HmiWriteType" specifies whether the method waits for the write
operation to be completed:

– HmiWriteType.NoWait (default parameter): Writes the tag value without waiting.
Errors for the write operation are not detected.

– HmiWriteType.Wait: Waits until the tag value is written in the AS. If an error occurs
during the write operation, an exception is triggered.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1104 System Manual, 11/2019, Online help printout

"WriteQCD" method
Write process value with quality code of the tag synchronously in the Runtime system. The tag
also has a freely definable time stamp. You can use this to acquire past external measured
values, for example.

Note
Reaction to external tags

For external tags, the method only writes the tag value. The QualityCode and time stamp are
set internally by the system.

void Write(
 object value,
 DateTime timeStamp,
 uint32 qualityCode,
 HmiWriteType type = HmiWriteType.NoWait)
● value

Value of the tag

● timeStamp
Time stamp of the tag

● qualityCode
Quality code of the tag

● type
The enumeration "HmiWriteType" specifies whether the method waits for the write
operation to be completed:

– HmiWriteType.NoWait (default parameter): Writes the tag value without waiting.
Errors for the write operation are not detected.

– HmiWriteType.Wait: Waits until the tag value is written in the AS. If an error occurs
during the write operation, an exception is triggered.

"WriteWithOperatorMessage" method
Write process value of the tag synchronously in the Runtime system and create operator
message. In addition to the reason, the operator message contains the old and new value, the
user and host names and the unit.

void WriteWithOperatorMessage(
 object value,
 string reason)
● value

Value of the tag

● reason
Reason of the value change for message

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1105

Example
Read and write tag synchronously:

Copy code
public void ReadSingleTagSync()
{
 try
 {
 using (ITag myTag = runtime.GetObject<ITag>("Tag1"))
 {
 IProcessValue value = myTag.Read(HmiReadType.Cache); // Reads value from Cache
 System.Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}
Quality: {3}", value.Name, value.TimeStamp, value.Value, value.Quality));
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

public void WriteSingleTagSync()
{
 try
 {
 using (ITag odkTag = runtime.GetObject<ITag>("Tag1"))
 {
 int value = 5;
 odkTag.Write(value, HmiWriteType.NoWait); // Writes value without waiting that
value has been written to PLC
 IProcessValue pvalue = odkTag.Read(HmiReadType.Cache);
 }
 }
 catch (Exception ex)
 {
 System.Console.WriteLine(string.Format("Exception occured {0}", ex.Message));
 }
}

See also
IProcessValue (Page 1102)

ITagSet (Page 1106)

19.9.4.3 ITagSet (RT Uni)

Description
The C# interface "ITagSet" specifies properties, methods and events for optimized access to
several tags of the Runtime system.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1106 System Manual, 11/2019, Online help printout

After initialization of the "ITagSet" object, you can execute read and write access to multiple
tags in one call. Simultaneous access demonstrates better performance and lower
communication load than single access to multiple tags.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

The methods trigger an exception in the case of an error.

Note

You have the option to enumerate via a TagSet and to access a special element via the name.
This is useful if you want to change the value of a tag in the TagSet for a write operation. To write
the values in the process image, a "Write" or "WriteAsync" method must first be called:

MyTagSet.Add("MyTag1", "MyTag2");
MyTagSet["MyTag1"] = 5; // Set value to 5 for write operation
MyTagSet.Write();

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
Identification characteristics of a TagSet. If several TagSets are used to read tags, you can
assign the response to the request via ContextId.

Default value -1: The ContextId is not used.

int32 ContextId { get; set; }

"Count" property
Number of tags of a TagSet list

int32 Count { get; }

"Add" method
Add tag to a TagSet.

Add tag with or without process value to the TagSet:

void Add(ICollection<string> tagNames)
tagNames
List with tag names for TagSet

or

void Add(string tagName, object value = null)
● TagName

Name of the tag for TagSet

● value
New value of the tag, default: No value

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1107

"Remove" method
Remove individual tag from a TagSet.

void Remove(string tagName)
tagName
Name of the tag that is removed from TagSet.

"Clear" method
Remove all tags from a TagSet.

void Clear()

"Read" method
Read process values and properties of all the tags of a TagSet synchronously from the Runtime
system.

IList<IProcessValue> Read(HmiReadType type = HmiReadType.Cache)
type
The enumeration "HmiReadType" specifies the origin of the tag value:

● HmiReadType.Cache (default): Reads the tag values from the tag image. If no
subscription exists, the tag is subscribed.

● HmiReadType.Device: Reads the tag values directly from the automation system. The
tag image is not used.

"ReadAsync" method
Read process values and properties of all the tags of a TagSet asynchronously from the
Runtime system.

void ReadAsync(HmiReadType type = HmiReadType.Cache)
type
The enumeration "HmiReadType" specifies the origin of the tag value:

● HmiReadType.Cache (default): Reads the tag values from the tag image. If no
subscription exists, the tag is subscribed.

● HmiReadType.Device: Reads the tag values directly from the automation system. The
tag image is not used.

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.

IList<IErrorResult> Write(HmiWriteType type = HmiWriteType.NoWait)
type
The enumeration "HmiWriteType" specifies whether the method waits for the write operation to
be completed:

● HmiWriteType.NoWait (default): Writes the tag values without waiting. Errors for the
write operation are not detected.

● HmiWriteType.Wait: Waits until the tag values are written in the automation system. The
associated errors are written.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1108 System Manual, 11/2019, Online help printout

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.

The method always has the HmiWriteType.Wait type and waits until the tag value has been
written in the automation system. If an error occurs during the write operation, it is reported via
the AsyncHandler.

void WriteAsync()

"WriteWithOperatorMessage" method
Write process values of all tags of a TagSet synchronously in the Runtime system and create
operator messages. In addition to the reason, the operation messages contain the old and new
value, the user and host names and the unit.

void WriteWithOperatorMessage(string reason)
reason
Reason of the value change for message

"Subscribe" method
Subscribe all tags of a TagSet asynchronously for cyclic monitoring of the process values.

Note
Tags from IO devices with the "Cyclic in operation" acquisition mode

For a tag with the acquisition mode "Cyclic in operation", the value stored in the process image
when Subscribe is called might be outdated. OnAdd therefore only provides the QualityCode
"uncertain". Only value changes made after the Subscribe call provide the current value and the
QualityCode "good".

void Subscribe()

"CancelSubscribe" method
Cancel monitoring of all tags of a TagSet.

void CancelSubscribe()

"OnReadResult" event
After completion of the read operation of the "ReadAsync" method, the event calls an instance
of the "OnReadResultHandler" delegate.

Declares the event and the event handler for asynchronous read operations.

event OnReadResultHandler OnReadResult

"OnWriteResult" event
After completion of the write operation of the "WriteAsync" method, the event calls an instance
of the "OnWriteResultHandler" delegate.

Declares the event and the event handler for asynchronous write operations.

event OnWriteResultHandler OnWriteResult

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1109

"OnDataChanged" event
After a process value change of a monitored TagSet, the event calls an instance of the
"OnDataChangedHandler" delegate.

Declares the event and the event handler for process value changes.

event OnDataChangedHandler OnDataChanged

"OnReadResultHandler" delegate
Specifies the signature of the event handling method for the "OnReadResult" event of a TagSet.

void OnReadResultHandler(
 ITagSet sender,
 IList<IProcessValue> values,
 bool completed)
● sender

The read out "TagSet" object

● values
Event data as a list of "IProcessValue" objects of the read tag

● completed
Status of the asynchronous transfer:

– True: All values of the TagSet are read.

– False: Not all values of the TagSet are read yet.

"OnWriteResultHandler" delegate
Specifies the signature of the event handling method for the "OnWriteResult" event of a TagSet.

void OnWriteResultHandler(
 ITagSet sender,
 IList<IErrorResult> values,
 bool completed)
● sender

The written "TagSet" object

● values
Error during write operations of tags as "IErrorResult" object

● completed
Status of the asynchronous transfer:

– True: All values of the TagSet are written.

– False: Not all values of the TagSet are written yet.

"OnDataChangedHandler" delegate
Specifies the signature of the event handling method for the "OnDataChanged" event of a
TagSet.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1110 System Manual, 11/2019, Online help printout

void OnDataChangedHandler(
 ITagSet sender,
 IList<IProcessValue> values)
● sender

The monitored "TagSet" object

● values
Event data as a list of "IProcessValue" objects of the changed process values

Example
Read TagSet synchronously and write with change:

Copy code
public void ReadTagSetSync()
{
 try
 {
 using (ITagSet odkTagSet = runtime.GetObject<ITagSet>())
 {
 odkTagSet.Add(new string[] { "Tag1", "Tag2" });
 IList<IProcessValue> values = odkTagSet.Read();
 foreach (var value in values)
 System.Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}
Quality: {3}", value.Name, value.TimeStamp, value.Value, value.Quality));
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}
public void WriteTagSetSyncWithChange()
{
 try
 {
 using (ITagSet odkTagSet = runtime.GetObject<ITagSet>())
 {
 odkTagSet.Add(new string[] { "Tag1", "Tag2" });
 // Modify the value of a tag in the tagset and write
 odkTagSet["Tag1"] = 5;
 odkTagSet.Write();
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

Define functions for asynchronous write operations and define the monitoring of TagSets.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1111

Monitor events "OnWriteResult" or "OnDataChanged" and call the event handling methods
"odkTagSet_OnWriteComplete" or "odkTag_OnDataChanged" on occurrence:

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1112 System Manual, 11/2019, Online help printout

Copy code
public void WriteTagSetAsync()
{
 try
 {
 ITagSet odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add("Tag1", 1);
 odkTagSet.Add("Tag2", 2);
 // Assign callback function
 odkTagSet.OnWriteResult += odkTagSet_OnWriteResult;
 odkTagSet.WriteAsync();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}
public void odkTagSet_OnWriteResult(ITagSet sender, IList<KeyValuePair<string, int>>
values, bool completed)
{
 System.Console.WriteLine("odkTagSet_OnWriteComplete");
 sender.Dispose();
}
public void SubscribeTagSet()
{
 try
 {
 ITagSet odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add(new string[] { "Tag1", "Tag2" });
 // Assign callback function
 odkTagSet.OnDataChanged += odkTagSet_OnDataChanged;
 odkTagSet.Subscribe();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}
public void odkTagSet_OnDataChanged(ITagSet sender, IList<IProcessValue> pItems)
{
 try
 {
 foreach (var value in pItems)
 System.Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}
Quality: {3}", value.Name, value.TimeStamp, value.Value, value.Quality));
 // For test purpose: Cancel subscription after first notification
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
 finally
 {
 if (null != sender)
 {
 sender.CancelSubscribe();

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1113

Copy code
 sender.Dispose();
 }
 }
}

See also
IProcessValue (Page 1102)

ITag (Page 1104)

19.9.4.4 ITagSetQCD (RT Uni)

Description
The C# interface "ITagSetQCD" specifies properties, methods and events for optimized writing
of several tags of the Runtime system. The tags also have a freely definable time stamp and
quality code. You can use this to acquire past external measured values, for example.

Note
Reaction to external tags

For external tags, the method only writes the tag value. The QualityCode and time stamp are
set internally by the system.

After initialization of the "ITagSetQCD" object, you can have read access to multiple tags in one
call. Simultaneous access demonstrates better performance and lower communication load
than single access to multiple tags.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

The methods trigger an exception in the case of an error.

Note

You have the option to enumerate via a TagSet and to access a special element via the name.
This is useful if you want to change the value of a tag in the TagSet for a write operation. To write
the values in the process image, a "Write" or "WriteAsync" method must first be called:

MyTagSet.Add("MyTag1", "MyTag2");
MyTagSet["MyTag1"] = 5; // Set value to 5 for write operation
MyTagSet.Write();

Members
The following properties, methods and events are specified in the interface:

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1114 System Manual, 11/2019, Online help printout

"ContextId" property
Identification characteristics of a TagSet. If several TagSets are used to read tags, you can
assign the response to the request via ContextId.

Default value -1: The ContextId is not used.

int32 ContextId { get; set; }

"Count" property
Number of tags of a TagSet list

int32 Count { get; }

"Add" method
Add user-defined tag with process value, quality code and time stamp to the TagSet.

void Add(string tagName, object value, DateTime timeStamp, uint32
qualityCode)
● TagName

Name of the tag for TagSet

● value
New value of the tag

● timeStamp
Time stamp of the tag

● qualityCode
Quality code of the tag

"Remove" method
Remove individual tag from a TagSet.

void Remove(string tagName)
tagName
Name of the tag that is removed from TagSet.

"Clear" method
Remove all tags from a TagSet.

void Clear()

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.

IList<IErrorResult> Write(HmiWriteType type = HmiWriteType.NoWait)
type
The enumeration "HmiWriteType" specifies whether the method waits for the write operation to
be completed:

● HmiWriteType.NoWait (default): Writes the tag values without waiting. Errors for the
write operation are not detected.

● HmiWriteType.Wait: Waits until the tag values are written in the automation system. The
associated errors are written.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1115

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.

The method always has the HmiWriteType.Wait type and waits until the tag value has been
written in the automation system. If an error occurs during the write operation, it is reported via
the AsyncHandler.

void WriteAsync()

"OnWriteComplete" event
After completion of the write operation of the "WriteAsync" method, the event calls an instance
of the "OnWriteCompleteTagSetQCDHandler" delegate.

Declares the event and the event handler for asynchronous write operations with quality codes
and time stamps.

event OnWriteCompleteTagSetQCDHandler OnWriteComplete

"OnWriteCompleteTagSetQCDHandler" delegate
Specifies the signature of the event handling method for the "OnWriteComplete" event of a
TagSet with quality code and time stamps.

void OnWriteCompleteTagSetQCDHandler(
 ITagSetQCD sender,
 IList<IErrorResult> pItems)
● sender

Source of the event

● pItems
Error during write operations of tag as "IErrorResult" object

Example
Write TagSet with time stamp and quality code synchronously:

Copy code
public void WriteTagSetQCDSync()
{
 try
 {
 using (ITagSetQCD odkTagSet = runtime.GetObject<ITagSetQCD>())
 {
 odkTagSet.Add("Tag1", 1, DateTime.Now, 128);
 odkTagSet.Add("Tag2", 2, DateTime.Now, 128);

 IList<IErrorResult> writeResult = odkTagSet.Write();
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1116 System Manual, 11/2019, Online help printout

See also
IProcessValue (Page 1102)

ITagSetQCDItem (Page 1117)

19.9.4.5 ITagSetQCDItem (RT Uni)

Description
The C# interface "ITagSetQCDItem" specifies properties for user-defined values of tags in a
TagSetQCD. You can use this to acquire past external measured values, for example.

Note
Reaction to external tags

For external tags, only the tag value is set. The QualityCode and time stamp are set internally
by the system.

The objects "ITagSetQCDItem" are not used by the "ITagSetQCD" object and can also be
edited with the methods of the "ITagSetQCD" interface.

Members
The following properties are specified in the interface:

"Name" property
Name of the tag

string Name { get; set; }

"Value" property
Tag value

object Value { get; set; }

"Quality" property
Quality code of the tag

int32 Quality { get; set; }

"TimeStamp" property
Time stamp of the tag

DateTime TimeStamp { get; set; }

See also
ITagSetQCD (Page 1114)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1117

19.9.4.6 ILoggedTagValue (RT Uni)

Description
The C# interface "ILoggedTagValue" specifies the properties for process values of logging tags
of a logging system. The "ILoggedTagValue" interface displays historical process values.

An "ILoggedTagValue" object is a pure data object which maps all properties of the logged
process values.

Members
The following properties are specified in the interface:

"Name" property
Name of the logging tag

string Name { get; set; }

"Value" property
Process value of the logging tag

object Value { get; set; }

"Quality" property
Quality code of the process value

int16 Quality { get; set; }

"TimeStamp" property
Time stamp of the process value

DateTime TimeStamp { get; set; }

"Error" property
Error code of the process value

int32 Error { get; }

"Flags" property
Context information from the read operation for the process value

HmiTagLoggingValueFlags Flags { get; set; }
The "HmiTagLoggingValueFlags" enumeration contains the following bit-by-bit-coded values:

● 0: Extra
There are still additional values at the time of the process value.

● 2: Calculated
Process value is calculated.

● 16: Bounding
Process value is a limit value.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1118 System Manual, 11/2019, Online help printout

● 32: NoData
No additional information available

● 64: FirstStored
Process value is the first value stored in the logging system.

● 128: LastStored
Process value is the last value stored in the logging system.

See also
ILoggedTag (Page 1119)

ILoggedTagSet (Page 1120)

19.9.4.7 ILoggedTag (RT Uni)

Description
The C# interface "ILoggedTag" specifies properties and methods for handling logging tags of
a logging system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of the logging tag

string Name { get; set; }

"Read" method
Read logged process values of a logging tag of a time period synchronously from the logging
system.

IList<ILoggedTagValue> Read(DateTime begin, DateTime end, bool
boundingValue)
● begin

Start date of the time period

● end
End date of the time period

● boundingValue
True, to additionally return high and low limits.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1119

Example
Output process values of the logging tag "Tag1:Tag1Logging1" for a time period:

Copy code
public void ReadSingleTag()
{
 var tag = _runtime.GetObject<ILoggedTag>("Tag1:Tag1Logging1");
 var begin = DateTime.UtcNow.AddMinutes(-10);
 var end = DateTime.UtcNow;
 var values = tag.Read(begin, end, true);
 Print(values);
 tag.Dispose();
}

See also
ILoggedTagValue (Page 1118)

ILoggedTagSet (Page 1120)

19.9.4.8 ILoggedTagSet (RT Uni)

Description
The C# interface "ILoggedTagSet" specifies properties, methods and events for optimized
access to several logging tags of a logging system.

After initialization of the "ILoggedTagSet" object, you can execute read and write access to
multiple logging tags in one call. Simultaneous access demonstrates better performance and
lower communication load than single access to multiple logging tags.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
Identification characteristics of a LoggedTagSet. If several LoggedTagSets are used to read
logging tags, you can assign the response to the request via ContextId.

Default value -1: The ContextId is not used.

int32 ContextId { get; set; }

"Count" property
Number of logging tags of a LoggedTagSet list

int32 Count { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1120 System Manual, 11/2019, Online help printout

"Add" method
Add logging tag to a LoggedTagSet.

Add logging tags with or without context to the LoggedTagSet:

void Add(ICollection<string> tagNames)
tagNames
List with names of logging tags for the LoggedTagSet

or

void Add(string tagName)
tagName
Name of a logging tag

"Remove" method
Remove individual logging tag from a LoggedTagSet.

void Remove(string tagName)
tagName
Name of the logging tag that is removed from the LoggedTagSet.

"Clear" method
Remove all logging tags from a LoggedTagSet.

void Clear()

"Read" method
Read all logging tags of a LoggedTagSet synchronously from the logging system.

IList<ILoggedTagValue> Read(DateTime begin, DateTime end, bool
boundingValue)
● begin

Start date of the time period

● end
End date of the time period

● boundingValue
True, to additionally return high and low limits.

"ReadAsync" method
Read all logging tags of a LoggedTagSet asynchronously from the logging system.

void ReadAsync(DateTime begin, DateTime end, bool boundingValue)
● begin

Start date of the time period

● end
End date of the time period

● boundingValue
True, to additionally return high and low limits.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1121

"Subscribe" method
Subscribe all logging tags of a LoggedTagSet asynchronously for updating the process values
following a change. When new process values are logged, they can be processed with the
"OnDataChanged" event.

void Subscribe()

"CancelSubscribe" method
Cancel updating of process values following a change for all logging tags of a LoggedTagSet.

void CancelSubscribe()

"OnReadComplete" event
After completion of the read operation of the "ReadAsync" method, the event calls an instance
of the "OnReadCompleteTagSetHandler" delegate.

Declares the event and the event handler for asynchronous read operations.

event OnReadCompleteTagSetHandler OnReadComplete

"OnDataChanged" event
After a process value change of a monitored LoggedTagSet, the event calls an instance of the
"OnDataChangedTagSetHandler" delegate.

Declares the event and the event handler for process value changes.

event OnDataChangedTagSetHandler OnDataChanged

"OnReadCompleteTagSetHandler" delegate
Specifies the signature of the event handling method for the "OnReadComplete" event of a
LoggedTagSet.

void OnReadCompleteTagSetHandler(
 ILoggedTagSet sender,
 uint32 errorCode,
 IList<ILoggedTagValue> values,
 bool completed)
● sender

Source of the event

● errorCode
Error during asynchronous transfer

● values
Event data as a list of "ILoggedTagValue" objects of the read logging tag

● completed
Status of the asynchronous transfer:

– True: All values of the LoggedTagSet are read.

– False: Not all values of the LoggedTagSet are read.

"OnDataChangedTagSetHandler" delegate
Specifies the signature of the event handling method for the "OnDataChanged" event of a
LoggedTagSet.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1122 System Manual, 11/2019, Online help printout

void OnDataChangedTagSetHandler(
 ILoggedTagSet sender,
 uint32 errorCode,
 IList<ILoggedTagValue> value)
● sender

Source of the event

● errorCode
Error during asynchronous transfer

● value
Event data as a list of "ILoggedTagValue" objects with process values of the changed
logging tag

Example
Read and output process values of logging tags of a specific time period asynchronously in
LoggedTagSet "tagSet":

Copy code
public void ReadTagSetAsync()
{
 try
 {
 var begin = DateTime.UtcNow.AddHours(-1);
 var end = DateTime.UtcNow;
 var tagSet = _runtime.GetObject<ILoggedTagSet>();
 tagSet.OnReadComplete += TagSet_OnReadComplete;
 tagSet.Add("Tag1:Tag1Logging1");
 tagSet.Add("Tag2:Tag2Logging1");
 tagSet.ReadAsync(begin, end, true);
 }
 catch (OdkException ex)
 {
 Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

private void TagSet_OnReadComplete(ILoggedTagSet sender, uint errorCode,
IList<ILoggedTagValue> values, bool completed)
{
 Print(values);
 sender.Dispose();
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1123

Output process values of logging tag "Tag1:Tag1Logging1" in case of change:

Copy code
public void SubscribeTagSet()
{
 try
 {
 ILoggedTagSet tagSet = _runtime.GetObject<ILoggedTagSet>();
 tagSet.Add("Tag1:Tag1Logging1");
 tagSet.OnDataChanged += tagSet_OnDataChanged;
 tagSet.Subscribe();
 }
 catch (OdkException ex)
 {
 Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

void tagSet_OnDataChanged(ILoggedTagSet sender, UInt32 errorCode, IList<ILoggedTagValue>
values)
{
 Print(values);
 sender.Dispose();
}

See also
ILoggedTag (Page 1119)

ILoggedTagValue (Page 1118)

19.9.4.9 ITags (RT Uni)

Description
The C# interface "ITags" defines methods with which you can access configured tags.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members

"Find" method
Supplies a collection with "ITagAttributes" instances of the specified tag.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1124 System Manual, 11/2019, Online help printout

ICollection<ITagAttributes> Find(ICollection<string> SystemNames,
string Filter = null, UInt32 LanguageID = 0)
● SystemNames

Collection of SystemNames on which the tags were configured.

● (Optional) Filter
Filter by name of the tags to restrict the search.
Supports searching with wildcards (*).

● (Optional) LanguageID
Language code ID of filter

"FindAsync" method
For asynchronous searching for "ITagAttributes" instances of the specified tags.

void FindAsync(IList<string> SystemNames, string Filter = null,
UInt32 LanguageID = 0)
● SystemNames

Collection of SystemNames on which the tags were configured.

● (Optional) Filter
Filter by name of the tags to restrict the search.
Supports searching with wildcards (*)

● (Optional) LanguageID
Language code ID of filter

"OnTagAttributesRecieved" event
After completion of the "FindAsync" method, the event calls an instance of the
"OnTagAttributesRead" delegate.

event OnTagAttributesRead OnTagAttributesRecieved;

"OnTagAttributesRead" delegate
Specifies the signature of the event handling method for the "OnTagAttributesReceived" event
of an "ITagAttributes" instance.

public delegate void OnTagAttributesRead(ITags sender,
ICollection<ITagAttributes> tagAttributes, bool completed)
● sender

Source of the event

● tagAttributes
Event data as collection of "ITagAttributes" instances

● completed
Status of the asynchronous transfer:

– True: All tags have been read out.

– False: Not all tags have been read out yet.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1125

19.9.4.10 ITagAttributes (RT Uni)

Description
The C# interface "ITagAttributes" defines properties of a tag.

Member

"Name" property
The name of the tag. Must be unique throughout the device.

string Name { get; }

"DisplayName" property
The display name of the tags

string DisplayName { get; }

"DataType" property
The data type of the tag

HmiDataType DataType { get; }

"Connection" property
The connection of the tag

The memory location of the tag in the controller is accessed via the connection.

string Connection { get; }

"AcquisitionCycle" property
The acquisition cycle of tags

If you configure a tag at an object, the acquisition cycle of the tag is displayed at the object.

string AcquisitionCycle { get; }

"AcquisitionMode" property
The acquisition mode of the tag

HmiAcquisitionMode AcquisitionMode { get; }
The enumeration "HmiAcquisitionMode" can contain the following values:

● Undefined (0)

● CyclicOnUse (1)

● CyclicContinous (2)

● OnDemand (3)

● OnChange (4)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1126 System Manual, 11/2019, Online help printout

"MaxLength" property
The length of the tags.

The length is only available with a string tag. The length is preset for structure tags and cannot
be changed.

UInt32 MaxLength { get; }

"Persistent" property
The persistence of the tags

bool Persistent { get; }

"InitialValue" property
The start value of the tag

After Runtime starts, the tag retains the start value until an operator or the PLC changes the
value.

object InitialValue { get; }

"InitialMaxValue" property
The start value for the event "On exceeding".

object InitialMaxValue { get; }

"InitialMinValue" property
The start value for the event "On falling below"

object InitialMinValue { get; }

"SubstituteValue" property
The substitute value of the tag

If the selected condition occurs, the tag is filled with the substitute value in runtime.

object SubstituteValue { get; }

"SubstituteValueUsage" property
The condition for using the substitute value of the tag

HmiSubstituteValueUsage SubstituteValueUsage { get; }
The enumeration "HmiSubstituteValueUsage" can contain the following values:

● None (0)

● InvalidValue (1)

● RangeViolation (2)

● InvalidValueOrRangeViolation (3)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1127

19.9.4.11 ILoggingTags (RT Uni)

Description
The C# interface "ILoggingTags" defines methods with which you can access configured
logging tags.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members

"Find" method
Supplies a collection with "ITagAttributes" instances of the specified logging tag.

ICollection<ILoggingTagAttributes> Find(IList<string> SystemNames,
string Filter = null, UInt32 LanguageID = 0)
● SystemNames

Collection of SystemNames on which the tags were configured.

● (Optional) Filter
Filter by name of the tags to restrict the search.
Supports searching with wildcard (*).
Example:
Tag1:* Supplies all logging tags of "Tag1".

● (Optional) LanguageID
Language code ID of filter

"FindAsync" method
For asynchronous searching for "ILoggingTagAttributes" instances.

void FindAsync(IList<string> SystemNames, string Filter = null,
UInt32 LanguageID = 0)
● SystemNames

Collection of SystemNames on which the tags were configured.

● (Optional) Filter
Filter by name of the tags to restrict the search.
Supports searching with wildcard (*).
Example:
Tag1.*: Supplies all logging tags of "Tag1".

● (Optional) LanguageID
Language code ID of filter

"OnLoggingTagAttributesReadReceived" event
After completion of the "FindAsync" method, the event calls an instance of the
"OnLoggingTagAttributesRead" delegate.

event OnLoggingTagAttributesRead OnLoggingTagAttributesReadRecieved;

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1128 System Manual, 11/2019, Online help printout

"OnLoggingTagAttributesRead" delegate
Specifies the signature of the event handling method for the "OnLoggingTagAttributesRead"
event of an "ILoggingTags" instance.

public delegate void OnLoggingTagAttributesRead(ILoggingTags sender,
ICollection<ILoggingTagAttributes> tagAttributes, bool completed);
● sender

Source of the event

● tagAttributes
Event data as collection of "ILoggingTagAttributes" instances

● completed
Status of the asynchronous transfer:

– True: All logging tags are read out.

– False: Not all logging tags are read out yet.

19.9.4.12 ILoggingTagAttributes (RT Uni)

Description
The C# interface "ILoggingTagAttributes" defines properties of a logging tag.

Member

"Name" property
The name of the tag

string Name { get; }

"DisplayName" property
The display name of the tags

string DisplayName { get; }

"DataType" property
The data type of the tag

HmiDataType DataType { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1129

19.9.5 Interfaces of the alarms (RT Uni)

19.9.5.1 IAlarmResult (RT Uni)

Description
The C# interface "IAlarmResult" specifies properties for accessing properties of active alarms
of the Runtime system.

An "IAlarmResult" object is a pure data object which maps all properties of an active alarm.

Members
The following properties are specified in the interface:

"InstanceID" property
InstanceID for an alarm with multiple instances

uint32 InstanceID { get; }

"SourceID" property
Source at which the alarm was triggered

string SourceID { get; }

"Name" property
Name of the alarm

string Name { get; }

"AlarmClassName" property
Name of the alarm class

string AlarmClassName { get; }

"AlarmClassSymbol" property
Symbol of the alarm class

string AlarmClassSymbol { get; }

"AlarmParameterValues" property
Parameter values of the alarm

IReadOnlyList<object> AlarmParameterValues { get; }

"AlarmText1" … "AlarmText9" properties
Additional texts 1-9 of the alarm

string AlarmText1 { get; }
…

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1130 System Manual, 11/2019, Online help printout

string AlarmText9 { get; }

"ChangeReason" property
Trigger event for modification of alarm state

uint16 ChangeReason { get; }

"Connection" property
Connection by which the alarm was triggered

string Connection { get; }

"State" property
Current alarm state

HmiAlarmState State { get; }
The enumeration "HmiAlarmState" can contain the following values:

● Standard (0x00)

● Raised (0x01)

● RaisedCleared (0x02)

● RaisedAcknowledged (0x05)

● RaisedAcknowledgedCleared (0x06)

● RaisedClearedAcknowledged (0x07)

● Removed (0x80)

"StateText" property
Current alarm state as text, for example "Incoming" or "Outgoing"

string StateText { get; }

"EventText" property
Text that describes the alarm event.

string EventText { get; }

"InfoText" property
Text that describes an operator instruction for the alarm.

string InfoText { get; }

"TextColor" property
Text color of the alarm state

uint32 TextColor { get; }

"BackColor" property
Background color of the alarm state

uint32 BackColor { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1131

"Flashing" property
Indicates whether the alarm is flashing.

bool Flashing { get; }

"InvalidFlags" property
Marking of the alarm in case of invalid data

byte InvalidFlags { get; }

"ModificationTime" property
Time of the last modification to the alarm state

DateTime ModificationTime { get; }

"RaiseTime" property
Trigger time of the alarm

DateTime RaiseTime { get; }

"AcknowledgementTime" property
Time of alarm acknowledgment

DateTime AcknowledgementTime { get; }

"ClearTime" property
Time of alarm reset

DateTime ClearTime { get; }

"ResetTime" property
Time of alarm reset

DateTime ResetTime { get; }

"SuppressionState" property
Status of alarm visibility

byte SuppressionState { get; }

"SystemSeverity" property
Severity of the system error

UInt8 SystemSeverity { get; }

"Priority" property
Relevance for display and sorting of the alarm

UInt8 Priority { get; }

"Origin" property
Origin for display and sorting of the alarm

string Origin { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1132 System Manual, 11/2019, Online help printout

"Area" property
Origin area for display and sorting of the alarm

string Area { get; }

"Value" property
Current process value of the alarm

object Value { get; }

"ValueQuality" property
Quality of the process value of the alarm

uint16 ValueQuality { get; }

"ValueLimit" property
Limit of the process value of the alarm

object ValueLimit { get; }

"UserName" property
User name of the operator input alarm

string UserName { get; }

"UserResponse" property
Expected or required user response to the alarm

byte UserResponse { get; }

"HostName" property
Name of the host that triggered the alarm.

string HostName { get; }

"Id" property
ID of the alarm that is also used in the display.

Uint32 Id { get; }

"AlarmGroupID" property
ID of the alarm group to which the alarm belongs.

UInt32 AlarmGroupID { get; }

"SourceType" property
Source from which the alarm was generated, e.g. tag-based, controller-based or system-based
alarm.

HmiAlarmSourceType SourceType { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1133

The enumeration "HmiAlarmSourceType" can contain the following values:

● Undefined (0)

● Tag (1)

● Controller (2)

● System (3)

● Alarm (4)

"DeadBand" property
Range of the triggering tag in which no alarms are generated.

object DeadBand { get; }

"LoopInAlarm" property
Function that navigates from the alarm view to its origin.

string LoopInAlarm { get; }

"NotificationReason" property
Reason for the notification

HmiNotificationReason NotificationReason { get; }
The enumeration "HmiNotificationReason" can contain the following values:

● Unknown (0)

● Add (1)
The alarm was added to the filtered result list. The alarm meets the filter criteria that apply
to the monitoring.

● Modify (2)
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

● Remove (3)
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.

Note

Changes to the alarm only lead to notifications again when the alarm meets the filter criteria
again. In this case, "NotificationReason" is set to Add.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1134 System Manual, 11/2019, Online help printout

Note
Removing alarm from business logic

The use case of the client determines whether the client ignores notifications via alarms with
the "NotificationReason" Modify or Remove.

For example:
● State-based monitoring: The client wants to show a list of incoming alarms. All notification

reasons are relevant. The client removes an alarm from the list as soon as the notification
reason is Remove.

● Event-based monitoring: The client wants to send an email when an alarm comes in. Only
the notification reason Add is relevant.

Example:

An ODK client begins monitoring with the filter criterion "State" = 1. An alarm is triggered.
Runtime notifies the ODK client of the "NotificationReason" as follows:

Notification‐
Reason

Description

Add ● The "State" property is 1. The alarm has come in.
Modify ● The "State" property has not changed.

● Another property that is not part of the filter criterion has changed, e.g. "Priority".
Remove The "State" property has changed, e.g. alarm has gone out.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1135

Example
When alarm are incoming, output a selection of properties of the "IAlarmResult" objects:

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1136 System Manual, 11/2019, Online help printout

Copy code
public void alarm_OnAlarmHandler(IAlarmSubscription sender, UInt32 nGlobalError, String
systemName, IList<IAlarmResult> value, bool completed)
{
 if (0 == nGlobalError)
 {
 try
 {
 AlarmList = new List<IALarmResult>();
 foreach (var item in value)
 {
 System.Console.WriteLine(string.Format("InstanceID: {0}", item.InstanceID));
 System.Console.WriteLine(string.Format("AcknowledgementTime: {0}",
item.AcknowledgementTime));
 System.Console.WriteLine(string.Format("AlarmClass: {0}",
item.AlarmClassName));
 System.Console.WriteLine(string.Format("AlarmClassSymbol: {0}",
item.AlarmClassSymbol));
 System.Console.WriteLine(string.Format("Id: {0}", item.Id));
 System.Console.WriteLine(string.Format("AlarmParameterValues: {0}",
item.AlarmParameterValues));
 System.Console.WriteLine(string.Format("AlarmText1: {0}", item.AlarmText1));
 System.Console.WriteLine(string.Format("AlarmText9: {0}", item.AlarmText9));
 System.Console.WriteLine(string.Format("Area: {0}", item.Area));
 System.Console.WriteLine(string.Format("BackColor: {0}", item.BackColor));
 System.Console.WriteLine(string.Format("ChangeReason: {0}",
item.ChangeReason));
 System.Console.WriteLine(string.Format("ClearTime: {0}", item.ClearTime));
 System.Console.WriteLine(string.Format("Connection: {0}", item.Connection));
 System.Console.WriteLine(string.Format("DeadBand: {0}", item.DeadBand));
 System.Console.WriteLine(string.Format("EventText: {0}", item.EventText));
 System.Console.WriteLine(string.Format("InfoText: {0}", item.InfoText));
 System.Console.WriteLine(string.Format("Flashing: {0}", item.Flashing));
 System.Console.WriteLine(string.Format("HostName: {0}", item.HostName));
 System.Console.WriteLine(string.Format("InvalidFlags: {0}",
item.InvalidFlags));
 System.Console.WriteLine(string.Format("LoopInAlarm: {0}",
item.LoopInAlarm));
 System.Console.WriteLine(string.Format("ModificationTime: {0}",
item.ModificationTime));
 System.Console.WriteLine(string.Format("Name: {0}", item.Name));
 System.Console.WriteLine(string.Format("Origin: {0}", item.Origin));
 System.Console.WriteLine(string.Format("Priority: {0}", item.Priority));
 System.Console.WriteLine(string.Format("RaiseTime: {0}", item.RaiseTime));
 System.Console.WriteLine(string.Format("ResetTime: {0}", item.ResetTime));
 System.Console.WriteLine(string.Format("SourceID: {0}", item.SourceID));
 System.Console.WriteLine(string.Format("SourceType: {0}", item.SourceType));
 System.Console.WriteLine(string.Format("State: {0}", item.State));
 System.Console.WriteLine(string.Format("StateText: {0}", item.StateText));
 System.Console.WriteLine(string.Format("SuppressionState: {0}",
item.SuppressionState));
 System.Console.WriteLine(string.Format("SystemSeverity: {0}",
item.SystemSeverity));
 System.Console.WriteLine(string.Format("TextColor: {0}", item.TextColor));
 System.Console.WriteLine(string.Format("User: {0}", item.UserName));

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1137

Copy code
 System.Console.WriteLine(string.Format("UserResponse: {0}",
item.UserResponse));
 System.Console.WriteLine(string.Format("Value: {0}", item.Value));
 System.Console.WriteLine(string.Format("ValueLimit: {0}",
item.ValueQuality));

 AlarmList.Add(item);
 }
 ...
 }
 ...
 }
}

See also
IAlarm (Page 1138)

IAlarmSubscription (Page 1156)

19.9.5.2 IAlarm (RT Uni)

Description
The C# interface "IAlarm" specifies properties and methods for handling active alarms of the
Runtime system.

The methods trigger an exception in the case of an error.

Members
The following properties and methods are specified in the interface:

"Error" property
Error code of the alarm

uint32 Error { get; set; }

"Name" property
Name of the active alarm

string Name { get; set; }

"Acknowledge" method
Acknowledge active alarm or instance of an active alarm synchronously.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1138 System Manual, 11/2019, Online help printout

void Acknowledge(UInt32 instanceId)
● instanceID

– Value "0": Acknowledge active alarm.

– Value > "0": Acknowledge instance with this ID.

"Disable" method
Deactivate generation of the alarm in the alarm source synchronously.

void Disable()

"Enable" method
Activate generation of the alarm in the alarm source synchronously again.

void Enable()

"Reset" method
Acknowledge outgoing state of an active alarm or an instance of an active alarm synchronously.

void Reset(UInt32 instanceId)
● instanceID

– Value "0": Acknowledge the counter state of the active alarm.

– Value > "0": Acknowledge the counter state of an instance with this ID.

"Shelve" method
Hide active alarm synchronously.

void Shelve()

"Unshelve" method
Display hidden alarm synchronously again.

void Unshelve()

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1139

Example
Acknowledge active alarm synchronously:

Copy code
public void AcknowledgeAlarms(IList<IAlarmResult> AlarmList)
{
 if (AlarmList != null)
 {
 if (AlarmList.Count == 1)
 {
 IAlarm alarmAck = runtime.GetObject<IAlarm>(AlarmList[0].Name);
 alarmAck.Acknowledge(AlarmList[0].Name);
 }
 else
 {
 //process multiple alarms
 }
 }
}

See also
IAlarmResult (Page 1130)

IAlarmSet (Page 1140)

IAlarmSubscription (Page 1156)

19.9.5.3 IAlarmSet (RT Uni)

Description
The C# interface "IAlarmSet" specifies properties, methods and events for optimized access to
several active alarms of the Runtime system.

After initialization of the "IAlarmSet" object, you can execute asynchronous operations with
multiple alarms in one call, e. g. acknowledgment. Simultaneous access demonstrates better
performance and lower communication load than single access to multiple alarms.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

The methods trigger an exception in the case of an error.

Members
The following properties, methods and events are only specified in the interface:

Access operator "this[string]"
Accessing an element of an alarm set via the alarm name.

IAlarm this[string alarmName] { get; set; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1140 System Manual, 11/2019, Online help printout

alarmName
Name of the alarm that is changed in the AlarmSet.

"Count" property
Number of alarms of an AlarmSet list.

int32 Count { get; }

"Add" method
Add an active alarm or an instance of the alarm to the AlarmSet.

IAlarm Add(string alarmName, UInt32 instanceId)
● alarmName

Name of the alarm that is added to the AlarmSet.

● instanceId
Value = "0": Add active alarm.
Value > "0": Add instance with this ID.

"Remove" method
Remove a single alarm or an instance of an alarm from the AlarmSet.

void Remove(string alarmName, UInt32 instanceId)
● alarmName

Name of the alarm that is removed from the AlarmSet.

● instanceID
value = "0": Remove alarm
Value > "0": Remove instance with this ID.

"Clear" method
Remove all alarms from an AlarmSet.

void Clear()

"Acknowledge" method
Acknowledge alarms of the AlarmSet asynchronously.

int Acknowledge()

"Disable" method
Deactivate generation of alarms of the AlarmSet in the alarm source asynchronously.

void Disable()

"Enable" method
Activate generation of alarms of the AlarmSet in the alarm source asynchronously again.

void Enable()

"Reset" method
Acknowledge outgoing state of the alarms of the AlarmSet asynchronously.

void Reset()

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1141

"Shelve" method
Hide alarms of the AlarmSet asynchronously.

void Shelve()

"Unshelve" method
Display hidden alarms of the AlarmSet again.

void Unshelve()

"OnAcknowledgeHandler" event
When an AlarmSet is acknowledged with the "Acknowledge" and "AckknowledgeInstance"
methods, the event calls an instance of the "OnAlarmSetEventHandler" delegate.

Declares the event and the event handler for the asynchronous acknowledgment of the alarms.

event OnAlarmSetEventHandler OnAcknowledgeHandler

"OnResetHandler" event
Event calls an instance of the "OnAlarmSetEventHandler" delegate with the "Reset" and
"ResetInstance" methods when the outgoing state of the alarms of an AlarmSet is
acknowledged.

Declares the event and the event handler for the asynchronous removal of the alarms.

event OnAlarmSetEventHandler OnResetHandler

"OnDisableHandler" event
When the alarms of an AlarmSet are deactivated with the "Disable" method, the event calls an
instance of the "OnAlarmSetEventHandler" delegate.

Declares the event and the event handler for the asynchronous deactivation of the alarms.

event OnAlarmSetEventHandler OnDisableHandler

"OnEnableHandler" event
When the alarms of an AlarmSet are reactivated with the "Enable" method, the event calls an
instance of the "OnAlarmSetEventHandler" delegate.

Declares the event and the event handler for the asynchronous reactivation of the alarms.

event OnAlarmSetEventHandler OnEnableHandler

"OnShelveHandler" event
When the alarms of an AlarmSet are hidden with the "Shelve" method, the event calls an
instance of the "OnAlarmSetEventHandler" delegate.

Declares the event and the event handler for the asynchronous hiding of the alarms.

event OnAlarmSetEventHandler OnShelveHandler

"OnUnshelveHandler" event
When the alarms of an AlarmSet are displayed with the "Unshelve" method, the event calls an
instance of the "OnAlarmSetEventHandler" delegate.

Declares the event and the event handler for the new asynchronous displaying of the alarms.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1142 System Manual, 11/2019, Online help printout

event OnAlarmSetEventHandler OnUnshelveHandler

"OnAlarmSetEventHandler" delegate
Specifies the signature of the event handling method for all events of an AlarmSet.

void OnAlarmSetEventHandler(
 IAlarmSet sender,
 uint32 errorCode,
 IList<IAlarmSetResult> values,
 bool completed)
● sender

Source of the event

● errorCode
Error during asynchronous transfer

● values
Event data as a list of "IAlarmSetResult" objects of the processed alarms.

● completed
Status of the asynchronous transfer:

– True: All alarms of the AlarmSet are processed.

– False: Not all alarms of the AlarmSet are processed yet.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1143

Example
Acknowledge active alarms from the "AlarmList" list as an AlarmSet asynchronously:

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1144 System Manual, 11/2019, Online help printout

Copy code
public void AcknowledgeAlarms(IList<IAlarmResult> AlarmList)
{
 if (AlarmList != null)
 {
 if (AlarmList.Count == 1)
 {
 IAlarm alarmAck = runtime.GetObject<IAlarm>(AlarmList[0].Name);
 alarmAck.Acknowledge();
 }
 else
 {
 AlarmAckList = new List<IAlarmResult>();
 IAlarmSet alarmSet = runtime.GetObject<IAlarmSet>(); ;
 foreach (var alarmResult in AlarmList)
 {
 IAlarm pAlarm = null;
 pAlarm = alarmSet.Add(alarmResult.Name);
 AlarmAckList.Add(alarmResult);
 }

 // Assign callback function
 alarmSet.OnAcknowledgeHandler += alarmSet_OnAcknowledgeHandler;
 try
 {
 alarmSet.Acknowledge();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
 }
 }
}

public void alarmSet_OnAcknowledgeHandler(IAlarmSet sender, uint errorCode,
IList<IAlarmSetResult> values, bool completed)
{
 try
 {
 foreach (var item in values)
 {
 System.Console.WriteLine(string.Format("InstanceId: {0} Name: {1} SystemName:
{2} ",
 item.InstanceId, item.Name, item.SystemName));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1145

Copy code

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1146 System Manual, 11/2019, Online help printout

Remove active alarms from the "AlarmList" list as an AlarmSet asynchronously:

Copy code
public void ResetAlarms(IList<IAlarmResult> AlarmList)
{
 if (AlarmList != null)
 {
 if (AlarmList.Count == 1)
 {
 IAlarm alarmReset = runtime.GetObject<IAlarm>(AlarmList[0].Name);
 alarmReset.Reset();
 }
 else
 {
 IAlarmSet alarmSet = runtime.GetObject<IAlarmSet>(); ;
 AlarmResetList = new List<IAlarmResult>();
 foreach (var alarmResult in AlarmList)
 {
 IAlarm pAlarm = null;
 pAlarm = alarmSet.Add(alarmResult.Name);
 AlarmResetList.Add(alarmResult);
 }
 alarmSet.OnResetHandler += alarmSet_OnReseteHandler;
 try
 {
 alarmSet.Reset();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
 }
 }
}

public void alarmSet_OnReseteHandler(IAlarmSet sender, uint errorCode,
IList<IAlarmSetResult> values, bool completed)
{
 try
 {
 foreach (var item in values)
 {
 System.Console.WriteLine(string.Format("InstanceId: {0} Name: {1} SystemName:
{2} ",
 item.InstanceId, item.Name, item.SystemName));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1147

See also
IAlarmSetResult (Page 1148)

IAlarm (Page 1138)

19.9.5.4 IAlarmSetResult (RT Uni)

Description
The C# interface "IAlarmSetResult" specifies properties of alarms in AlarmSets. These
properties are returned by the EventHandler for all events of AlarmSets.

Members
The following properties are specified in the interface:

"SystemName" property
System name of the Runtime system of an alarm in the AlarmSet

string SystemName { get; }

"Name" property
Name of an alarm in the AlarmSet

string Name { get; }

"InstanceId" property
InstanceID of an alarm in the AlarmSet

uint32 InstanceId { get; }

"Error" property
Error code of an alarm in the AlarmSet

uint32 Error { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1148 System Manual, 11/2019, Online help printout

Example
Read out alarm of an AlarmSet after acknowledgment

Copy code
public void alarmSet_OnAcknowledgeHandler(IAlarmSet sender, uint errorCode,
IList<IAlarmSetResult> values, bool completed)
{
 try
 {
 foreach (var item in values)
 {
 System.Console.WriteLine(string.Format("InstanceId: {0} Name: {1} SystemName:
{2} ",
 item.InstanceId, item.Name, item.SystemName));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

See also
IAlarmSet (Page 1140)

19.9.5.5 IAlarmTrigger (RT Uni)

Description
The C# interface "IAlarmTrigger" specifies methods for triggering alarms.

Members

"CreateSystemAlarm" method
Generates an alarm of the class SystemAlarmWithoutClearEvent with the state machine alarm
without outgoing status with acknowledgment.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1149

void CreateSystemAlarm(object alarmText, string area, object
alarmParameterValue1, ..., object alarmParameterValue7)
● alarmText:

The alarm text. You have the following options:

– Transferring a text list of the type "ITextList".
The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.

Note
Only user-definedtext lists

This method processes only user-defined text lists.

– Transfer static string with monolingual text.

● area:
The area of origin of the alarm

● alarmParameterValue1 to alarmParameterValue7:
User-defined comments

The alarm triggers an event with the following event path:

● For multilingual alarm
texts:
@ScriptingSystemEvents.SystemAlarmWithoutClearEvent:SystemAlarmWit
houtClearEvent

● For monolingual alarm
text:
@ScriptingSystemEvents.SystemAlarmWithoutClearEventText:SystemAlar
mWithoutClearEvent

"CreateSystemInformation" method
Generates an alarm of the class SystemInformation with the state machine alarm without
outgoing status without acknowledgment.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1150 System Manual, 11/2019, Online help printout

void CreateSystemInformation(object alarmText, string area, object
alarmParameterValue1, ..., object alarmParameterValue7)
● alarmText:

The alarm text. You have the following options:

– Transferring a text list of the type "ITextList".
The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.

Note
Only user-definedtext lists

This method processes only user-defined text lists.

– Transfer static string with monolingual text.

● area:
The area of origin of the alarm

● alarmParameterValue1 to alarmParameterValue7:
User-defined comments

The alarm triggers an event with the following event path:

● For multilingual alarm
texts: @ScriptingSystemEvents.SystemInformation:SystemInformation

● For monolingual alarm
text: @ScriptingSystemEvents.SystemInformationText:SystemInformation

"CreateOperatorInputInformation" method
Generates an alarm of the class OperatorInputInformation with the state machine alarm without
outgoing status without acknowledgment.

void CreateOperatorInputInformation(object alarmText, string area,
object alarmParameterValue1, ..., object alarmParameterValue7)
● alarmText:

The alarm text. You have the following options:

– Transferring a text list of the type "ITextList".
The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.

Note
Only user-definedtext lists

This method processes only user-defined text lists.

– Transfer static string with monolingual text.

● area:
The area of origin of the alarm

● alarmParameterValue1 to alarmParameterValue7:
User-defined comments

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1151

The alarm triggers an event with the following event path:

● For multilingual alarm
texts:
@ScriptingSystemEvents.OperatorInputInformationText:OperatorInputI
nformation

● For monolingual alarm
text:
@ScriptingSystemEvents.OperatorInputInformationText:OperatorInputI
nformation

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1152 System Manual, 11/2019, Online help printout

Example
The following code examples show how to trigger alarms of the class
SystemAlarmWithoutClearEvent. Alarms of the classes SystemInformation and
OperatorInputInformation are triggered in the same way.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1153

Copying code
public void CreateSystemAlarm()
{
 //Create SystemAlarm with monolingual alarm text
 var alarm = runtime.GetObject<IAlarmSubscription>();
 var systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.OnPendingAlarmCompleteHandler += Alarm_OnPendingAlarmCompleteHandler;
 alarm.Filter = "AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 var systemAlarm = runtime.GetObject<IAlarmTrigger>();
 systemAlarm.CreateSystemAlarm(alarmText: "Alarm Text", area: "Area",
 alarmParameterValue1: "Param1",
 alarmParameterValue2: "Param2",
 alarmParameterValue3: "Param3",
 alarmParameterValue4: "Param4",
 alarmParameterValue5: "Param5",
 alarmParameterValue6: "Param6",
 alarmParameterValue7: "Param7");
 _event.WaitOne();
 _event.Reset();
 //stop alarm subscription
 alarm.Stop();
 //Dispose alarm object
 alarm.Dispose();
}

public void CreateSystemAlarmWithAlarmTextAsTextList()
{
 //Create SystemAlarm with multilingual alarm text; the tranlsations are directly stored
in the text list
 var alarm = runtime.GetObject<IAlarmSubscription>();
 var systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.OnPendingAlarmCompleteHandler += Alarm_OnPendingAlarmCompleteHandler;
 alarm.Filter = "AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 var systemAlarm = runtime.GetObject<IAlarmTrigger>();
 var texlistforAlarmText = runtime.GetObject<ITextList>();
 // Text list: AlarmTextTemplate
 // Test list entry index: 101
 // Text: "My input msg. input value = @1%d@"
 texlistforAlarmText.Name = "AlarmTextTemplate";
 texlistforAlarmText.TextListEntryIndex = 101;
 systemAlarm.CreateSystemAlarm(alarmText: texlistforAlarmText, area: "Area",
 alarmParameterValue1: "125", // dynamic value for format specifier @1%d@
 alarmParameterValue2: "Param2",
 alarmParameterValue3: "Param3",
 alarmParameterValue4: "Param4",

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1154 System Manual, 11/2019, Online help printout

Copying code
 alarmParameterValue5: "Param5",
 alarmParameterValue6: "Param6",
 alarmParameterValue7: "Param7");
 _event.WaitOne();
 _event.Reset();
 //stop alarm subscription
 alarm.Stop();
 //Dispose alarm object
 alarm.Dispose();
}

public void CreateSystemAlarmWithTextListAsParameterValue()
{
 //Create SystemAlarm with multilingual alarm text; the text list references other text
lists with tranlsations
 var alarm = runtime.GetObject<IAlarmSubscription>();
 var systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.OnPendingAlarmCompleteHandler += Alarm_OnPendingAlarmCompleteHandler;
 alarm.Filter = "AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 var systemAlarm = runtime.GetObject<IAlarmTrigger>();
 var textList1 = runtime.GetObject<ITextList>("Text_List_1");
 var textList2 = runtime.GetObject<ITextList>("Text_List_2");
 textList1.TextListEntryIndex = 1; //Eng TL @1%t#2T@ Val: @3%s@
 systemAlarm.CreateSystemAlarm(alarmText: textList1, area: "Area",
 alarmParameterValue1: 1,
 alarmParameterValue2: textList2, // text list object
 alarmParameterValue3: "Hello"); // Dynamic value of @3%s@
 _event.WaitOne();
 _event.Reset();
 //stop alarm subscription
 alarm.Stop();
 //Dispose alarm object
 alarm.Dispose();
}

See also
ITextList (Page 1156)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1155

19.9.5.6 ITextList (RT Uni)

Description
The C# interface "ITextList" is used to transfer multilingual alarm texts for system alarms and
operator input alarms. See section IAlarmTrigger (Page 1149), CreateSystemInformation
method. An ITextList instance is passed to the alarm text. When the operator input alarm is
generated, it is replaced by the configured text from the text list.

Members

"Name" property
The name of the text list.

string Name { get; set; }

"TextListEntryIndex" property
The index of the list entry

UInt32 TextListEntryIndex { get; set; }

19.9.5.7 IAlarmSubscription (RT Uni)

Description
The C# interface "IAlarmSubscription" specifies methods for monitoring alarms of the Runtime
system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following methods and events are specified in the interface:

"SystemNames" property
System names of Runtime systems for the monitoring of active alarms.

IList<string> SystemNames { get; set; }

"Language" property
Country identification of the language of the monitored alarms

uint32 Language { get; set; }

"Filter" property
SQL-type string for filtering the result set of active alarms

string Filter { get; set; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1156 System Manual, 11/2019, Online help printout

All properties of an alarm can be used in the filter string. The filter string can contain operators.
Refer to the section Syntax of the alarm filter (Page 1084).

"Start" method
Subscribe systems for monitoring of changes of active alarms.

void Start()

"Stop" method
Unsubscribe monitoring of active alarms.

Note
Start and Stop in Windows Forms applications

Do not call the "Stop" method for a Windows forms application in the same thread in which you
called "Start".

void Stop()

"OnAlarmHandler" event
Following a change of alarm state on subscribed systems, the event calls an instance of the
"OnAlarmHandler" delegate.

Declares the event and the event handler for asynchronous monitoring of alarms.

event OnAlarmHandler OnAlarmHandler

"OnPendingAlarmCompleteHandler" event
After completion of handling of all active alarms of a system, the event calls an instance of the
"OnPendingAlarmCompleteHandler" delegate.

Declares the event and the event handler for confirmation of the asynchronous operations.

event OnPendingAlarmCompleteHandler OnPendingAlarmCompleteHandler

"OnAlarmHandler" delegate
Specifies the signature of the event handling method for the "OnAlarmHandler" event.

void OnAlarmHandler(
 IAlarmSubscription sender,
 uint32 systemError,
 string systemName,
 IList<IAlarmResult> values,
 bool completed)
● sender

Reference to the "IAlarmSubscription" object

● systemError
Error code for the asynchronous operation

● systemName
Name of the Runtime system that is subscribed for alarm monitoring by the user.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1157

● values
Event data as a list of "IAlarmResult" objects of the monitored active alarms.

● completed
Status of the asynchronous transfer:

– True: All alarms are read out.

– False: Not all alarms are yet read out.

"OnPendingAlarmCompleteHandler" delegate
Specifies the signature of the event handling method for the
"OnPendingAlarmCompleteHandler" event.

void OnPendingAlarmCompleteHandler(IAlarmSubscription sender)
● sender

Source of the event

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1158 System Manual, 11/2019, Online help printout

Example
Define functions for asynchronous monitoring of active alarms. Monitor "OnAlarmHandler"
event and when occurring call the event handling method "alarm_OnAlarmHandler":

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1159

Copy code
public void SubscribeAlarmWithFilterOnOriginAndAlarmclass()
{
 try
 {
 // object filter = "AlarmClass = 'AlarmWithOptionalAcknowledgement' AND Origin =
'Boiler'";
 IAlarmSubscription alarm = runtime.GetObject<IAlarmSubscription>();
 List<string> systemNames = new List<string>();
 systemNames.Add("SYSTEM1");

 // Assign alarm handler
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.Filter = "AlarmClassName = 'AlarmWithOptionalAcknowledgement' AND Origin =
'Boiler'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

public void alarm_OnAlarmHandler(IAlarmSubscription sender, UInt32 nGlobalError, String
systemName, IList<IAlarmResult> value, bool completed)
{
 if (0 == nGlobalError)
 {
 try
 {
 AlarmList = new List<IAlarmResult>();
 foreach (var item in value)
 {
 System.Console.WriteLine(string.Format("InstanceID: {0} SourceID: {1} Name:
{2} State: {3} EventText: {4} StateText: {5} BackColor: {6} Flashing: {7} Quality: {8}
ModificationTime: {9}",
 item.InstanceID, item.SourceID, item.Name, item.State,
 item.EventText, item.StateText, item.BackColor, item.Flashing,
item.Quality, item.ModificationTime));
 AlarmList.Add(item);
 }

 // For test purpose: Cancel subscription after first notification
 AcknowledgeAlarms(AlarmList);
 }
 finally
 {
 if (null != sender)
 {
 sender.Stop();
 sender.Dispose();
 }
 }
 }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1160 System Manual, 11/2019, Online help printout

Copy code
 else
 {
 System.Console.WriteLine("AlarmSubscription Failed");
 }
}

See also
IAlarmResult (Page 1130)

IAlarm (Page 1138)

19.9.5.8 ILoggedAlarmResult (RT Uni)

Description
The C# interface "ILoggedAlarmResult" specifies methods for accessing properties of logged
alarms of a logging system.

Members
The following properties are specified in the interface:

"InstanceID" property
InstanceID for a logged alarm with multiple instances

uint32 InstanceID { get; }

"Name" property
Name of the logged alarm.

string Name { get; }

"AlarmClassName" property
Name of the alarm class of the logged alarm.

string AlarmClassName { get; }

"AlarmClassSymbol" property
Symbol of the alarm class of the logged alarm.

string AlarmClassSymbol { get; }

"AlarmParameterValues" property
Parameter values of the logged alarm.

IReadOnlyList<object> AlarmParameterValues { get; }

"AlarmText1" … "AlarmText9" properties
Additional texts 1-9 of the logged alarm.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1161

string AlarmText1 { get; }
…

string AlarmText9 { get; }

"ChangeReason" property
Trigger event of the change of the alarm state of the logged alarm.

uint16 ChangeReason { get; }

"Connection" property
Connection via which the logged alarm was triggered.

string Connection { get; }

"State" property
Alarm state of the logged alarm.

HmiAlarmState State { get; }
The enumeration "HmiAlarmState" can contain the following values:

● Standard (0x00)

● Raised (0x01)

● RaisedCleared (0x02)

● RaisedAcknowledged (0x05)

● RaisedAcknowledgedCleared (0x06)

● RaisedClearedAcknowledged (0x07)

● Removed (0x80)

"StateText" property
Alarm state of the logged alarm as text, e.g. "incoming" or "outgoing".

string StateText { get; }

"EventText" property
Text of the logged alarm that describes the alarm event.

string EventText { get; }

"TextColor" property
Text color of the alarm state of the logged alarm.

uint32 TextColor { get; }

"BackColor" property
Background color of the alarm state of the logged alarm.

uint32 BackColor { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1162 System Manual, 11/2019, Online help printout

"Flashing" property
Indicates whether the logged alarm flashes.

bool Flashing { get; }

"InvalidFlags" property
Marking of the logged alarm in case of invalid data

byte InvalidFlags { get; }

"ModificationTime" property
Time of the last change of the alarm state of the logged alarm.

DateTime ModificationTime { get; }

"RaiseTime" property
Trigger time of the logged alarm.

DateTime RaiseTime { get; }

"AcknowledgementTime" property
Time at which the logged alarm was acknowledged.

DateTime AcknowledgementTime { get; }

"ClearTime" property
Time at which the logged alarm was cleared.

DateTime ClearTime { get; }

"ResetTime" property
Time at which the logged alarm was reset.

DateTime ResetTime { get; }

"SuppressionState" property
Status of the visibility of the logged alarm.

byte SuppressionState { get; }

"SystemSeverity" property
Severity of the system error

byte SystemSeverity { get; }

"Priority" property
Relevance for display and sorting of the logged alarm.

byte Priority { get; }

"Origin" property
Origin for display and sorting of the logged alarm.

string Origin { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1163

"Area" property
Origin area for display and sorting of the logged alarm.

string Area { get; }

"Value" property
Process value of the logged alarm.

object Value { get; }

"AlarmGroupName" property
Name of the group to which the alarm belongs. Blank if the alarm does not belong to a group.

string AlarmGroupName { get; }

"DeadBand" property
Range of the triggering tag in which no alarms are generated.

object DeadBand { get; }

"HostName" property
Name of the host that triggered the alarm.

string HostName { get; }

"InfoText" property
Localizable text for the alarm that contains the associated work instruction.

string InfoText { get; }

"StateMachine" property
StateMachine model of the alarm. The StateMachine represents the behavior of alarms
through arrangement of alarm states and alarm events, e.g. "RaiseClear",
"RaiseRequiresAcknowledgment" or "RaiseClearOptionalAcknowledgment".

byte StateMachine { get; }

"ValueQuality" property
Quality of the process value of the alarm

int32 ValueQuality { get; }

"ValueLimit" property
Limit of the process value of the logged alarm.

object ValueLimit { get; }

"SingleAcknowledgement" property
Indicates whether an alarm may be acknowledged only individually or may be acknowledged
as a group or multiple selection.

bool SingleAcknowledgement { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1164 System Manual, 11/2019, Online help printout

"LoggedAlarmStateObjectID" property
ID of alarm state for referencing within the logging system.

string LoggedAlarmStateObjectID { get; }

"ID" property
User-defined ID of the alarm that is also used in the display.

uint32 ID { get; }

"SourceType" property
Source from which the alarm was generated, e.g. tag-based, controller-based or system-based
alarm.

HmiAlarmSourceType SourceType { get; }
The enumeration "HmiAlarmSourceType" can contain the following values:

● Undefined (0)

● Tag (1)

● Controller (2)

● System (3)

● Alarm (4)

"UserName" property
User name of the logged operator input alarm.

string UserName { get; }

"UserResponse" property
Expected or required user response to the logged alarm.

byte UserResponse { get; }

"LoopInAlarm" property
Function that navigates from the alarm view to its origin.

string LoopInAlarm { get; }

"Error" property
Error code of the logged alarm.

unit32 Error { get; }

See also
IAlarmLogging (Page 1166)

IAlarmLoggingSubscription (Page 1168)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1165

19.9.5.9 IAlarmLogging (RT Uni)

Description
The C# interface "IAlarmLogging" specifies properties and methods for reading out logged
alarms of a logging system.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following methods and events are specified in the interface:

"Read" method
Read out logged alarms of a time period synchronously from logging system.

IList<ILoggedAlarmResult> Read(
 DateTime begin,
 DateTime end,
 string filter,
 uint32 language,
 IList<string> systemNames)
● begin

Start date of the time period

● end
End date of the time period

● filter
Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.

● language
Country identification of the language of the logged alarm text

● systemNames
System names of the Runtime systems of the logged alarms. Default: local system

"ReadAsync" method
Read out logged alarms of a time period asynchronously from logging system.

void ReadAsync(
 DateTime begin,
 DateTime end,
 string filter,
 uint32 language,
 IList<string> systemNames)
● begin

Start date of the time period

● end
End date of the time period

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1166 System Manual, 11/2019, Online help printout

● filter
Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.

● language
Country identification of the language of the logged alarm text

● systemNames
System names of the Runtime systems of the logged alarms. Default: local system

"OnReadComplete" event
After readout of the logged alarms, event calls an instance of the
"OnReadCompleteAlarmLoggingHandler" delegate.

Declares the event and the event handler for the asynchronous readout of logged alarms.

event OnReadCompleteAlarmLoggingHandler OnReadComplete

"OnReadCompleteAlarmLoggingHandler" delegate
Specifies the signature of the event handling method for the "OnReadComplete" event.

void OnReadCompleteAlarmLoggingHandler(
 IAlarmLogging sender,
 uint32 errorCode,
 IList<ILoggedAlarmResult> values,
 bool completed)
● sender

Source of the event

● errorCode
Error code for the asynchronous operation

● values
Event data as a list of "ILoggedAlarmResult" objects of the read-out logged alarms.

● completed
Status of the asynchronous transfer:

– True: All alarms are read out.

– False: Not all alarms are yet read out.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1167

Example
Reading out and outputting logged alarms asynchronously:

Copy code
public void ReadAsync()
{
 try
 {
 var alarm = _runtime.GetObject<IAlarmLogging>();
 var now = DateTime.UtcNow;
 var begin = now.AddMinutes(-5);
 var end = now.AddMinutes(-2);
 List<string> systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnReadComplete += Alarm_OnReadComplete;
 alarm.ReadAsync(begin, end, "", 1033, systemNames);
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

private void Alarm_OnReadComplete(IAlarmLogging sender, uint errorCode,
IList<ILoggedAlarmResult> values, bool completed)
{
 PrintValues(values);
 sender.Dispose();
}

private void PrintValues(IList<ILoggedAlarmResult> values)
{
 foreach (var v in values)
 {
 Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}", v.Name,
v.RaiseTime, v.Value));
 }
}

See also
ILoggedAlarmResult (Page 1161)

IAlarmLoggingSubscription (Page 1168)

19.9.5.10 IAlarmLoggingSubscription (RT Uni)

Description
The C# interface "IAlarmLoggingSubscription" specifies properties and methods for monitoring
logged alarms of a logging system.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1168 System Manual, 11/2019, Online help printout

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties, methods and events are specified in the interface:

"SystemNames" property
System names of the Runtime systems of the logged alarms.

IList<string> SystemNames { get; set; }

"Language" property
Country identification of the language of the logged alarms.

uint32 Language { get; set; }

"Filter" property
SQL-like string for filtering the result set of the logged alarms.

string Filter { get; set; }

"Start" method
Start monitoring of logged alarms.

void Start()

"Stop" method
Stop monitoring of all logged alarms.

void Stop()

"OnDataChanged" event
Following a change of a monitored alarm in the logging systems, the event calls an instance of
the "OnDataChangedAlarmLoggingHandler" delegate.

Declares the event and the event handler for the monitoring of logged alarms.

event OnDataChangedAlarmLoggingHandler OnDataChanged

"OnDataChangedAlarmLoggingHandler" delegate
Specifies the signature of the event handling method for the "OnDataChanged" event.

void OnDataChangedAlarmLoggingHandler(
 IAlarmLoggingSubscription sender,

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1169

 uint32 errorCode,
 IList<ILoggedAlarmResult> values)
● sender

Source of the event

● errorCode
Error code for the asynchronous operation

● values
Event data as a list of "ILoggedAlarmResult" objects of the monitored logged alarms.

Example
Output logged alarms following a change.

Copy code
public void SubscribeAlarm()
{
 try
 {
 _alarm = _runtime.GetObject<IAlarmLoggingSubscription>();
 List<string> systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 // Assign alarm handler
 _alarm.OnDataChanged += Alarm_OnDataChanged;
 _alarm.Filter = "";
 _alarm.Language = 1033;
 _alarm.SystemNames = systemNames;
 _alarm.Start();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }
}

private void Alarm_OnDataChanged(IAlarmLoggingSubscription sender, uint errorCode,
IList<ILoggedAlarmResult> values)
{
 PrintValues(values);
}

private void PrintValues(IList<ILoggedAlarmResult> values)
{
 foreach (var v in values)
 {
 Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}", v.Name,
v.RaiseTime, v.Value));
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1170 System Manual, 11/2019, Online help printout

Cancel monitoring of logged alarms:

Copy code
public void CancelSubscription()
{
 try
 {
 if (_alarm != null)
 {
 _alarm.Stop();
 _alarm.Dispose();
 }
 }
 catch(Exception ex)
 {
 System.Console.WriteLine(ex.Message);
 }
}

See also
IAlarmLogging (Page 1166)

ILoggedAlarmResult (Page 1161)

19.9.6 Interfaces for connections (RT Uni)

19.9.6.1 IConnectionResult (RT Uni)

Description
The C# interface "IConnectionResult" provides access to the details of a connection.

Members
The following properties are specified in the interface:

"Name" property
Name of the connection

string Name { get; }

"ConnectionState" property
Status of the connection

HmiConnectionState ConnectionState { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1171

The "HmiConnectionState" enumeration contains the following values:

● Disabled (0)

● Connecting (1)

● Connected (2)

● Disconnecting (3)

● Disconnected (4)

● Reconnecting (5)

"EstablishmentMode" property
Mode in which the connection will be established.

HmiConnectionEstablishmentMode EstablishmentMode { get; }
The "HmiConnectionEstablishmentMode" enumeration contains the following values:

● None (0)

● AutomaticActive (1)

● AutomaticPassive (2)

● OnDemandActive (3)

● OnDemandPassive (4)

"TimeSynchronizationMode" property
Mode of time synchronization between HMI system and automation system

HmiTimeSynchronizationMode TimeSynchronizationMode { get; }
The "HmiTimeSynchronizationMode" enumeration contains the following values:

● None (0)

● Slave (1)

● Master (2)

"DisabledAtStartup" property
Indicates whether the connection is disabled at the start of Runtime.

bool DisabledAtStartup { get; }
● true: Connection is disabled at the connection start.

● false: Connection is active at the connection start.

"Enabled" property
Indicates whether the connection is active.

bool Enabled { get; }
● true: Connection is active.

● false: Connection is not active.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1172 System Manual, 11/2019, Online help printout

"ConnectionType" property
Protocol of a communication driver, e.g. "S7 Classic".

string ConnectionType { get; }

"Error" property
Error code of the connection

uint32 Error { get; }

Example

Output connection details:

Copy code
public void Connection_Read()
{
 var (connection = m_runtime.GetObject<IConnection>("HMI-ConnectionS7Plus");
 if (connection != null)
 {
 var con = connection.Read();
 if (con != null)
 {
 Console.WriteLine("Connection Name is {0} ", con.Name);
 Console.WriteLine("ConnectionState is {0}", con.ConnectionState);
 Console.WriteLine("TimeSynchronizationMode is {0} ", con.TimeSynchronizationMod
e);
 Console.WriteLine("EstablishMentMode is {0} ", con.EstablishmentMode);
 Console.WriteLine("Enabled is {0} ", con.Enabled);
 Console.WriteLine("DisabledAtStartup is {0} ", con.DisabledAtStartup);
 Console.WriteLine("ConnectionType is {0} ", con.ConnectionType);
 Console.WriteLine(" Error is {0} ", con.Error);
 }
 }
}

See also
IConnection (Page 1175)

IConnectionSet (Page 1176)

19.9.6.2 IConnectionStatusResult (RT Uni)

Description
The C# interface "IConnectionStatusResult" provides access to the status of a connection.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1173

Members
The following properties are specified in the interface:

"Name" property
Name of the connection

string Name { get; }

"ConnectionState" property
Status of the connection

HmiConnectionState ConnectionState { get; }
The "HmiConnectionState" enumeration contains the following values:

● Disabled (0)

● Connecting (1)

● Connected (2)

● Disconnecting (3)

● Disconnected (4)

● Reconnecting (5)

"Error" property
Error code of the connection

uint32 Error { get; }

Example
Output status of a certain connection:

Copy code
public void Connection_GetConnectionState()
{
 var connection = m_runtime.GetObject<IConnection>("HMI-ConnectionS7Plus");
 var con = connection.GetConnectionState();
 if (con != null)
 {
 Console.WriteLine("Connection Name is : {0} ", con.Name);
 Console.WriteLine(" Error is : {0} ", con.Error);
 Console.WriteLine("Connection status is: {0}", con.ConnectionStatus);
 }
}

See also
IConnection (Page 1175)

IConnectionSet (Page 1176)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1174 System Manual, 11/2019, Online help printout

19.9.6.3 IConnection (RT Uni)

Description
The C# interface "IConnection" provides properties and methods for the access to a
connection. A connection is a configured, logical assignment of two communication partners.

The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of the connection

string Name { get; set; }

"Read" method
Read connection details synchronously from the Runtime system.

IConnectionResult Read()

"GetConnectionState" method
Return connection status of a connection.

IConnectionStatusResult GetConnectionState()

"SetConnectionMode" method
Change connection status of a connection.

void SetConnectionMode(ConnectionMode mode)
The "ConnectionMode" enumeration contains the following values:

● Disabled (0)

● Enabled (1)

Examples
Disable connection:

Copy code
public void Connection_SetConnectionStateDisable()
{
 var connection = m_runtime.GetObject<IConnection>("HMI-ConnectionS7Plus");
 if (connection != null)
 {
 connection.SetConnectionMode(ConnectionMode.Disabled);
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1175

Enable connection:

Copy code
public void SetConnectionStateEnable()
{
 using (IConnection connection = runtime.GetObject<IConnection>("HMI-ConnectionS7Plus"))
 {
 if (connection != null)
 {
 connection.SetConnectionMode(ConnectionMode.Enabled);
 }
 }
}

See also
IConnectionSet (Page 1176)

IConnectionResult (Page 1171)

IConnectionStatusResult (Page 1173)

19.9.6.4 IConnectionSet (RT Uni)

Description
The C# interface "IConnectionSet" specifies properties, methods and events for optimized
access to several connections of the Runtime system.

After initialization of the "IConnectionSet" object, you have read/write access to multiple
connections in one call. Simultaneous access takes place with better performance and lower
communication load than single access to multiple connections.

The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
ID as additional identification feature of a connection. The ContextId can, for example, be used
to recognize identically named connections.

Default value -1: The ContextId is not used.

int32 ContextId { get; set; }

Access operator "this[string]"
Accessing or changing an element of a ConnectionSet via the connection name.

IConnection this[string connectionName] { get; set; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1176 System Manual, 11/2019, Online help printout

connectionName
Name of the connection

"Count" property
Number of connections of a connection set list

int32 Cont { get; }

"Add" method
Add connections to a connection set.

void Add(ICollection<string> connections)
connections
List of connections for the connection set

"Remove" method
Remove individual connection from connection set.

void Remove(string connection)
connection
Name of connection that is removed from the connection set.

"Clear" method
Remove all connections from connection set.

void Clear()

"Read" method
Read connection details of all connections of the connection set synchronously from the
Runtime system.

IList<IConnectionResult> Read()

"ReadAsync" method
Read connection details of all connections of the connection set asynchronously from the
Runtime system.

void ReadAsync()

"GetConnectionState" method
Read connection status of all connections of the connection set synchronously from the
Runtime system.

IList<IConnectionStatusResult> GetConnectionState()

"Subscribe" method
Subscribe all connections of a connection set asynchronously for change monitoring.

void Subscribe()

"CancelSubscribe" method
Cancel change monitoring of all connections of a connection set.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1177

void CancelSubscribe()

"OnConnectionRead" event
After establishment of the connection, event calls an instance of the "OnConnectionHandler"
delegate.

Declares the event and the event handler for the establishment of a connection.

event OnConnectionHandler OnConnectionRead

"OnConnectionStateChange" event
After change of the connection status, event calls an instance of the
"OnConnectionStateChangeHandler" delegate.

Declares the event and the event handler for the change of the connection status.

event OnConnectionStateChangeHandler OnConnectionStateChange

"OnConnectionHandler" delegate
Specifies the signature of the event handling method for the "OnConnectionHandler" event of
a connection set.

void OnConnectionHandler(
 IConnectionSet sender,
 uint32 systemError,
 IList<IConnectionResult> values)
● sender

Source of the event

● systemError
Error code

● values
List of connections

"OnConnectionStateChangeHandler" delegate
Specifies the signature of the event handling method for the
"OnConnectionStateChangeHandler" event of a connection set.

void OnConnectionStateChangeHandler(
 IConnectionSet sender,
 uint32 systemError,
 IList<IConnectionStatusResult> values)
● sender

Source of the event

● systemError
Error code

● values
List of status changes of the connections

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1178 System Manual, 11/2019, Online help printout

Examples
Monitor connection status:

Copy code
public void ConnnectionSet_Subscribe()
{
 Console.WriteLine("Connection Set:Subscription start");
 using (IConnectionSet subscribe = runtime.GetObject<IConnectionSet>())
 {
 if (subscribe != null)
 {
 ICollection<string> list = new string[] { "HMI-Connection", "HMI-
ConnectionS7Plus" };
 subscribe.Add(list);
 subscribe.OnConnectionStateChanged += Subscribe_OnConnectionStateChanged;
 subscribe.Subscribe();
 Thread.Sleep(500);
 }
 }
}

private void Subscribe_OnConnectionStateChanged(IConnectionSet sender, uint systemError,
IList<IConnectionStatusResult> values)
{
 if (0 == systemError)
 {
 try
 {
 foreach (var item in values)
 {
 Console.WriteLine("Name:{0} ", item.Name);
 Console.WriteLine("State:{0} ", item.ConnectionStatus.ToString());
 Console.WriteLine("Error:{0} ", item.Error);
 }
 }

 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }

 finally
 {
 if (null != sender)
 {
 sender.CancelSubscribe();
 Console.WriteLine("Subscription cancelled");
 sender.Dispose();
 }
 }
 }
 else
 {
 System.Console.WriteLine("Connection set subscription Failed");
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1179

Copy code

Read out connection synchronously:

Copy code
public void ConnectionSet_Read()
{
 Console.WriteLine("Connection Set: Read ");
 using (IConnectionSet read = runtime.GetObject<IConnectionSet>())
 {
 if (read != null)
 {
 ICollection<string> list = new string[] { "HMI-Connection", "HMI-
ConnectionS7Plus" };
 read.Add(list);

 IList<IConnectionResult> connectionResult = read.Read();
 foreach (var item in connectionResult)
 {
 System.Console.WriteLine(string.Format("Connection Name is {0} ",
item.Name));
 System.Console.WriteLine(string.Format("ConnectionState is {0}",
item.ConnectionState.ToString()));
 System.Console.WriteLine(string.Format("TimeSynchronizationMode is {0} ",
item.TimeSynchronizationMode.ToString()));
 System.Console.WriteLine(string.Format(" Error is {0} ", item.Error));
 System.Console.WriteLine(string.Format("EstablishMentMode is {0} ",
item.EstablishmentMode));
 System.Console.WriteLine(string.Format("Enabled is {0} ", item.Enabled));
 System.Console.WriteLine(string.Format("DisabledAtStartup is {0} ",
item.DisabledAtStartup));
 System.Console.WriteLine(string.Format("ConnectionType is {0} ",
item.ConnectionType));
 }
 }
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1180 System Manual, 11/2019, Online help printout

Read out connection asynchronously:

Copy code
public void ConnectionSet_ReadAsync()
{
 Console.WriteLine("Connection Set: ReadAsync start");
 IConnectionSet readAsync = runtime.GetObject<IConnectionSet>();
 if (readAsync != null)
 {
 ICollection<string> list = new string[] { "HMI-Connection", "HMI-ConnectionS7Plus" };
 readAsync.Add(list);
 readAsync.OnConnectionRead += Read_OnConnectionComplete;
 readAsync.ReadAsync();
 Thread.Sleep(5000);
 }
}

private void Read_OnConnectionComplete(IConnectionSet sender, uint systemError,
IList<IConnectionResult> values)
{
 foreach (var item in values)
 {
 Console.WriteLine("Name:{0} ", item.Name);
 Console.WriteLine("State:{0} ", item.ConnectionState);
 Console.WriteLine("establishmentMode:{0} ", item.EstablishmentMode);
 Console.WriteLine("TimeSynchronizationMode:{0} ", item.TimeSynchronizationMode);
 Console.WriteLine("ConnectionType:{0} ", item.ConnectionType);
 Console.WriteLine("Enabled:{0} ", item.Enabled);
 Console.WriteLine("DisabledAtStartup:{0} ", item.DisabledAtStartup);
 Console.WriteLine("Error:{0} ", item.Error);
 }
}
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

See also
IConnection (Page 1175)

IConnectionResult (Page 1171)

IConnectionStatusResult (Page 1173)

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1181

19.9.7 Interfaces of the Plant Model (RT Uni)

19.9.7.1 IPlantModel (RT Uni)

Description
The C# interface "IPlantModel" specifies methods for access to object instances of the plant
model of a Runtime system. The "IPlantModel" object represents the plant model of the
graphical Runtime system.

The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Formatting a path in the hierarchy
A hierarchy path of object instances consists of several components and has the following
syntax:

[SystemName].HierarchyName::[PlantObjectID/.../]PlantObjectID
The system name can be omitted for referencing a local hierarchy. The dot before the hierarchy
name must stay.

Note
Fixed code HierarchyName

In the current version, HierarchyName has a fixed code which is "hierarchy".

Members
The class implements the following methods:

"GetPlantObject" method
Supplies an object instance of "IPlantObject".

IPlantObject GetPlantObject(string plantObject)
● plantObject

Identifies an IPlantObject instance by its name or its path in the hierarchy.

"GetPlantObjectsByType" method
Supplies a list with instances of "IPlantObject" that have a specific type.

IList<IPlantObject> GetPlantObjectsByType(string
plantObjectTypeFilter, string viewFilter = null)
● plantObjectTypeFilter

Filter for the "IPlantObject" type on which the instances are based.

● Optional: viewFilter
Filter for the path in the hierarchy. Only instances from a specific node are returned.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1182 System Manual, 11/2019, Online help printout

"GetPlantObjectsByExpression" method
Supplies a list with instances of "IPlantObject" instances. The instances are filtered by type and
property values.

IList<IPlantObject> GetPlantObjectsByExpression(ICollection<string>
propertyNames, string plantObjectTypeFilter, string
expressionFilter, string viewFilter)
● propertyNames

A list with property names

● plantObjectTypeFilter
Filter for the object type on which the instances are based.

● expressionFilter
An expression that is a filter for the property values.

● Optional: viewFilter
Filter for a hierarchy path.

Example:

var plantObjectArr =
PlantModel.GetPlantObjectsByExpression("Temperature", "Motor",
"Temperature>100");

"GetPlantObjectsByPropertyNames" method
Supplies a list with "IPlantObject" instances that have specific properties and originate in a
specific plant node.

IList<IPlantObject>
GetPlantObjectsByPropertyNames(ICollection<string> propertyNames,
string viewFilter = null)
● propertyNames

A list with property names
If the list contains multiple values, all properties must be available at the object.

● Optional: viewFilter
Filter for a hierarchy path.

Example
Example of a hierarchy path:

Hierarchy path Referenced object instance
System2.TechnologicalHierarchy::P1/S1/L2/
LeftPump

References the "LeftPump" object instance in the "Technolo‐
gicalHierarchiy" of system2.

.TechnologicalHierarchy::P1/S1/L2/LeftPump References the "LeftPump" object instance in the "Technolo‐
gicalHierarchiy" of the local system.

U4711 References the "U4711" object instance of the local system.
System2::U4711 References the "U4711" object instance of System2.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1183

Sample code

Copy code
public void Odk_GetPlantObjectsByType()
{
 using (IPlantModel myPlantModel = runtime.GetObject<IPlantModel>())
 { //gets node for specified Node path
 IList<IPlantObject> plantObject =
myPlantModel.GetPlantObjectsByType("RUNTIME_1::NodeType1",
 ".hierarchy::RootNodeName\\Node1");

 if (plantObject.Count() > 0)
 {
 foreach (IPlantObject item in plantObject)
 {
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
item.CurrentPlantView, item.Name));
 }
 }
 }
}

19.9.7.2 IPlantObject (RT Uni)

Description
The C# interface "IPlantObject" specifies properties and methods for handling object instances
of the plant model of a Runtime system.

An object instance in the plant model is based on an object type and its data structure. Each
object instance receives its position within the hierarchy by assigning it to a hierarchy node.

The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Formatting of a hierarchy path
A hierarchy path of object instances consists of several components and has the following
syntax:

[SystemName].HierarchyName::[PlantObjectID/.../]PlantObjectID
The system name can be omitted for referencing a local hierarchy. The dot before the hierarchy
name must stay.

Members
The following properties, methods and events are specified in the interface:

"Name" property
The name for unique identification of the object instance.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1184 System Manual, 11/2019, Online help printout

string Name { get; }

"Parent" property
The parent object instance in the hierarchy.

IPlantObject Parent { get; }

"Children" property
List of child object instances in the hierarchy

IReadOnlyList<IPlantObject> Children { get; }

"PlantViewPaths" property
The dictionary with string/string pairs that maps the hierarchy names to the hierarchy paths for
all hierarchies that contain the "IPlantObject" instance (hierarchy name to hierarchy path).

IReadOnlyDictionary<string, string> PlantViewPaths { get; }

"CurrentPlantView" property
Path and name of the object instance in the currently selected hierarchy, e.g. "Maintenance".

The "CurrentPlantView" property is used as basis for navigation with the "Parent" or "Children"
properties. If the object instance is only contained in one hierarchy, "CurrentPlantView"
contains its path. If the object is contained in several views, the hierarchy path must be set via
this property before the "Parent" or "Children" property can be used.

string CurrentPlantView { get; set; }

"GetProperty" method
Supplies a property of the object instance.

IPlantObjectProperty GetProperty(string propertyName)
propertyName
Name of an object instance property

"GetProperties" method
Supplies a two-dimensional list (name-object pairs) of the data structure of the object instance.
The list allows access to the instance properties.

IPlantObjectPropertySet GetProperties(ICollection<string>
propertyNames = null)
● Optional: propertyNames

List with names of one or multiple object instance properties.
Without parameters, all properties of an object instance are returned

"GetActiveAlarms" method
Supplies all active alarms that the object instance contains at the time it is called in the active
hierarchy. Unlike with an AlarmSubscription, no status changes or new alarms are signaled that
occur after the function call. Users can filter the alarms or specify a SystemName if they only
want to receive the active alarms of a specific system.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1185

void GetActiveAlarms(UInt32 languageId, bool includeChildren =
false, string filter = null);
● languageID

Language code of the language for all alarm texts and the filters. See chapter Locale IDs of
the supported languages (Page 1085).

● Optional: includeChildren
The active alarms of the child instances are returned as well.

● Optional: filter
SQL-type string for filtering the alarm texts. The filter can contain operators. See also Syntax
of the alarm filter (Page 1084).

"CreateAlarmSubscription" method
Supplies a "PlantObjectAlarmSubscription" that can be used to start and stop an alarm
subscription.

IPlantObjectAlarmSubscription CreateAlarmSubscription();

"PlantObjectAlarmHandler" event
The event calls an instance of the "OnPlantObjectAlarmHandler" delegate.

event OnPlantObjectAlarmHandler PlantObjectAlarmHandler;

"OnPlantObjectAlarmHandler" delegate
Specifies the signature of the event handling method for the "PlantObjectAlarmHandler"
event of an "IPlantObject" instance.

public delegate void OnPlantObjectAlarmHandler(
 IPlantObject sender,
 UInt32 systemError,
 string systemName,
 IList<IAlarmResult> values,
 bool completed);
● sender

Source of the event

● systemError
Supplies an error code when a global error has occurred. When the error code is
set, values is irrelevant.

● systemName
Name of the Runtime system that is subscribed for alarm monitoring by the user.

● values
Event data as a list of "IAlarmResult" instances of the monitored active alarm.

● completed
Status of the asynchronous transfer:

– True: All alarms are read out.

– False: Not all alarms are yet read out.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1186 System Manual, 11/2019, Online help printout

Example

Copy code

public void Odk_PlantObjectGetProperties()
{
 var myPlantModel = _runtime.GetObject<IPlantModel>();
 var strNodeName = ".hierarchy::RootNodeName/Node1";
 var plantObject = myPlantModel.GetPlantObject(strNodeName);
 Console.WriteLine("ViewName: {0} Name: {1}", plantObject.CurrentPlantView, plantObject.Name);
 // get the plant objectproperties by propeyty names
 var plantObjectProperties = plantObject.GetProperties();
 if (plantObjectProperties != null)
 {
 var nCount = plantObjectProperties.Count;
 var listPropValues = plantObjectProperties.Read();
 Console.WriteLine("Number of Properties {0}", nCount);
 foreach (var item in listPropValues)
 {
 Console.WriteLine("Property Name is {0} ", item.Name);
 Console.WriteLine("Property Value is {0} ", item.Value);
 Console.WriteLine("Property Quality is {0} ", item.Quality);
 Console.WriteLine("Property Error is {0} ", item.Error);
 }
 }
}

19.9.7.3 IPlantObjectProperty (RT Uni)

Description
The C# interface "IPlantObjectProperty" specifies the handling of properties of object instances
of the plant model of a Runtime system. The properties represent the data structure of an object
instance.

The object instance communicates with the automation system through the properties of the
data structure. The values of the properties are obtained from linked process tags or internal
tags.

You reference an "IPlantObjectProperty" object using the IPlantObject.GetProperty or
IPlantObject.GetProperties method.

The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1187

Members
The interface has the following properties and methods:

"Name" property
Name of the property

string Name { get; }

"Read" method
Reads the value of the "IPlantObjectProperty" instance synchronously and returns it as an
"IPlantObjectPropertyValue" object. The value, the quality code and the time stamp of the
property are determined when the property is read.

IPlantObjectPropertyValue Read()

"Write" method
Writes the value synchronously to the "IPlantObjectProperty" instance.

void Write(object Value)
● Value

New process value of the property

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1188 System Manual, 11/2019, Online help printout

Example

Copy code
public void Odk_PlantObjectGetPropertyWrite()
{
 using (IPlantModel myPlantModel = runtime.GetObject<IPlantModel>())
 {
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for specified
Node path
 using (IPlantObject plantobject = myPlantModel.GetPlantObject(strNodeName))
 {
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
plantobject.CurrentPlantView, plantobject.Name));
 if (plantobject != null)
 {
 string strName = "NodeProperty_1";
 using (IPlantObjectProperty plantObjectProperty =
plantobject.GetProperty(strName))
 {
 if (plantObjectProperty != null)
 {
 IPlantObjectPropertyValue pValue = plantObjectProperty.Read();
 System.Console.WriteLine(string.Format("Property Name: {0}
property value before write
 operation: {1}", strName, pValue.Value));
 Object value = 400; // Write Cpm Node Property
 plantObjectProperty.Write(value);
 IPlantObjectPropertyValue pValues = plantObjectProperty.Read();
 System.Console.WriteLine(string.Format("Property Name: {0}
property value after write Operration: {1}",strName, pValues.Value));
 }
 }
 }
 }
 }
 }
}

19.9.7.4 IPlantObjectPropertyValue (RT Uni)

Description
The C# interface "IPlantObjectPropertyValue" specifies the properties of process tags that are
connected to an object instance property of the Runtime system.

Members
The following properties are specified in the interface:

"Name" property
Name of the tag

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1189

string Name { get; }

"Value" property
Value of the tag at the moment of the read operation.

object Value { get; }

"Quality" property
Quality code of the read operation of the tag.

Int32 Quality { get; }

"TimeStamp" property
Time stamp of the last successful read operation of the tag.

DateTime TimeStamp { get; }

"Error" method
Error code of the last read or write operation of the tag.

UInt32 Error { get; }

"OnPlantModelPropertySubscriptionHandler" delegate
Specifies the signature of the event handling method for the
"OnPlantModelPropertySubscriptionHandler" event of an "IPlantObjectPropertySet"
instance.

public delegate void OnPlantModelPropertySubscriptionHandler(
 IPlantObjectPropertySet sender,
 IList<IPlantObjectPropertyValue> values);
● sender

Source of the event

● values
Event data as a list of "IPlantObjectPropertyValue" instances of the monitored active alarm.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1190 System Manual, 11/2019, Online help printout

Example

Copy code

public void Odk_PlantObjectGetPropertyRead()
{
 using (var myPlantModel = _runtime.GetObject<IPlantModel>())
 {
 var strNodeName = ".hierarchy::RootNodeName/Node1";
 //gets node for specified Node path
 using (var plantobject = myPlantModel.GetPlantObject(strNodeName))
 {
 Console.WriteLine("ViewName: {0} Name: {1}", plantobject.CurrentPlantView, plantobject.Name);
 var strName = "NodeProperty_1";
 using (var plantObjectProperty = plantobject.GetProperty(strName))
 {
 if (plantObjectProperty != null)
 {
 // Read Cpm Node Property
 var plantObjectPropertyValue = plantObjectProperty.Read();
 if (null != plantObjectPropertyValue)
 {
 Console.WriteLine(
 "Name= {0} TimeStamp {1} QualityCode {2} Error {3} Value {4}",
 plantObjectPropertyValue.Name, plantObjectPropertyValue.TimeStamp,
 plantObjectPropertyValue.Quality, plantObjectPropertyValue.Error,
 plantObjectPropertyValue.Value);
 }
 }
 }
 }
 }
}

19.9.7.5 IPlantObjectPropertySet (RT Uni)

Description
The C# interface "IPlantObjectPropertySet" specifies properties, methods and events for
optimized access to several IPlantObjectProperty instances of the Runtime system.

After initialization of the "IPlantObjectPropertySet" object, you have read/write access to
multiple IPlantObjectProperty instances in one call. Simultaneous access has better
performance and a lower communication load than single access to multiple properties.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Member
The following properties, methods and events are specified in the interface:

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1191

"ContextID" property
"ContextID" can be useful for asynchronous methods. Users can assign "ContextID" if they
have to assign the answer from the system to a read/write job.

Default value -1: "ContextId" is not used.

Int32 ContextId { get; set; }

"[propertyName]" property
Change the process value of a property of the "IPlantObjectPropertySet" instance.
The value is changed by the property only in the local "IPlantObjectPropertySet" instance. To
write the values in the process image, a "Write" or "WriteAsync" method must be called.

object this[string propertyName] { get; set; }
● propertyName

Name of the property that is changed in the PropertySet.

"Count" property
The number of properties of the "IPlantObjectPropertySet" instance.

Uint32 Count { get; }

"Read" method
Supplies a list with all values of the "IPlantObjectProperty" instances contained in the
"IPlantObjectPropertySet" instance. The values are read synchronously.

IList<IPlantObjectPropertyValue> Read();

"ReadAsync" method
Reads the values of all "IPlantObjectProperty" instances of the "IPlantObjectPropertySet"
instance asynchronously.

void ReadAsync()

"Write" method
Writes the values of the "IPlantProperty" instances of the "PlantObjectPropertySet" instance
synchronously to the Runtime system. Write operation errors are returned in a list with
"IErrorResult" instances.

IList<IErrorResult> Write()

"WriteAsync" method
Writes the values of all "IPlantObjectProperty" instances of the "PlantObjectPropertySet"
instance asynchronously to the Runtime system.

void WriteAsync()

"Subscribe" method
Subscribes all properties of the "IPlantObjectPropertySet" instance asynchronously for change
monitoring.

void Subscribe()

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1192 System Manual, 11/2019, Online help printout

"Add" method
Adds one or more "IPlantObjectProperty" instances to the "IPlantObjectPropertySet" instance.

The method can be called as follows:

● Adding multiple "IPlantObjectProperty" instances without value:
void Add(ICollection<string> propertyNames)
– name

A collection with the names of the "IPlantObjectProperty" instances.

● Adding a "IPlantObjectProperty" instance with value:
void Add(string propertyName, object value);
– propertyName

Name of the "IPlantObjectProperty" instance

– value
New process value of the "IPlantObjectProperty" instance

"Remove" method
Removes a property from the "IPlantObjectPropertySet" instance.

void Remove(string propertyName)
● propertyName

Name of the property that is being removed.

"Clear" method
Removes all properties from the "IPlantObjectPropertySet" instance.

void Clear()

"OnPropertySetReadComplete" event
After completion of the read operation of the "ReadAsync" method, the event calls an instance
of the "OnPropertySetReadCompleteHandler" delegate.

Declares the event and the event handler for asynchronous read operations.

event OnPropertySetReadCompleteHandler OnPropertySetReadComplete

"OnPropertySetWriteComplete" event
After completion of the write operation of the "WriteAsync" method, the event calls an instance
of the "OnPropertySetWriteCompleteHandler" delegate.

Declares the event and the event handler for asynchronous write operations.

event OnPropertySetWriteCompleteHandler OnPropertySetWriteComplete

"OnPlantModelPropertySubscriptionNotification" event
After the change of a monitored PropertySet, the event calls an instance of the
"OnPlantModelPropertySubscriptionHandler" delegate.

Declares the event and the event handler when changing a PropertySet.

event OnPlantModelPropertySubscriptionHandler
OnPlantModelPropertySubscriptionNotification

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1193

"OnPropertySetReadCompleteHandler" delegate
Specifies the signature of the event handling method for the "OnPropertySetReadComplete"
event of an "IPlantObjectPropertySet" instance.

void OnPropertySetReadCompleteHandler(
 IPlantObjectPropertySet sender,
 UInt32 errorCode,
 IList<IPlantObjectPropertyValue> values)
● sender

Source of the event

● errorCode
Supplies an error code when a global error has occurred.

● values
Event data as a list of "IPlantObjectPropertyValue" instances of the read property.

"OnPropertySetWriteCompleteHandler" delegate
Specifies the signature of the event handling method for the "OnPropertySetWriteComplete"
event of an "IPlantObjectPropertySet" instance.

void OnPropertySetWriteCompleteHandler(
 IPlantObjectPropertySet sender,
 UInt32 errorCode,
 IList<IPlantObjectPropertyValue> values)
● sender

Source of the event

● errorCode
Supplies an error code when a global error has occurred. When the error code is
set, values is irrelevant.

● values
Event data as a list of "IPlantObjectPropertyValue" instances of the read property.

"OnPlantModelPropertySubscriptionHandler" delegate
Specifies the signature of the event handling method for the
"OnPlantModelPropertySubscriptionNotification" event of an "IPlantObjectPropertySet"
instance.

void OnPlantModelPropertySubcriptionHandler(
 IPlantObjectPropertySet sender,
 IList<IPlantObjectPropertyValue> values)
● sender

Source of the event

● values
Event data as a list of the changed "IPlantObjectPropertyValue" instances.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1194 System Manual, 11/2019, Online help printout

Example

Copy code
public void Odk_PlantObjectGetPropertySetReadAsync()
{
 try
 { 　
 IPlantModel myPlantModel = runtime.GetObject<IPlantModel>(); 　
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for specified
Node path
 IPlantObject plantObject = myPlantModel.GetPlantObject(strNodeName); 　
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
plantObject.CurrentPlantView,
 plantObject.Name));
 if (plantObject != null)
 {
 ICollection<string> PropNames = null;// get the plant objectproperties by
propeyty names
 IPlantObjectPropertySet plantObjectPropertyset =
plantObject.GetProperties(PropNames); 　
 if (plantObjectPropertyset != null)
 {
 　 plantObjectPropertyset.OnPropertySetReadComplete +=
odkPlantModel_onReadComplete; // Read Plant
 　 Object properties values asynchronously
 　 plantObjectPropertyset.ReadAsync();
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
} 　
public void odkPlantModel_onReadComplete(IPlantObjectPropertySet sender, UInt32
SystemError, IList<IPlantObjectPropertyValue> Values)
{
 try
 {
 foreach (var value in Values)
 {
 Console.WriteLine("Name {0}", value.Name);
 Console.WriteLine("TimeStamp {0}", value.TimeStamp);Console.WriteLine("Value
{0}", value.Value);
 Console.WriteLine("Quality {0}", value.Quality);Console.WriteLine("Error {0}",
value.Error);
 } 　
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1195

Copy code

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1196 System Manual, 11/2019, Online help printout

Copy code
public void odk_plantModelSubscribe()
{
 try
 {
 IPlantModel myPlantmodel = runtime.GetObject<IPlantModel>(); 　
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for specified
Node path
 IPlantObject plantObject = myPlantmodel.GetPlantObject(strNodeName); 　
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
plantObject.CurrentPlantView,
 plantObject.Name));
 if (plantObject != null)
 {
 ICollection<string> PropNames = null;
 IPlantObjectPropertySet plantObjectPropertyset =
plantObject.GetProperties(PropNames); 　
 if (plantObjectPropertyset != null)
 {
 　 // Assign callback function
 　 plantObjectPropertyset.OnPlantModelPropertySubscriptionNotification +=
 　 odkPlantModelPropertySet_OnDataChanged; 　
 　 plantObjectPropertyset.Subscribe();
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}
public void odkPlantModelPropertySet_OnDataChanged(IPlantObjectPropertySet sender,
IList<IPlantObjectPropertyValue> Values)
{
 try
 {
 foreach (var value in Values)
 {
 Console.WriteLine("Name {0}", value.Name);
 Console.WriteLine("TimeStamp {0}", value.TimeStamp);
 Console.WriteLine("Value {0}", value.Value);
 Console.WriteLine("Quality {0}", value.Quality);Console.WriteLine("Error {0}",
value.Error);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1197

Copy code
} 　

19.9.7.6 IPlantObjectAlarmSubscription (RT Uni)

Description
The C# interface "IPlantObjectAlarmSubscription" specifies methods for monitoring alarms of
"IPlantObject" instances.

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Member
The following properties, methods and events are specified in the interface:

"Filter" property
SQL-type string for filtering the result set of active alarms.

string Filter { get; set; }
All properties of an alarm can be used in the filter string. The filter string can contain operators.
Refer to the section Syntax of the alarm filter (Page 1084).

"Language" property
Country identifier of the language of the monitored alarms. See also section Locale IDs of the
supported languages (Page 1085).

UInt32 Language { get; set; }

"IncludeChildren" property
If "true" is transferred, the alarm subscription only applies to the alarms of the "IPlantObject"
instance and all its children in the hierarchy. If "false" is transferred, it only applies for the alarms
of the "IPlantObject" instance.

bool IncludeChildren { get; set; }

"Start" method
Subscribe systems for monitoring of changes of active alarms.

void Start()

"Stop" method
Unsubscribe monitoring of active alarms.

void Stop()

"OnPlantObjectSubscribeAlarmHandler" event
Declares the event for the monitoring of alarms of an "IPlantObject" instance.

The event calls an instance of the "OnPlantObjectSubscribeAlarmHandler" delegate.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1198 System Manual, 11/2019, Online help printout

event OnPlantObjectSubscribeAlarmHandler
OnPlantObjectSubscribeAlarmHandler;

"OnPlantObjectSubscribeAlarmHandler" delegate
Specifies the signature of the event handling method for the
"OnPlantObjectSubscribeAlarmHandler" event of an "IPlantObject" instance.

public delegate void OnPlantObjectSubscribeAlarmHandler(
 IPlantObjectAlarmSubscription sender,
 UInt32 systemError,
 string systemName,
 IList<IAlarmResult> values);
● sender

Source of the event

● systemError
Supplies an error code when a global error has occurred. When the error code is
set, values is irrelevant.

● systemName
Name of the Runtime system that is subscribed for alarm monitoring by the user.

● values
Event data as a list of "IAlarmResult" instances of the monitored active alarm.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1199

Example

Copy code
public void Odk_GetAlarmSubscription()
{
 try
 {
 using (IPlantModel myPlantModel = runtime.GetObject<IPlantModel>())
 {
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for
specified Node path
 IPlantObject plantobject = myPlantModel.GetPlantObject(strNodeName); 　
 IPlantObjectAlarmSubscription alarmsub = plantobject.CreateAlarmSubscription();
　//Assign alarm handler
 if (alarmsub != null)
 {
 　 alarmsub.OnPlantObjectSubscribeAlarmHandler +=
alarm_OnPlantObjectSubscribeAlarmHandler;
 　 alarmsub.Filter = "";
 　 alarmsub.Language = 1033;
 　 alarmsub.IncludeChildren = false;
 　 alarmsub.Start();
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
} 　
public void alarm_OnPlantObjectSubscribeAlarmHandler(IPlantObjectAlarmSubscription sender,
UInt32 nGlobalError, String systemName, IList<IAlarmResult> value)
{
 try
 {
 foreach (var item in value)
 {
 System.Console.WriteLine(string.Format("Name: {0}", item.Name));
 System.Console.WriteLine(string.Format("InstanceID: {0}", item.InstanceID));
 System.Console.WriteLine(string.Format("AlarmClass: {0}", item.AlarmClassName));
 System.Console.WriteLine(string.Format("AlarmParameterValues: {0}",
item.AlarmParameterValues));
 System.Console.WriteLine(string.Format("AlarmText1: {0}", item.AlarmText1));
 System.Console.WriteLine(string.Format("Area: {0}", item.Area));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Stop();
 }
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1200 System Manual, 11/2019, Online help printout

19.9.8 Interfaces of the Calendar option (RT Uni)

19.9.8.1 ISHCCalendar (RT Uni)

Description
The C# interface "ISHCCalendar" specifies the properties and methods of a calendar. The
calendar is integrated via an "IPlantObject" instance.

The interface inherits the "Dispose() method of the "IDisposable" interface of the .NET
framework and the methods of the "ISHCGetObject" interface

Members

"Settings" property
Reference to an "ISHCCalenderSettings" instance which saves the settings of the calendar.

ISHCCalendarSettings Settings { get; }

"Category" property
Reference to an "ISHCCategoryProvider" instance with which you access categories of the
calendar.
ISHCCategoryProvider Category { get; }

"DayTemplate" property
Reference to an "ISHCDayTemplatesProvider" instance with which you create, read, update
and delete day templates for the calendar.

ISHCDayTemplatesProvider DayTemplate { get; }

"ShiftTemplate" property
Reference to an "ISHCShiftTemplatesProvider" instance with which you create, read, update
and delete shift templates for the calendar.

ISHCShiftTemplatesProvider ShiftTemplate { get; }

"ActionTemplate" property
Reference to an "ISHCActionTemplatesProvider" instance with which you create, read, update
and delete action templates for the calendar.

ISHCActionTemplatesProvider ActionTemplate { get; }

"Day" property
Reference to an "ISHCDayProvider" instance with which you create, read, update and delete
days for the calendar.

ISHCDayProvider Day { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1201

Example
The following example serves as a basis for the other examples for the C# interfaces of the
Calendar option.

It shows how you can obtain the "IPlantObject" instance and also an "ISHCCalendar" instance.
The "ISHCCalendar" instance referenced via calendar is also used in the other examples.

Copy code
using Siemens.Runtime.HmiUnified.SHC;
using Siemens.Runtime.HmiUnified;

ISHCCalendar calendar = null;
// Connect to Runtime
IRuntime runtime = Runtime.Connect(); 　
if (runtime != null)
{
 IPlantModel myPlantModel = runtime.GetObject<IPlantModel>();
 IPlantObject po = myPlantModel.GetPlantObject(".hierarchy::Plant/Unit1");
 if (po != null)
 {
 calendar = po.Calendar();
 }
}

19.9.8.2 ISHCCategory (RT Uni)

Description
The C# interface "ISHCCategory" specifies the properties and methods of a time category of
the time model.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"Name" property
The name of the category

string Name { get; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names and their language code IDs.

IDictionary<UInt32, string> DisplayNames { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the category and its language code
ID.

IDictionary<UInt32, string> Descriptions { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1202 System Manual, 11/2019, Online help printout

"Color" property
The color of the category

Color Color { get; }

"Deleted" property
Saves the information on whether an already used category was deleted in Engineering.

bool Deleted { get; }

Example

static void PrintCategory(ISHCCategory category)
{
 if (null != category)
 {
 Console.WriteLine(" \nName:{0} \nColor:{1} \n Deleted:{2}\n", category.Name,
category.Color, category.Deleted);
 }
 IDictionary<uint, string> displayNames = category.DisplayNames;
 foreach (var item in displayNames)
 {
 Console.WriteLine("Language:{0} DisplayName:{1}", item.Key, item.Value);
 }
 IDictionary<uint, string> description = category.Descriptions;
 foreach (var item in description)
 {
 Console.WriteLine("Language:{0} Description:{1}", item.Key, item.Value);
 }
}

19.9.8.3 ISHCCategoryProvider (RT Uni)

Description
The C# interface "ISHCCategoryProvider" provides you with read access to the
"ISHCCategory" instances of an "ISHCCalendar" instance.

Members

"Browse" method
Supplies a collection with the categories of the calendar.

IReadOnlyCollection<ISHCCategory> Browse();

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1203

Example

Copy code
IReadOnlyCollection<ISHCCategory> categories = calendar.Category.Browse();
foreach (var cat in categories)
{
 // do something
}

19.9.8.4 ISHCCalendarSettings (RT Uni)

Description
The C# interface "ISHCCalendarSettings" specifies properties and methods for access to the
calendar settings of an "ISHCCalendar" instance.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"PlantObject" property
Reference to the "IPlantObject" instance to which the calendar belongs.

string PlantObject { get; }

"FirstDayOfWeek" property
Reference to the "ShcWeekDay" instance which is set as the first day of the week.

ShcWeekDay FirstDayOfWeek { get; }

"FirstWeekOfYear" property
Reference to the "ShcWeekStart" instance which is set as the first week of the year.

ShcWeekStart FirstWeekOfYear { get; }

"FiscalYearStartDay" property
The first day of the fiscal year

Default setting: 1

Byte FiscalYearStartDay { get; }

"FiscalYearStartMonth" property
The first month of the fiscal year

Default setting: 1

Byte FiscalYearStartMonth { get; }

"DayOffset" property
The offset with which the workday begins, calculated from midnight.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1204 System Manual, 11/2019, Online help printout

Default setting: 0

Maximum value: 24 hours

TimeSpan DayOffset { get; }

"Workdays" property
Number of workdays

UInt32 Workdays { get; }

"TimeZone" property
The Microsoft time zone

UInt32 TimeZone { get; }

Example

static void PrintCalendar(ISHCCalendarSettings calendar)
{
 if (null != calendar)
 {
 string cal = string.Format(" \n Workdays: {0} \n FirstDayOfWeek: {1} \n
FirstWeekOfYear: {2} \n FiscalYearStartDay: {3} \n FiscalYearStartMonth: {4} \n DayOffset:
{5} \n PlantObject: {6} \n \n TimeZone:{7} \n", calendar.Workdays, calendar.FirstDayOfWeek,
calendar.FirstWeekOfYear, calendar.FiscalYearStartDay, calendar.FiscalYearStartMonth,
calendar.DayOffset, calendar.PlantObject, calendar.TimeZone);
 Console.WriteLine(cal);
 }
}

19.9.8.5 ISHCTimeSlice (RT Uni)

Description
The C# interface "ISHCTimeSlice" specifies the properties and methods of a time slice.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"StartTime" property
Time stamp with the start time of the time slice

DateTime StartTime { get; set; }

"Duration" property
The duration of the time slice

TimeSpan Duration { get; set; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1205

"Category" property
The time category of the time slice

string Category { get; set; }

19.9.8.6 ISHCDay (RT Uni)

Description
The C# interface "ISHCDay" specifies the properties and methods of a day.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"Comments" property
A dictionary from UInt32/string pairs with the comments of the "ISHCDay" instance and their
language code IDs.

IDictionary<UInt32, string> Comments { get; }

"StartTime" property
Time stamp with the start time of the "ISHCDay" instance.

DateTime StartTime { get; set; }

"IsCustomized" property
Saves information on whether the "ISHCDay" instance was edited by users.

bool IsCustomized { get; }

"DayTemplate" property
The "ISHCDayTemplate" instance from which the "ISHCDay" instance is derived.

string DayTemplate { get; set; }

"CreateShift" method
Instantiates an "ISHCShift" instance at the "ISHCDay" instance.

ISHCShift CreateShift(
 ISHCShiftTemplate shcShiftTemplate,
 TimeSpan startTime);
● shcShiftTemplate

Reference to the shift template from which the shift is derived

● startTime
Time stamp with the start time of the "ISHCShift" instance.

"DeleteShift" method
Deletes a shift of the "ISHCDay" instance.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1206 System Manual, 11/2019, Online help printout

void DeleteShift(
 ISHCShift shcShift);
● shcShift

Reference to the shift to be deleted

"GetShifts" method
Supplies a list with all the shifts of the "ISHCDay" instance.

IReadOnlyList<ISHCShift> GetShifts();

"SetComment" method
Adds a new entry to the dictionary of the "Comment" property.

void SetComment(
 UInt32 languageId,
 string comment);
● languageId

The language code ID of the comment

● comment
A comment

19.9.8.7 ISHCDayProvider (RT Uni)

Description
The C# interface "ISHCDayProvider" provides you with access to the days of an
"ISHCCalendar" instance. With the methods of the provider, you can create, read, update and
delete days.

Members

"Browse" method
Supplies a collection with the "ISHCDay" instances of the calendar.

IReadOnlyCollection<ISHCDay> Browse(
 DateTime startTime, DateTime end);
● startTime

Defines the start of the time period whose days are returned.

● end
Defines the end of the time period whose days are returned.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1207

Example:

static void ReadDayWithShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 IReadOnlyCollection<ISHCDay> days = calendar.Day.Browse(start, end);
 if (days.Count > 0)
 {
 foreach (var day in days)
 {
 // PrintDays(day);
 if (null != day)
 { string strDays = string.Format("\n StartTime :{0} \n IsCustomized :{1} \n
DayTemplate :{2} ", day.StartTime, day.IsCustomized, day.DayTemplate);
 Console.WriteLine(strDays);
 IDictionary<uint, string> Comments = day.Comments;foreach (var item in
Comments)
 {Console.WriteLine("\n Language:{0} DayComment:{1} \n", item.Key,
item.Value); }
 }

 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Create" method
Adds new "ISHCDay" instances to the calendar.

void Create(
 IList<ISHCDay> days);
● days

List with the new "ISHCDay" instances

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1208 System Manual, 11/2019, Online help printout

Example:

static void CreateDayWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> Daytemplates =
calendar.DayTemplate.Browse(false);
 if (Daytemplates.Count > 0)
 {
 ISHCDayTemplate dayTemplate = Daytemplates.ElementAt(0);
 List<ISHCDay> DayList = new List<ISHCDay>();
 ISHCDay day = calendar.GetObject<ISHCDay>();
 day.DayTemplate = dayTemplate.Name;
 DateTime dtday = DateTime.Now;
 day.StartTime = dtday;
 day.SetComment(1033, "DaywithShift");
 DayList.Add(day);
 calendar.Day.Create(DayList);
 IReadOnlyCollection<ISHCShiftTemplate> ShiftTemplates =
calendar.ShiftTemplate.Browse(false);
 if (ShiftTemplates.Count > 0)
 {
 ISHCShiftTemplate ShiftTemplate = ShiftTemplates.ElementAt(0);
 ISHCShift dayShift = day.CreateShift(ShiftTemplate, new TimeSpan(18, 0, 0));
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Update" method
Updates "ISHCDay" instances of the calendar.

void Update(
 IList<ISHCDay> days);
● days

List of the "ISHCDay" instances to be updated

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1209

Example:

static void UpdateDayWithShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(1);
 IReadOnlyCollection<ISHCDay> days = calendar.Day.Browse(start, end);
 if (days.Count > 0)
 {
 List<ISHCDay> list = new List<ISHCDay>();
 foreach (var day in days)
 {
 IReadOnlyCollection<ISHCShift> shifts = day.GetShifts();
 if (shifts != null)
 {
 ISHCShift shift = shifts.ElementAt(0);
 shift.GetTimeSlices().ElementAt(0).Category = "Maintenance";
 }
 list.Add(day);
 }
 calendar.Day.Update(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Delete" method
Deletes "ISHCDay" instances of the calendar.

void Delete(
 IList<ISHCDay> days);
● days

List of "ISHCDay" instances to be deleted

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1210 System Manual, 11/2019, Online help printout

Example:

static void DeleteDayWithShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 IReadOnlyCollection<ISHCDay> days = calendar.Day.Browse(start, end);
 if (days.Count > 0)
 {
 List<ISHCDay> list = new List<ISHCDay>();
 foreach (var day in days)
 {
 list.Add(day);
 }
 calendar.Day.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

19.9.8.8 ISHCDayTemplate (RT Uni)

Description
The C# interface "ISHCDayTemplate" specifies the properties and methods of a day.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"Name" property
The name of the "ISHCDayTemplate" instance.

string Name { get; set; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names of the "ISHCDayTemplate"
instance and their language code IDs.

IDictionary<UInt32, string> DisplayNames { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCDayTemplate" instance
and their language code IDs.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1211

IDictionary<UInt32, string> Descriptions { get; }

"Deleted" property
Saves information on whether the day template was deleted by users.

bool Deleted { get; }

"SetDisplayName" method
Sets the display name of the "ISHCDayTemplate" instance and its language code ID.

void SetDisplayName(
 UInt32 languageId,
 string displayName);
● languageId

The language code ID of the display name

● displayName
The display name

"SetDescription" method
Sets the description of the "ISHCDayTemplate" instance and its language code ID.

 void SetDescription(
 UInt32 languageId,
 string description);
● languageId

The language code ID

● description
The description

"GetShifts" method
Supplies a collection with the shifts of the "ISHCDayTemplate" instances.

IReadOnlyList<ISHCShift> GetShifts();

"CreateShift" method
Adds a shift to the "ISHCDayTemplate" instance.

ISHCShift CreateShift(
 ISHCShiftTemplate template,
 TimeSpan startTime);
● template

Reference to the shift template on which the shift is based.

● startTime
Time stamp with the start time of the shift

"DeleteShift" method
Deletes a shift of the "ISHCDayTemplate" instance.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1212 System Manual, 11/2019, Online help printout

void DeleteShift(
 ISHCShift shift);
● shift

Reference to the shift to be deleted

19.9.8.9 ISHCDayTemplatesProvider (RT Uni)

Description
The C# interface "ISHCDayTemplatesProvider" provides you with access to the day templates
of an "ISHCCalendar" instance. With the methods of the provider, you can create, read, update
and delete day templates.

Members

"Browse" method
Supplies a collection with the "ISHCDayTemplate" instances of the calendar.

IReadOnlyCollection<ISHCDayTemplate> Browse(
 bool includeDeleted);
● includeDeleted

Saves information on whether the collection also contains the deleted day templates.

Example:

static void ReadDayTemplateWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> dayTemplate =
calendar.DayTemplate.Browse(false);
 if (dayTemplate.Count > 0)
 {
 foreach (var template in dayTemplate)
 {
 PrintDayTemplates(template);
 ReadShiftsforDayTemplate(template);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Create" method
Adds new "ISHCDayTemplate" instances to the calendar.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1213

void Create(
 ICollection<ISHCDayTemplate> dayTemplates);
● dayTemplates

Collection with the new "ISHCDayTemplate" instances

Example:

static void CreateDayTemplateWithShift()
{
 try
 {
 ISHCDayTemplate Daytemplate = calendar.GetObject<ISHCDayTemplate>();
 if (null != Daytemplate)
 {
 List<ISHCDayTemplate> ListDayTemplate = new List<ISHCDayTemplate>();
 Daytemplate.Name = "DayTemplateName"; 　
 Daytemplate.SetDescription(1033, "DayTemplateDescription");
 Daytemplate.SetDisplayName(1033, "DayTemplateDisplayName");
 ListDayTemplate.Add(Daytemplate);
 calendar.DayTemplate.Create(ListDayTemplate);
 IReadOnlyCollection<ISHCShiftTemplate> ShiftTemplates =
calendar.ShiftTemplate.Browse(false);
 if (ShiftTemplates.Count > 0)
 {
 ISHCShiftTemplate ShiftTemplate = ShiftTemplates.ElementAt(0);
 ISHCShift shift = Daytemplate.CreateShift(ShiftTemplate, new TimeSpan(1, 0,
0));
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Update" method
Updates the "ISHCDayTemplate" instances of the calendar.

void Update(
 ICollection<ISHCDayTemplate> dayTemplates);
● dayTemplates

Collection with the "ISHCDayTemplate" instances to be updated

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1214 System Manual, 11/2019, Online help printout

Example:

static void UpdateDayTemplateWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> dayTemplate =
calendar.DayTemplate.Browse(false);
 if (dayTemplate.Count > 0)
 {
 List<ISHCDayTemplate> list = new List<ISHCDayTemplate>();
 foreach (var dayTemplates in dayTemplate)
 {
 dayTemplates.Name = "UpdatedDayTemplate";
 dayTemplates.SetDisplayName(1033, "UpdatedDayTemplateDisplayName");
 dayTemplates.SetDescription(1033, "UpdatedDayTemplateDescription");
 IReadOnlyCollection<ISHCShift> shifts = dayTemplates.GetShifts();
 if (shifts != null)
 {
 ISHCShift shift = shifts.ElementAt(0);
 shift.Duration = new TimeSpan(6, 0, 0);
 }
 list.Add(dayTemplates);
 }
 calendar.DayTemplate.Update(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Delete" method
Deletes "ISHCDayTemplate" instances of the calendar.

void Delete(
 ICollection<ISHCDayTemplate> dayTemplates);
● dayTemplates

Collection with the "ISHCDayTemplate" instances to be deleted

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1215

Example:

static void DeleteDayTemplateWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> dayTemplates =
calendar.DayTemplate.Browse(false);
 if (dayTemplate.Count > 0)
 {
 List<ISHCDayTemplate> list = new List<ISHCDayTemplate>();
 foreach (var dayTemplate in dayTemplates)
 {
 list.Add(dayTemplate);
 }
 calendar.DayTemplate.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

19.9.8.10 ISHCShiftTemplate (RT Uni)

Description
The C# interface "ISHCShiftTemplate" specifies the properties and methods of a shift.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"Name" property
The name of the "ISHCShiftTemplate" instance

string Name { get; set; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names of the "ISHCShiftTemplate"
instance and their language code IDs.

IDictionary<UInt32, string> DisplayNames { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCShiftTemplate" instance
and their language code IDs.

IDictionary<UInt32, string> Descriptions { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1216 System Manual, 11/2019, Online help printout

"Deleted" property
Saves information on whether the shift template was deleted by users.

bool Deleted { get; }

"Duration" property
The duration of the "ISHCShiftTemplate" instance.

TimeSpan Duration { get; set; }

"SetDisplayName" method
Sets the display name of the "ISHCShiftTemplate" instance and its language code ID.

void SetDisplayName(
 UInt32 languageId,
 string displayName);
● languageId

The language code ID of the display name

● displayName
The display name

"SetDescription" method
Sets the description of the "ISHCShiftTemplate" instance and its language code ID.

 void SetDescription(
 UInt32 languageId,
 string description);
● languageId

The language code ID

● description
The description

"GetTimeSlices" method
Supplies a list with the time slices of the "ISHCShiftTemplate" instance.

IReadOnlyList<ISHCTimeSlice> GetTimeSlices();

"CreateTimeSlice" method
Adds a time slice to the "ISHCShiftTemplate" instance.

void CreateTimeSlice(
 ISHCTimeSlice slice);
● slice

Reference to the new time slice

"DeleteTimeSlice" method
Deletes a time slice of the "ISHCShiftTemplate" instance.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1217

void DeleteTimeSlice(
 ISHCTimeSlice slice);
● slice

Reference to the time slice to be deleted

19.9.8.11 ISHCShiftTemplatesProvider (RT Uni)

Description
The C# interface "ISHCShiftTemplatesProvider" provides you with access to the shift
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create,
read, update and delete shift templates.

Members

"Browse" method
Supplies a collection with the "ISHCShiftTemplate" instances of the calendar.

IReadOnlyCollection<ISHCShiftTemplate> Browse(
 bool includeDeleted);
● includeDeleted

Saves information on whether the collection also contains the deleted shift templates.

Example:

static void ReadShiftTemplatesWithTimeslice()
{
 try
 {
 Console.WriteLine("ReadShiftTemplate With Timeslice");
 IReadOnlyCollection<ISHCShiftTemplate> template =
calendar.ShiftTemplate.Browse(false);
 if (template.Count > 0)
 {
 foreach (var shift in template)
 {
 PrintShiftTemplates(shift);
 ReadTimeslicesforShiftTemplate(shift);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

"Create" method
Adds new "ISHCShiftTemplate" instances to the calendar.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1218 System Manual, 11/2019, Online help printout

void Create(
 ICollection<ISHCShiftTemplate> shiftTemplates);
● shiftTemplates

Collection with the new "ISHCShiftTemplate" instances of the calendar.

Example:

static void CreateShiftTemplateWithTimeSlice()
{
 try
 {
 using (ISHCShiftTemplate pShiftTemplate = calendar.GetObject<ISHCShiftTemplate>())
 {
 pShiftTemplate.Name = "ShiftTemplateName";
 pShiftTemplate.SetDisplayName(1033, "ShiftTemplateDisplayName");
 pShiftTemplate.SetDescription(1033, "ShiftTemplateDescriptions");
 pShiftTemplate.Duration = new TimeSpan(8, 0, 0);
 List<ISHCShiftTemplate> ShiftList = new List<ISHCShiftTemplate>();
 ShiftList.Add(pShiftTemplate);
 calendar.ShiftTemplate.Create(ShiftList);
 IReadOnlyCollection<ISHCCategory> categories = calendar.Category.Browse();
 if (categories.Count > 0)
 {
 ISHCCategory pCat = categories.ElementAt(0);
 ISHCTimeSlice pTimeSlice = calendar.GetObject<ISHCTimeSlice>();
 pTimeSlice.StartTime = DateTime.Now.StartOfDay();
 pTimeSlice.Duration = new TimeSpan(3, 0, 0);
 pTimeSlice.Category = pCat.Name;
 pShiftTemplate.CreateTimeSlice(pTimeSlice);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

"Update" method
Updates "ISHCShiftTemplate" instances of the calendar.

void Update(
 ICollection<ISHCShiftTemplate> shiftTemplates);
● shiftTemplates

Collection with the "ISHCShiftTemplate" instances to be updated

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1219

Example:

static void UpdateShiftTemplateWithTimeslice()
{
 try
 {
 IReadOnlyCollection<ISHCShiftTemplate> shiftTemplates =
calendar.ShiftTemplate.Browse(false);
 List<ISHCShiftTemplate> list = new List<ISHCShiftTemplate>();
 IReadOnlyCollection<ISHCCategory> categories = calendar.Category.Browse();
 ISHCCategory pCat = categories.ElementAt(1);
 foreach (var shifttemplate in shiftTemplates)
 {
 shifttemplate.Name = "UpdateShiftTemplate";
 shifttemplate.SetDisplayName(1033, "Updated DisplayName");
 shifttemplate.SetDescription(1033, "UpdatedDescription");
 shifttemplate.Duration = new TimeSpan(10, 0, 0);
 list.Add(shifttemplate);
 IReadOnlyCollection<ISHCTimeSlice> Timeslices =
shifttemplate.GetTimeSlices();
 if (Timeslices.Count > 0)
 {
 ISHCTimeSlice timeslice = Timeslices.ElementAt(0);
 timeslice.Duration = new TimeSpan(5, 0, 0);
 timeslice.Category = pCat.Name;
 }
 }
 calendar.ShiftTemplate.Update(list);
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

"Delete" method
Deletes "ISHCShiftTemplate" instances of the calendar.

void Delete(
 ICollection<ISHCShiftTemplate> shiftTemplates);
● shiftTemplates

Collection with the "ISHCShiftTemplate" instances of the calendar to be deleted.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1220 System Manual, 11/2019, Online help printout

Example:

static void DeleteShiftTemplateWithTimeslice()
{
 try
 {
 IReadOnlyCollection<ISHCShiftTemplate> shiftTemplates =
calendar.ShiftTemplate.Browse(false);
 if (shiftTemplates.Count > 0)
 {
 List<ISHCShiftTemplate> list = new List<ISHCShiftTemplate>();
 foreach (var shifttemplate in shiftTemplates)
 {
 list.Add(shifttemplate);
 }
 calendar.ShiftTemplate.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

19.9.8.12 ISHCShift (RT Uni)

Description
The C# interface "ISHCShift" specifies the properties and methods of a shift.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"StartTime" property
Time stamp with the start time of the "ISHCShift" instance.

DateTime StartTime { get; set; }

"Duration" property
The duration of the "ISHCShift" instance.

TimeSpan Duration { get; set; }

"ShiftTemplate" property
The shift template of the "ISHCShift" instance.

string ShiftTemplate { get; }

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1221

"IsCustomized" property
Saves information on whether the "ISHCShift" instance was edited by users.

bool IsCustomized { get; }

"DeltaKind" property
Saves information on how the time slices of the "ISHCShift" instance deviate from the shift
template.

ShcDeltaType DeltaKind { get; }
The enumeration "ShcDeltaType" can contain the following values:

● Added (0)

● Modified (1)

● Deleted (2)

"ShiftId" property
Saves the ShiftID of the "ISHCShift" instance.

UInt32 ShiftId { get; set; }

"Comments" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCShift" instance and their
language code IDs.

IDictionary<UInt32, string> Comments { get; }

"GetTimeSlices" method
Supplies a collection with the time slices of the "ISHCShift" instances.

IReadOnlyList<ISHCTimeSlice> GetTimeSlices();

"CreateTimeSlice" method
Adds a time slice to the "ISHCShift" instance.

void CreateTimeSlice(
 ISHCTimeSlice slice);
● slice

Reference to the new time slice

"DeleteTimeSlice" method
Deletes a time slice of the "ISHCShift" instance.

void DeleteTimeSlice(
 ISHCTimeSlice slice);
● slice

Reference to the time slice to be deleted

"SetComment" method
Adds a comment with language code ID to the "Comments" property.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1222 System Manual, 11/2019, Online help printout

void SetComment(
 UInt32 languageId,
 string comment);
● languageId

The language code ID of the comment

● comment
The comment

"CreateAction" method
Adds an action to the "ISHCShift" instance.

ISHCAction CreateAction(
 ISHCActionTemplate actionTemplate,
 TimeSpan offset);
● actionTemplate

The action template of the new action

● offset
The offset for the anchor point of the action, in relation to the starting point of the shift.
Positive and negative value allowed.

Example:

static void CreateActionUsingShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 ISHCShift Shift = calendar.Day.Read(start,
end).ElementAt(0).GetShifts().ElementAt(0);
 if (Shift != null)
 {
 ISHCAction Action =
Shift.CreateAction(calendar.ActionTemplate.Read(false).ElementAt(0), new TimeSpan(5, 0,
0));
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"DeleteAction" method
Deletes an action of the "ISHCShift" instance.

void DeleteAction(ISHCAction shcAction);
● shcAction

Reference to the action to be deleted

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1223

"GetActions" method
Supplies a list with the actions of the "ISHCShift" instance.

IReadOnlyList<ISHCAction> GetActions();
Example:

static void ReadActionUsingShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 ISHCShift Shift = calendar.Day.Read(start,
end).ElementAt(0).GetShifts().ElementAt(0);
 if (Shift != null)
 {
 IReadOnlyList<ISHCAction> action = Shift.GetActions();
 if (action != null)
 {
 ISHCAction actions = action.ElementAt(0);
 string Action = string.Format("\n Offset:{0} \n IsCustomized:
{1} ,actionTemplate:{2}", actions.Offset, actions.IsCustomized, actions.ActionTemplate);
 System.Console.WriteLine(Action);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

19.9.8.13 ISHCAction (RT Uni)

Description
The C# interface "ISHCAction" specifies the properties and methods of an action.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"Offset" property
The offset for the anchor point of the "ISHCAction" instance in 100 nanoseconds in relation to
the start point of its shift instance. Positive and negative value allowed.

TimeSpan Offset { get; set; }

"ActionTemplate" property
The action template of the "ISHCAction" instance

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1224 System Manual, 11/2019, Online help printout

string ActionTemplate { get; }

"IsCustomized" property
Saves information on whether the "ISHCAction" instance was edited by users.

bool IsCustomized { get; }

"GetElements" method
Supplies a list with the action elements of the "ISHCAction" instance.

IReadOnlyList<ISHCActionElement> GetElements();

19.9.8.14 ISHCActionElement (RT Uni)

Description
The C# interface "ISHCActionElement" specifies the properties and methods of an action
element of an "ISHCAction" instance.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"ElementType" property
The type of the "ISHCActionElement" instance.

ShcActionElementType ElementType { get; }
The enumeration "ShcActionElementType" can contain the following values:

● Tag (0)
The action element controls a tag.

"Enabled" property
Saves the information on whether the "ISHCActionElement" instance is activated.

bool Enabled { get; set; }

"Offset" property
The offset of the "ISHCActionElement" instance in 100 nanoseconds in relation to the anchor
point of its action. Positive and negative value allowed.

TimeSpan Offset { get; set; }

"Value" property
Value of the tag controlled by the "ISHCActionElement" instance

object Value { get; set; }

"ElementName" property
Name of the tag controlled by the "ISHCActionElement" instance

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1225

string ElementName { get; set; }

19.9.8.15 ISHCActionTemplate (RT Uni)

Description
The C# interface "ISHCActionTemplate" specifies the properties and methods of the action
template of an "ISHCAction" instance.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"Name" property
The name of the "ISHCActionTemplate" instance.

string Name { get; set; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names of the "ISHCActionTemplate"
instance and their language code IDs.

IDictionary<UInt32, string> DisplayNames { get; }

"Deleted" property
Saves information on whether the action template was deleted by users.

bool Deleted { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCActionTemplate"
instance and their language code IDs.

IDictionary<UInt32, string> Descriptions { get; }

"SetDisplayName" method
Sets the display name of the "ISHCActionTemplate" instance and its language code ID.

void SetDisplayName(
 UInt32 languageId,
 string displayName);
● languageId

The language code ID of the display name

● displayName
The display name

"SetDescription" property
Sets the description of the "ISHCActionTemplate" instance and its language code ID.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1226 System Manual, 11/2019, Online help printout

void SetDescription(
 UInt32 languageId,
 string description);
● languageId

The language code

● IDdescription
The description

"CreateElement" property
Adds an "ISHCActionTemplateElement" instance to the "ISHCActionTemplate" instance.

void CreateElement(
 ISHCActionTemplateElement actiontemplateElement);
● actiontemplateElement

Reference to the new action template element

"DeleteElement" property
Deletes an "ISHCActionTemplateElement" instance of the "ISHCActionTemplate" instance.

void DeleteElement(
 ISHCActionTemplateElement actiontemplateElement);
● actiontemplateElement

Reference to the action template element to be deleted

"GetElements" property
Supplies a list with action template elements of the "ISHCActionTemplate" instances.

IReadOnlyList<ISHCActionTemplateElement> GetElements();

19.9.8.16 ISHCActionTemplateElement (RT Uni)

Description
The C# interface "ISHCActionTemplateElement" specifies the properties and methods of an
action element of an "ISHCActionTemplate" instance.

The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members

"ElementType" property
The type of the "ISHCActionTemplateElement" instance.

ShcActionElementType ElementType { get; }
The enumeration "ShcActionElementType" can contain the following values:

● Tag (0)
The action element controls a tag.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1227

"Offset" property
The offset of the "ISHCActionTemplateElement" instance in 100 nanoseconds in relation to the
anchor point of its action template. Positive and negative value allowed.

TimeSpan Offset { get; set; }

"Value" property
Value of the tag controlled by the "ISHCActionTemplateElement" instance.

object Value { get; set; }

"ElementName" property
Name of the tag controlled by the "ISHCActionTemplateElement" instance.

string ElementName { get; set; }

19.9.8.17 ISHCActionTemplatesProvider (RT Uni)

Description
The C# interface "ISHCActionTemplatesProvider" provides you with access to the action
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create,
read, update and delete action templates.

Members

"Browse" method
Supplies a collection with the "ISHCActionTemplate" instances of the calendar.

IReadOnlyCollection<ISHCActionTemplate> Browse(
 bool includeDeleted);
● includeDeleted

Saves information on whether the collection also contains the deleted action templates.

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1228 System Manual, 11/2019, Online help printout

Example:

static void ReadActionTemplate()
{
 try
 {
 Console.WriteLine("ReadActionTemplate");
 IReadOnlyCollection<ISHCActionTemplate> actionTemplate =
calendar.ActionTemplate.Browse(false);
 foreach (var template in actionTemplate)
 {
 PrintActionTemplates(template);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Create" method
Adds new "ISHCActionTemplate" instances to the calendar.

void Create(
 ICollection<ISHCActionTemplate> actionTemplates);
● actionTemplates

Collection with the new "ISHCActionTemplate" instances

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1229

Example:

static void CreateActionTemplateWithActionTemplateElement()
{
 try
 {
 ISHCActionTemplate pActionTemplate = calendar.GetObject<ISHCActionTemplate>();
 if (pActionTemplate != null)
 {
 pActionTemplate.Name = "ActionTemplate";
 pActionTemplate.SetDisplayName(1033, "ActionDisplayName");
 pActionTemplate.SetDescription(1033, "ActionDescription");
 List<ISHCActionTemplate> ActionList = new List<ISHCActionTemplate>();
 ActionList.Add(pActionTemplate);
 calendar.ActionTemplate.Create(ActionList);
 ISHCActionTemplateElement pActionTemplateElement =
calendar.GetObject<ISHCActionTemplateElement>();
 if (pActionTemplateElement != null)
 {
 pActionTemplateElement.ElementName = "HMI_RT_1::Unit1.Member_1";
 pActionTemplateElement.Value = false;
 pActionTemplateElement.Offset = new TimeSpan(4, 0, 0);
 pActionTemplate.CreateElement(pActionTemplateElement);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Update" method
Updates "ISHCActionTemplate" instances of the calendar.

void Update(
 ICollection<ISHCActionTemplate> actionTemplates);
● actionTemplates

Collection with the "ISHCActionTemplate" instances to be updated

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1230 System Manual, 11/2019, Online help printout

Example:

static void UpdateActionTemplateWithActionTemplateElement()
{
 IReadOnlyCollection<ISHCActionTemplate> actionTemplates =
calendar.ActionTemplate.Browse(false);
 List<ISHCActionTemplate> list = new List<ISHCActionTemplate>();
 foreach (var actionTemplate in actionTemplates)
 {
 actionTemplate.Name = "UpdatedActionTemplate";
 actionTemplate.SetDisplayName(1033, "UpdatedDisplayName ");
 actionTemplate.SetDescription(1033, "UpdatedDescription"); 　 　
 IReadOnlyCollection<ISHCActionTemplateElement> action =
actionTemplate.GetElements();
 ISHCActionTemplateElement templateElement = action.ElementAt(0);
 templateElement.Offset = new TimeSpan(6, 0, 0);
 list.Add(actionTemplate);
 }
 calendar.ActionTemplate.Update(list);
}

"Delete" method
Deletes "ISHCActionTemplate" instances of the calendar.

void Delete(
 ICollection<ISHCActionTemplate> actionTemplates);
● actionTemplates

Collection with the "ISHCActionTemplate" instances to be deleted

Example:

static void DeleteActionTemplateWithActionTemplateElement()
{
 try
 {
 IReadOnlyCollection<ISHCActionTemplate> actionTemplates =
calendar.ActionTemplate.Browse(false);
 if (actionTemplates.Count > 0)
 {
 List<ISHCActionTemplate> list = new List<ISHCActionTemplate>();
 foreach (var actionTemplate in actionTemplates)
 {
 list.Add(actionTemplate);
 }
 calendar.ActionTemplate.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

Runtime API (RT Uni)
19.9 Description of the C# interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1231

19.10 Description of the C++ interfaces (RT Uni)

19.10.1 Error codes of the C++ interfaces (RT Uni)
All methods that have defined a CFRESULT return CFSUCCESS if the method was run through
successfully. Otherwise, they return a corresponding error code.

19.10.2 Interfaces of the Runtime environment (RT Uni)

19.10.2.1 IOdkRt (RT Uni)

Description
The C++ interface "IOdkRt" specifies methods for the connection to the Runtime system and
the error handling.

Members
The following methods are specified in the interface:

"Connect" method
Connect to a Runtime project.

CFRESULT Connect(
 const CFSTR context,
 IRuntime **ppRuntime,
 const CTSTR user = nullptr,
 const CTSTR password = nullptr)
● context

[in]: Name of the runtime project

Note

The name of the Runtime project is not used in the current version. An empty string must be
passed in order to connect to the locally run Runtime project.

● IRuntime
[out]: Points to the initialized "IRuntime" object that the ODK object model makes available.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1232 System Manual, 11/2019, Online help printout

● user
[in]: User name

Note

Can only be used in a future version!

● password
[in]: Password

Note

Can only be used in a future version!

"Close" method
Enable configuration files and plug-ins of the Runtime system.

CFRESULT Close()

"GetErrorHandler" method
Transfers an "IErrorInfo" object for error handling.

CFRESULT GetErrorHandler(IErrorInfo** pErrorInfo)
IErrorInfo
[out]: Points to an "IErrorInfo" object.

Example
Connect to the Runtime system of the active project:

Copy code
IRuntimePtr pRuntime;

CFRESULT Connect()
{
 // Connect to running project
 CCfString projectName = L"";
 CFRESULT retVal = Connect(projectName, &pRuntime);

 if(CF_FAILED(retVal))
 PrintErrorInformation(retVal, L"Connect", pRuntime);

 return retVal;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1233

Error handling when reading out installed options of the Runtime system:

Copy code
void GetOptionObject(IRuntimePtr pRuntime)
{
 Siemens::Runtime::HmiUnified::Common::Cpp::IOptionPtr pOdkOption;
 //load option component by name
 CFRESULT errorCode = pRuntime->GetOption(CCfString("MyOptionName"), &pOdkOption);

 ICfUnknownPtr pUnknown;
 //create a instance of the option object "MyOptionObject"
 errorCode = pOdkOption->GetObject(CCfString("MyOptionObject"), &pUnknown);

 if (CF_SUCCEEDED(errorCode))
 {
 IMyOptionObjectPtr pMyOptionObject(pUnknown);
 CCfString strProperty;
 pMyOptionObject->GetMyProperty(&strProperty);
 }
 else
 {
 IErrorInfoPtr pInfo;
 if (CF_SUCCEEDED(GetErrorHandler(&pInfo)))
 {
 SCCfString errorDescription;
 //get error description
 pInfo->GetErrorDescription(errorCode, &errorDescriptionStr);
 }
 }
}

See also
IRuntime (Page 1234)

IErrorInfo (Page 1249)

19.10.2.2 IRuntime (RT Uni)

Description
The C++ interface "IRuntime" specifies methods for information and the addressing of the
Runtime system.

Members
The following methods are specified in the interface:

"GetObject" method
Create new instance of an object of the Runtime system. Possible object types are defined in
the configuration file OdkObjectModel.xml.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1234 System Manual, 11/2019, Online help printout

CFRESULT GetObject(const CFSTR value, ICfUnknown **ppObject)
● value

[in]: Name of the object type, for example "Tag" for tags

● ppObject
[out]: Points to the initialized object of the runtime system.

"GetProduct" method
Return an "IProduct" object that allows access to the version information and installed options
of the Runtime system.

CFRESULT GetProduct(IProduct **ppProduct)
ppProduct
[in/out]: Points to an "IProduct" object that contains the product information of the runtime
system.

"GetOption" method
Referencing installed option of the Runtime system.

CFRESULT GetOption(
 const CFSTR optionName,
 IOption **ppOption)
● optionName

[in]: Name of the installed option

● ppProduct
[out]: Points to an installed option of the Runtime system as "IOption" object.

"GetUserName" method
Return the name of the logged-on user.

CFRESULT GetUserName(CFSTR* name)
name
[out]: Displays the user name.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1235

Example
Initialize an object of the "Tag" type of the Runtime system:

Copy code
CFRESULT ReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 if(pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 ... //further tag processing
 }

 return errCode;
}

Output technical product version of the Runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 CFRESULT errCode = pRuntime->GetProduct(&pProduct);

 if(pProduct != NULL && CF_SUCCEEDED(errCode))
 {
 uint16_t uintMajor, uintMinor, uintUpdate, uintServicePack;
 IVersionInfoPtr pVersion;
 pProduct->GetVersion(&pVersion);

 pVersion->GetMajor(&uintMajor);
 pVersion->GetMinor(&uintMinor);
 pVersion->GetServicePack(&uintServicePack);
 pVersion->GetUpdate(&uintUpdate);

 wcout << L"WinCC Unified version: " << uintMajor << L"-" << uintMinor << L"-" <<
uintServicePack << L"-" << uintUpdate << endl;
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1236 System Manual, 11/2019, Online help printout

Use installed options:

Copy code
void GetOptionObject(IRuntimePtr pRuntime)
{
 Siemens::Runtime::HmiUnified::Common::Cpp::IOptionPtr pOdkOption;
 CFRESULT errCode = pRuntime->GetOption(CCfString("MyOptionName"), &pOdkOption);

 ICfUnknownPtr pUnk;
 errCode = pOdkOption->GetObject("MyOptionObject2", &pUnk);

 if (CF_SUCCEEDED(errorCode))
 {
 IMyOptionObjectPtr pMyOptionObject(pUnknown);
 CCfString strProperty;
 pMyOptionObject->GetMyProperty(&strProperty);
 }
 else
 {
 IErrorInfoPtr pInfo;
 if (CF_SUCCEEDED(GetErrorHandler(&pInfo)))
 {
 CCfString errorDescriptionStr;
 //get error description
 pInfo->GetErrorDescription(errorCode, &errorDescriptionStr);
 }
 }

 //using extension methods for CPM node
 ICpmPtr pCpm;
 errorCode = pRuntime->GetObject(CCfString("Cpm"), (ICfUnknown**) &pCpm);

 ICpmNodePtr pCpmNode;
 CCfString strNode(".hierarchy::PlantView\\Unit1");
 errorCode = pCpm->GetNode(strNode, &pCpmNode);

 //using specific option interface
 IMyOptionPtr pMyOption(pOdkOption);

 IMyCpmNodeFormulaPtr pFormula;
 pMyOption->GetObject(pCpmNode, CCfString("Formula"), (ICfUnknown**) &pFormula);
 pFormula->SetName(CCfString("Quality"));
 int32_t result;
 pFormula->Calc(&result);
}

See also
IOdkRt (Page 1232)

IProduct (Page 1238)

IOption (Page 1239)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1237

19.10.2.3 IProduct (RT Uni)

Description
The C++ interface "IProduct" specifies methods for handling product information of the Runtime
system.

Members
The following methods are specified in the interface:

"GetOptions" method
Return installed options of the Runtime system as array of "IOption" objects.

CFRESULT GetOptions(IOptionEnumerator **ppEnumerator)
ppEnumerator
[out]: Points to the installed options as "IOptionEnumerator" object.

"GetVersion" method
Return version structure of the installed Runtime system as "IVersionInfo" object.

CFRESULT GetVersion(IVersionInfo** versionInfo)
versionInfo
[out]: Points to a structure with version information of the installed Runtime system.

Example
Output technical product version of the Runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 CFRESULT errCode = pRuntime->GetProduct(&pProduct);

 if(pProduct != NULL && CF_SUCCEEDED(errCode))
 {
 uint16_t uintMajor, uintMinor, uintUpdate, uintServicePack;
 IVersionInfoPtr pVersion;
 pProduct->GetVersion(&pVersion);

 pVersion->GetMajor(&uintMajor);
 pVersion->GetMinor(&uintMinor);
 pVersion->GetServicePack(&uintServicePack);
 pVersion->GetUpdate(&uintUpdate);

 wcout << L"WinCC Unified version: " << uintMajor << L"-" << uintMinor << L"-" <<
uintServicePack << L"-" << uintUpdate << endl;
]
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1238 System Manual, 11/2019, Online help printout

Output name of all installed options:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 CFRESULT errCode = pRuntime->GetProduct(&pProduct);
 if (pProduct != NULL && CF_SUCCEEDED(errCode))
 {
 IOptionEnumeratorPtr pItems;
 errCode = pProduct->GetOptions(&pItems);
 if (CF_SUCCEEDED(errCode))
 {
 while (pItems->MoveNext() == CF_SUCCESS)
 {
 IOptionPtr pValue;
 pItems->Current(&pValue);
 CCfString module;
 pValue->GetName(&module);
 wcout << L"Option name: " << module << endl;
 }
 }
 else
 {
 wcout << L"No option installed." << endl;
 PrintErrorInformation(errCode, L"GetOptions", pRuntime);
 }
 }
 else
 {
 PrintErrorInformation(errCode, L"GetProduct", pRuntime);
 }
}

See also
IOdkRt (Page 1232)

IRuntime (Page 1234)

IOption (Page 1239)

IOptionEnumerator (Page 1241)

IVersionInfo (Page 1243)

19.10.2.4 IOption (RT Uni)

Description
The C++ interface "IOption" specifies properties and methods for handling installed product
options of the Runtime system.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1239

Members
The following methods are specified in the interface:

"GetName" method
Return name of an installed option of the Runtime system.

CFRESULT GetName(CFSTR *pValue)
pValue
[out]: Points to the name of an installed option of the runtime system.

"GetObject" method
Referencing installed option of the Runtime system.

CFRESULT GetObject(
 const CFSTR Value,
 ICfUnknown** ppObject)
● Value

[in]: Name of the installed option of the Runtime system

● ppObject
[out]: Points to the installed option of the Runtime system as an "ICfUnknown" object.

"GetVersion" method
Reference version structure of an installed option of the Runtime system as "IVersionInfo"
object.

CFRESULT GetVersion(IVersionInfo** versionInfo)
versionInfo
[out]: Points to a structure with version information of an installed option of the Runtime system.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1240 System Manual, 11/2019, Online help printout

Example
Read out installed option:

Copy code
void GetOptionObject(IRuntimePtr pRuntime)
{
 Siemens::Runtime::HmiUnified::Common::Cpp::IOptionPtr pOdkOption;
 CFRESULT errCode = pRuntime->GetOption(CCfString("MyOptionName"), &pOdkOption);

 ICfUnknownPtr pUnk;
 errCode = pOdkOption->GetObject("MyOptionObject2", &pUnk);

 if (CF_SUCCEEDED(errorCode))
 {
 IMyOptionObjectPtr pMyOptionObject(pUnknown);
 CCfString strProperty;
 pMyOptionObject->GetMyProperty(&strProperty);
 }
 else
 {
 IErrorInfoPtr pInfo;
 if (CF_SUCCEEDED(GetErrorHandler(&pInfo)))
 {
 CCfString errorDescriptionStr;
 //get error description
 pInfo->GetErrorDescription(errorCode, &errorDescriptionStr);
 }
 }
}

See also
IProduct (Page 1238)

IOptionEnumerator (Page 1241)

IVersionInfo (Page 1243)

19.10.2.5 IOptionEnumerator (RT Uni)

Description
The "IOptionEnumerator" interface is a C++ interface that specifies methods for handling the
enumeration of installed product options of the Runtime system.

All the methods return CF_SUCCESS in case of successful execution.

Members
The following methods are specified in the interface:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1241

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IOption **ppItem)
ppItem
[out]: Points to the current "IOption" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext"method subsequently moves to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of the elements of the list.

Example
Access the installed options "IOption" of the runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 CFRESULT errCode = pRuntime->GetProduct(&pProduct);
 if(pProduct != NULL && CF_SUCCEEDED(errCode))
 {
 IOptionEnumeratorPtr pItems;
 if(CF_SUCCEEDED(pProduct->GetOptions(&pItems)))
 {
 while(pItems->MoveNext() == CF_SUCCESS)
 {
 IOptionPtr pValue;
 pItems->Current(&pValue);
 ...
 }
 }
 else
 {
 wcout << L"No option installed." <<endl;
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1242 System Manual, 11/2019, Online help printout

See also
IOption (Page 1239)

19.10.2.6 IVersionInfo (RT Uni)

Description
The C++ interface "IVersionInfo" specifies methods for reading out version information of the
runtime system.

Members
The following methods are specified in the interface:

"GetMajor" method
Return main version of an installed option of the Runtime system.

CFRESULT GetMajor(uint16_t *pValue)
pValue
[out]: Points to the main version of an installed option of the Runtime system.

"GetMinor" method
Return minor version of an installed option of the Runtime system.

CFRESULT GetMinor(uint16_t *pValue)
pValue
[out]: Points to the minor version of an installed option of the Runtime system.

"GetServicePack" method
Return service pack of an installed option of the Runtime system.

CFRESULT GetServicePack(uint16_t *pValue)
pValue
[out]: Points to the service pack of an installed option of the Runtime system.

"GetUpdate" method
Return update version of an installed option of the Runtime system.

CFRESULT GetUpdate(uint16_t *pValue)
pValue
[out]: Points to the update version of an installed option of the Runtime system.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1243

Example
Output technical product version of the Runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 CFRESULT errCode = pRuntime->GetProduct(&pProduct);

 if(pProduct != NULL && CF_SUCCEEDED(errCode))
 {
 uint16_t uintMajor, uintMinor, uintUpdate, uintServicePack;
 IVersionInfoPtr pVersion;
 pProduct->GetVersion(&pVersion);

 pVersion->GetMajor(&uintMajor);
 pVersion->GetMinor(&uintMinor);
 pVersion->GetServicePack(&uintServicePack);
 pVersion->GetUpdate(&uintUpdate);

 wcout << L"WinCC Unified version: " << uintMajor << L"-" << uintMinor << L"-" <<
uintServicePack << L"-" << uintUpdate << endl;
]
}

See also
IProduct (Page 1238)

IOption (Page 1239)

19.10.2.7 IErrorResult (RT Uni)

Description
The "IErrorResult" interface is a C++ interface that specifies methods for reading out error
details.

Members
The following methods are specified in the interface:

"GetError" method
Read out error code of an error message.

CFRESULT GetError(CFRESULT *value)
value
[out]: Points to an error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1244 System Manual, 11/2019, Online help printout

"GetName" method
Read out name of the associated object of the data source.

CFRESULT GetError(CFSTR *value)
value
[out]: Points to an object name.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1245

Example
Read out details of "IErrorResult" error messages:

Copy code
IErrorResultEnumerator* WriteTagSetSync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 IErrorResultEnumerator* pEnumerator = nullptr;
 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->AddWithValue(CCfString(tags[i]._tagName), tags[i]._tagValue);
 }

 errCode = pTagSet->Write(&pEnumerator);
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }

 if (pEnumerator != nullptr)
 {
 while (pEnumerator->MoveNext() == CF_SUCCESS)
 {
 IErrorResult* pValue;
 CFRESULT errorCode = pEnumerator->Current(&pValue);
 if (pValue != nullptr && CF_SUCCEEDED(errorCode))
 {
 pValue->GetError(&errorCode);
 CCfString str;
 pValue->GetName(&str);

 if (CF_FAILED(errorCode))
 {
 std::wcout << L"Write Tag failed, Tag name: " << str << L", ErrorCode:
" << errorCode << std::endl;
 PrintErrorInformation(errorCode, L"Write Tag", pRuntime);
 }
 }
 }
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
 return pEnumerator;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1246 System Manual, 11/2019, Online help printout

See also
IErrorResultEnumerator (Page 1247)

19.10.2.8 IErrorResultEnumerator (RT Uni)

Description
The "IErrorResultEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of error messages of the Runtime system.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IErrorResult **ppItem)
ppItem
[out]: Points to the current "IErrorResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1247

Example
Access the "IErrorResult" error messages when writing a TagSet:

Copy code
IErrorResultEnumerator* WriteTagSetSync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 IErrorResultEnumerator* pEnumerator = nullptr;
 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->AddWithValue(CCfString(tags[i]._tagName), tags[i]._tagValue);
 }

 errCode = pTagSet->Write(&pEnumerator);
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }

 if (pEnumerator != nullptr)
 {
 while (pEnumerator->MoveNext() == CF_SUCCESS)
 {
 IErrorResult* pValue;
 CFRESULT errorCode = pEnumerator->Current(&pValue);
 if (pValue != nullptr && CF_SUCCEEDED(errorCode))
 {
 pValue->GetError(&errorCode);
 CCfString str;
 pValue->GetName(&str);

 if (CF_FAILED(errorCode))
 {
 std::wcout << L"Write Tag failed, Tag name: " << str << L", ErrorCode:
" << errorCode << std::endl;
 PrintErrorInformation(errorCode, L"Write Tag", pRuntime);
 }
 }
 }
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
 return pEnumerator;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1248 System Manual, 11/2019, Online help printout

See also
IErrorResult (Page 1244)

ITagSet (Page 1264)

ITagSetQCD (Page 1272)

19.10.2.9 IErrorInfo (RT Uni)

Description
The "IErrorInfo" interface is a C++ interface that specifies methods for handling error codes.

Members
The following methods are specified in the interface:

"GetErrorDescription" method
Output an error description for the error code.

You have to use the "GetErrorHandler" method to instantiate an "IErrorInfo" object beforehand.

CFRESULT GetErrorDescription(
 uint32_t errorCode,
 CFSTR *errorDescription)
● errorCode

[in]: Error code that is handed over by the ODK client.

● errorDescription
[out]: Points to the error description of the error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1249

Example
Output object name and description of an error:

Copy code
void PrintErrorInformation(CFRESULT errorCode, CCfSmartString objectName, IRuntimePtr
pRuntime)
{
 if (pRuntime != nullptr)
 {
 IErrorInfoPtr pInfo;
 CFRESULT result = pRuntime->GetObject(CCfString(L"ErrorHandler"),
(ICfUnknown**)&pInfo);

 if (CF_FAILED(result))
 {
 std::wcout << "Error occurred: Can not create 'ErrorHandler' object " <<
std::endl;
 return;
 }

 CCfString resStr;
 result = pInfo->GetErrorDescription(errorCode, &resStr);

 if (CF_SUCCEEDED(result))
 {
 CCfSmartString errorDescription(resStr);
 std::wcout << "Error occurred: '" << errorDescription.Get() << "', ObjectName =
" << objectName.Get() << std::endl;
 }
 else
 {
 std::wcout << "Error occurred: 'GetErrorDescription' failed, Error number: " <<
result << std::endl;
 }
 }
 else
 {
 std::wcout << "IRuntimePtr is NULL "<< std::endl;
 }
}

See also
IOdkRt (Page 1232)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1250 System Manual, 11/2019, Online help printout

19.10.3 Interfaces of the tags (RT Uni)

19.10.3.1 IProcessValue (RT Uni)

Description
The C++ interface "IProcessValue" specifies properties and methods for values of process tags
of the Runtime system. The "IProcessValue" interface represents values from the result of a
read operation or monitoring.

Members
The following methods are specified in the interface:

"GetTagName" method
Return the name of the tag.

CFRESULT GetTagName(CFSTR *value)
value
[out]: Points to the name of the tag belonging to the process value.

"GetValue" method
Return value of the tag at the moment of the read operation.

CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the tag.

"GetQuality" method
Return quality code of the read operation of the tag.

CFRESULT GetQuality(int32_t *value)
value
[out]: Points to the quality code of the process tag.

"GetTimeStamp" method
Return the time stamp of the last successful read operation of the tag.

CFRESULT GetTimeStamp(CFDATETIME64 *value)
value
[out]: Points to the time stamp of the read operation of the process tag.

"GetError" method
Return error code of the last read or write operation of the tag.

CFRESULT GetError(int32_t *value)
value
[out]: Points to the error code of the process tag.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1251

Example
Read out a process tag and output the properties of the "IProcessValue" object:

Copy code
CFRESULT ReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 IProcessValuePtr pValue;

 // Read value of tag
 errCode = pTag->Read(&pValue);

 if (pValue != nullptr && CF_SUCCEEDED(errCode))
 {
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);

 CCfString strName;
 pValue->GetTagName(&strName);

 CCfVariant varValue;
 pValue->GetValue(&varValue);

 std::wcout << strName.ToUTF8().c_str() << L" " << timeStamp << L" " << L" Value:
" << (double)(varValue) << std::endl;
 }
 else
 {
 std::wcout << L"Read operation failed." << std::endl;
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 }
 return errCode;
}

See also
IProcessValueEnumerator (Page 1253)

ITag (Page 1254)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1252 System Manual, 11/2019, Online help printout

ITagSet (Page 1264)

ITagSetQCD (Page 1272)

19.10.3.2 IProcessValueEnumerator (RT Uni)

Description
The "IProcessValueEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of process values of the Runtime system. The enumeration is, for
example, used when reading out process values of a TagSet.

All the methods return CF_SUCCESS in case of successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IProcessValue **ppItem)
ppItem
[out]: Points to the current "IProcessValue" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext"method subsequently moves to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of the elements of the list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1253

Example
Output process values of TagSets:

Copy code
...
IProcessValueEnumeratorPtr pItems;
errCode = pTagSet->Read(&pItems);

if(pItems != nullptr && CF_SUCCEEDED(errCode))
{
 std::wcout << "Read finished " << std::endl;

 // Iterate over the process value objects
 while(CF_SUCCEEDED(pItems->MoveNext()))
 {
 IProcessValuePtr pValue;
 errCode = pItems->Current(&pValue); // get current process value
 if(pValue != nullptr && CF_SUCCEEDED(errCode))
 {
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);

 std::wcout << strName << L" " <<timeStamp << L" " << contextId << L" Value: " <<
(double)(varValue) << std::endl;
 }
 }
}
else
{
 std::wcout << L"Read operation failed." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
}
...

See also
IProcessValue (Page 1251)

19.10.3.3 ITag (RT Uni)

Description
The C++ interface "ITag" specifies methods for handling tags of the Runtime system.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1254 System Manual, 11/2019, Online help printout

Members
The following methods are specified in the interface:

"SetTagName" method
Set name of the tag.

CFRESULT SetTagName(const CFSTR tagName)
tagName
[in]: Name of the tag

"Write" method
Write process value of the tag synchronously in the Runtime system.

CFRESULT Write(
 const CFVARIANT value,
 CFENUM type = HmiWriteType::NoWait)
● value

[in]: Tag value

● type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:

– HmiWriteType::NoWait (default): Writes the tag value without waiting. Errors for the
write operation are not detected.

– HmiWriteType::Wait: Waits until the tag value is written in the AS. The associated
errors are written.

"WriteQCD" method
Write process value with quality code of the tag synchronously in the Runtime system. The tag
also has a freely definable time stamp. You can use this to acquire past external measured
values, for example.

Note
Reaction to external tags

For external tags, the method only writes the tag value. The QualityCode and time stamp are
set internally by the system.

CFRESULT WriteQCD(
 const CFVARIANT value,
 const CFDATETIME64 timeStamp,
 const int16_t qualityCode,
 CFENUM type = HmiWriteType::NoWait)
● value

[in]: Tag value

● timeStamp
[in]: Time stamp of the tag. Also in the past.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1255

● qualityCode
[in]: Quality code of the tag

● type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:

– HmiWriteType::NoWait (default): Writes the tag value without waiting. Errors for the
write operation are not detected.

– HmiWriteType::Wait: Waits until the tag value is written in the AS. The associated
errors are written.

"WriteWithOperatorMessage" method
Write process value of the tag synchronously in the Runtime system and create operator
message. In addition to the reason, the operator message contains the old and new value, the
user and host names and the unit.

CFRESULT WriteWithOperatorMessage(
 const CFVARIANT value,
 const CFSTR reason)
● value

[in]: Value of the tag

● reason
[in]: Reason of the value change for message

"Read" method
Read process value and properties of the tag synchronously from the Runtime system.

CFRESULT Read(
 IProcessValue **ppValue,
 CFENUM type = HmiReadType::Cache)
● ppValue

[out]: Points to the properties and the value of the tag as an "IProcessValue" object.

● type
[in/optional]: The enumeration "HmiReadType" specifies the origin of the tag value:

– HmiReadType::Cache (default): Reads the tag value from the tag image. If no
registration exists, the tag is registered.

– HmiReadType::Device: Reads the tag value directly from the AS. The tag image is
not used.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1256 System Manual, 11/2019, Online help printout

Example
Write tags synchronously:

Copy code
CFRESULT WriteSingleTagSync(IRuntimePtr pRuntime, CCfString tag, CCfVariant& value)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"Tag"), &pUnk);
 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 // Write value of tag
 errCode = pTag->Write(value);
 if(CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
 return errCode;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1257

Write tag with time stamp and quality code synchronously:

Copy code
void WriteSingleTagQCDSync(IRuntimePtr pRuntime, CCfString tag, CCfVariant& value)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 if(pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 // Write value of tag
 errCode = pTag->WriteQCD(value, CCfDateTime64::Now(), 128);
 if(CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1258 System Manual, 11/2019, Online help printout

Read tags synchronously:

Copy code
CFRESULT ReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 if(pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 IProcessValuePtr pValue;

 // Read value of tag
 errCode = pTag->Read(&pValue);

 if(pValue != nullptr && CF_SUCCEEDED(errCode))
 {
 ...
 }
 else
 {
 std::wcout << L"Read operation failed." << std::endl;
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 }
 return errCode;
}

See also
IProcessValue (Page 1251)

ITagCallback (Page 1259)

19.10.3.4 ITagCallback (RT Uni)

Description
The "ITagCallback" interface and the "COdkTagSourceCBBase" and "COdkTagSetCB"
classes define methods for implementing asynchronous read and write operations with tags.
The methods are used by the C++-interface "ITagSet".

Members of the interface
The following methods are specified in the "ITagCallback" interface:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1259

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations.

The "OnReadComplete" callback method is called when the "ITagSet.ReadAsync" method is
used.

CFRESULT OnReadComplete(
 IProcessValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId,
 CFBOOL completed)
● pEnumerator

[out]: Points to an "IProcessValueEnumerator" object that contains the enumeration of the
read process values.

● systemError
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the tag.

● completed
[out]: Status of the asynchronous transfer:

– True: All alarms are read out.

– False: Not all alarms are yet read out.

"OnWriteComplete" method
Callback method is called on completion of asynchronous write operations.

The "OnWriteComplete" callback method is called when the "ITagSet.WriteAsync" method is
used.

CFRESULT OnWriteComplete(
 IErrorResultEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId
 CFBOOL completed)
● pEnumerator

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with
errors for the write operations of the tag.

● systemError
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the tag.

● completed
[out]: Status of the asynchronous transfer:

– True: All alarms are read out.

– False: Not all alarms are yet read out.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1260 System Manual, 11/2019, Online help printout

"OnDataChanged" method
Callback method is called when a monitored tag value is changed.

The callback method is called after the process value change of a monitored TagSet
("ITagSet.Subscribe" method).

CFRESULT OnDataChanged(
 IProcessValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
● pEnumerator

[out]: Points to an "IProcessValueEnumerator" object that contains the enumeration of the
read process values.

● systemError
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the tag.

Members of the classes
The following methods are implemented in the "COdkTagSourceCBBase" and
"COdkTagSetCB" classes:

"SetEvent" method
Signals an event.

CFBOOL SetEvent()

"ResetEvent" method
Resets the signaling of an event.

CFBOOL ResetEvent()

"WaitForcompletion" method
Waits for the signaling of an event.

uint32_t WaitForcompletion(uint32_t dwMilliseconds)
dwMilliseconds
[in]: Time interval in milliseconds for which an event is waited for.

"GetValues" method
Return process values of the asynchronous read operation.

std::vector<IProcessValue*> GetValues()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1261

Example
In the following section tags in a TagSet are read asynchronously. To this purpose the
"ReadTagSetAsync" function uses a "COdkTagSetCB" object that implements the
"ITagCallback" interface and that uses the "COdkTagSourceCBBase" class. The service life of
the "COdkTagSetCB" object is determined via reference counting.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1262 System Manual, 11/2019, Online help printout

Copy code
void ReadTagSetAsync(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);

 if(pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }

 COdkTagSetCB* pTagSetCB = new COdkTagSetCB();

 if(pTagSetCB != nullptr)
 {
 pTagSetCB->AddRef();

 // Read the tag set asynchronously, result comes via callback
 if(CF_SUCCEEDED(pTagSet->ReadAsync(pTagSetCB)))
 {
 if (CF_SUCCESS == pTagSetCB-
>WaitForcompletion(std::numeric_limits<uint32_t>::max()))
 {
 vector<IProcessValuePtr> pValues = pTagSetCB->GetValues();

 std::wcout << L"Read finished " << std::endl;

 // display tag values
 for(int i = 0; i < pValues.size(); i++)
 {
 IProcessValue* pValue = pValues[i];
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);

 std::wcout << strName << L" " << timeStamp << L" " << L" Value: " <<
(double)(varValue) << std::endl;
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create callback interface." << std::endl;
 PrintErrorInformation(errCode, L"WaitForcompletion", pRuntime);
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1263

Copy code
 else
 {
 std::wcout << L"ReadAsync request failed." << std::endl;
 PrintErrorInformation(errCode, L"ReadAsync", pRuntime);
 }
 }
 else
 {
 std::wcout << L"General error" << std::endl;
 PrintErrorInformation(errCode, L"COdkTagSetCB", pRuntime);
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

See also
ITag (Page 1254)

ITagSet (Page 1264)

ITagSetQCD (Page 1272)

19.10.3.5 ITagSet (RT Uni)

Description
The C++ interface "ITagSet" specifies properties and methods for an optimized access to
several tags of the Runtime system.

After initialization of the "ITagSet" object, you can execute read and write access to multiple
tags in one call. Simultaneous access demonstrates better performance and lower
communication load than single access to multiple tags.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be used
to recognize identically named tags from different monitoring functions. Default value -1: The
ContextId is not used.

CFRESULT SetContextId(const int32_t value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1264 System Manual, 11/2019, Online help printout

value
[in]: ContextId of the tag:

"GetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be used
to recognize identically named tags from different monitoring functions. Default value -1: The
ContextId is not used.

CFRESULT GetContextId(int32_t *value)
value
[out]: Points to the ContextId of the tag.

"Remove" method
Remove individual tag from a TagSet.

CFRESULT Remove(const CFSTR tagName)
tagName
[in]: Name of the tag that is removed from TagSet.

"Add" method
Add tag to a TagSet.

CFRESULT Add(const CFSTR tagName)
tagName
[in]: Name of the tag for TagSet

"AddWithValue" method
Add tag with process value to the TagSet.

CFRESULT AddWithValue(const CFSTR tagName, const CFVARIANT value)
● tagName

[in]: Name of the tag

● value
[in]: New value of the tag

"GetValue" method
Read process value of a tag of a TagSet.
To fill the local TagSet with process values, a "Read", "ReadAsync" or "AddWithValue" method
must be called beforehand.

The values of the "IProcessValue" object are not available until after execution of the methods
"Read", "ReadAsync" or "AddWithValue".

CFRESULT GetValue(const CFSTR tagName, CFVARIANT *pValue)
● tagName

[in]: Name of the tag from the TagSet

● pValue
[out]: Points to the process value of the tag.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1265

"SetValue" method
Change the process value of a tag of a TagSet.

The "SetValue" method changes only the values of the local TagSet. In order to write the
changed values into the automation system you must additionally execute the "Write" or
"WriteAsync" method.

CFRESULT SetValue(const CFSTR tagName, const CFVARIANT value)
● tagName

[in]: Name of the tag from the TagSet

● value
[in]: New value of the tag

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.

CFRESULT Write(HmiUnified::Rt::IErrorResultEnumerator
**ppEnumerator, CFENUM type = HmiWriteType::NoWait)
● ppEnumerator

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with
errors for the write operations.

● type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:

– NoWait (default): Writes the tag values without waiting. Errors for the write operation are
not detected.

– Wait: Waits until the tag values are written in the automation system. The associated
errors are written.

"WriteWithOperatorMessage" method
Write process values of all tags of a TagSet synchronously in the Runtime system and create
operator messages. In addition to the reason, the operation messages contain the old and new
value, the user and host names and the unit.

CFRESULT WriteWithOperatorMessage(const CFSTR reason)
reason
[in]: Reason of the value change for message

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.

The method always has the HmiWriteType::Wait type and waits until the tag value has
been written in the automation system. Associated errors are written.

CFRESULT WriteAsync(
 ITagCallback* pTagSetCb)
● pTagSetCb

[in]: Points to the "ITagCallback" object that implements the callback interface.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1266 System Manual, 11/2019, Online help printout

"Read" method
Read process values and properties of all the tags of a TagSet synchronously from the Runtime
system.

CFRESULT Read(
 IProcessValueEnumerator **ppEnumerator,
 CFENUM type = HmiReadType::Cache)
● ppEnumerator

[in/out]: Points to the properties and process values of the tags as an
"IProcessValueEnumerator" object.

● type
[in/optional]: The enumeration "HmiReadType" specifies the origin of the tag value:

– Cache (default): Reads the tag values from the tag image. If no subscription exists, the
tag is subscribed.

– Device: Reads the tag values directly from the automation system. The tag image is not
used.

"ReadAsync" method
Read process values and properties of all the tags of a TagSet asynchronously from the
Runtime system.

CFRESULT ReadAsync(
 ITagCallback *pTagSetCb,
 CFENUM type = HmiReadType::Cache)
● pTagSetCb

[in]: Points to the "ITagCallback" object that implements the callback interface.

● type
[in/optional]: The enumeration "HmiReadType" specifies the origin of the tag value:

– Cache (default): Reads the tag value from the tag image. If no subscription exists, the
tag is subscribed.

– Device: Reads the tag value directly from the AS. The tag image is not used.

"Subscribe" method
Subscribe all tags of a TagSet asynchronously for cyclic monitoring of the process values.

Note
Tags from IO devices with the "Cyclic in operation" acquisition mode

For a tag with the acquisition mode "Cyclic in operation", the value stored in the process image
when Subscribe is called might be outdated. OnAdd therefore only provides the QualityCode
"uncertain". Only value changes made after the Subscribe call provide the current value and the
QualityCode "good".

CFRESULT Subscribe(ITagCallback *pTagSetCb)
pTagCb
[in]: Points to the "ITagCallback" object that implements the callback interface.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1267

"CancelSubscribe" method
Cancel monitoring of all tags of a TagSet.

CFRESULT CancelSubscribe()

"GetCount" method
Return the number of tags of a TagSet list.

CFRESULT GetCount(int32_t *value)
value
[out]: Points to the value for the number of tags of the TagSet list.

"Clear" method
Remove all tags from a TagSet.

CFRESULT Clear()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1268 System Manual, 11/2019, Online help printout

Example
Write TagSet asynchronously:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1269

Copy code
struct TagTuple_T
{
 CCfSmartString _tagName;
 CCfVariant _tagValue;
};

void WriteTagSetAsync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 vector<IErrorResultPtr> pErrors;
 if(pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagSetPtr pTagSet(pUnk);
 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSet->AddWithValue(CCfString(tags[i]._tagName), tags[i]._tagValue);
 }
 COdkTagSetCB* pTagSetCB = new COdkTagSetCB();
 if(pTagSetCB != nullptr)
 {
 pTagSetCB->AddRef();
 // Write value of tag asynchronously
 pTagSet->WriteAsync(pTagSetCB);
 errCode = pTagSetCB-
>WaitForcompletion(std::numeric_limits<uint32_t>::max());
 if (CF_SUCCESS == errCode)
 {
 pErrors = pTagSetCB->GetErrors();

 for (int i = 0; i < pErrors.size(); i++)
 {
 IErrorResult* pError = pErrors[i];
 CFRESULT tagError;
 pError->GetError(&tagError);
 CCfString strName;
 pError->GetName(&strName);
 if (CF_FAILED(tagError))
 {
 PrintErrorInformation(tagError, L"Tag Write", pRuntime);
 }
 }
 } else
 {
 PrintErrorInformation(errCode, L"WaitForcompletion", pRuntime);
 }
 }
 else
 {
 PrintErrorInformation(errCode, L"COdkTagSetCB", pRuntime);
 }
 }
 else
 {

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1270 System Manual, 11/2019, Online help printout

Copy code
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

Start monitoring for tags of a TagSet:

Copy code
void SubscribeTagSet(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }

 COdkTagSetCB* pTagSetCB = new COdkTagSetCB();

 if (pTagSetCB != nullptr && CF_SUCCEEDED(errCode))
 {
 pTagSetCB->AddRef();

 // subscribe tags
 errCode = pTagSet->Subscribe(pTagSetCB);
 if(CF_FAILED(errCode))
 {
 std::wcout << L"Error, couldn't create callback interface." << std::endl;
 PrintErrorInformation(errCode, L"Subscribe", pRuntime);
 }

 }
 else
 {
 std::wcout << L"Error, couldn't create callback interface." << std::endl;
 PrintErrorInformation(errCode, L"COdkTagSetCB", pRuntime);
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1271

See also
IProcessValue (Page 1251)

ITagCallback (Page 1259)

IErrorResultEnumerator (Page 1247)

19.10.3.6 ITagSetQCD (RT Uni)

Description
The C++ interface "ITagSetQCD" specifies methods for optimized writing of several tags of the
Runtime system. The tags also have a freely definable time stamp and quality code. You can
use this to acquire past external measured values, for example.

Note
Reaction to external tags

For external tags, the method only writes the tag value. The QualityCode and time stamp are
set internally by the system.

After initialization of the "ITagSetQCD" object, you can have read access to multiple tags in one
call. Simultaneous access demonstrates better performance and lower communication load
than single access to multiple tags.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be used
to recognize identically named tags from different monitoring functions. Default value -1: The
ContextId is not used.

CFRESULT SetContextId(const int32_t value)
value
[in]: ContextId of the tag:

"GetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be used
to recognize identically named tags from different monitoring functions. Default value -1: The
ContextId is not used.

CFRESULT GetContextId(int32_t *value)
value
[out]: Points to the ContextId of the tag.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1272 System Manual, 11/2019, Online help printout

"Remove" method
Remove individual tag from a TagSet.

CFRESULT Remove(const CFSTR tagName)
tagName
[in]: Name of the tag that is removed from TagSet.

"Add" method
Add tag with process value, quality code and time stamp to the TagSet.

CFRESULT Add(
 const CFSTR tagName,
 const CFVARIANT value,
 const CFDATETIME64 timeStamp,
 const int16_t qualityCode)
● tagName

[in]: Name of the tag for TagSet

● value
[in]: New process value of the tag

● timeStamp
[in]: Time stamp of the process value. Also in the past.

● qualityCode
[in]: Quality code for process value

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.

CFRESULT Write(HmiUnified::Rt::IErrorResultEnumerator
**ppEnumerator, CFENUM type = HmiWriteType::NoWait)
● ppEnumerator

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with
errors for the write operations.

● type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:

– HmiWriteType::NoWait (default): Writes the tag values without waiting. Errors for the
write operation are not detected.

– HmiWriteType::Wait: Waits until the tag values are written in the automation system.
The associated errors are written.

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.

The method always has the HmiWriteType::Wait type and waits until the tag value has
been written in the automation system. Associated errors are written.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1273

CFRESULT WriteAsync(
 ITagCallback* pTagSetCb)
● pTagSetCb

[in]: Points to the "ITagCallback" object that implements the callback interface.

"GetCount" method
Return the number of tags of a TagSet list.

CFRESULT GetCount(int32_t *value)
value
[out]: Points to the value for the number of tags of the TagSet list.

"GetItem" method
Return tag of the TagSet for changing or reading out process value, QualityCode and time
stamp.

CFRESULT GetItem(
 const CFSTR name,
 ITagSetQCDItem **pTagSetQCDItem)
● name

[in]: Name of the tag in the TagSet

● pTagSetQCDItem
[out]: Points to tag as "TagSetQCDItem" object

"Clear" method
Remove all tags from a TagSet.

CFRESULT Clear()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1274 System Manual, 11/2019, Online help printout

Example
Write TagSet with time stamp and quality code synchronously:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1275

Copy code
struct TagTuple_T
{
 CCfSmartString _tagName;
 CCfVariant _tagValue;
};

void WriteTagSetQCDSync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSetQCD"), &pUnk);
 if(pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ITagSetQCDPtr pTagSetQCD(pUnk);

 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSetQCD->Add(CCfString(tags[i]._tagName), tags[i]._tagValue,
CCfDateTime64::Now(), 128);
 }

 IErrorResultEnumerator* pEnumerator;
 errCode = pTagSetQCD->Write(&pEnumerator);
 if(CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }

 if (pEnumerator != nullptr)
 {
 while (pEnumerator->MoveNext() == CF_SUCCESS)
 {
 IErrorResult* pValue;
 CFRESULT errorCode = pEnumerator->Current(&pValue);
 if (pValue != nullptr && CF_SUCCEEDED(errorCode))
 {
 pValue->GetError(&errorCode);
 CCfString str;
 pValue->GetName(&str);
 if (CF_FAILED(errorCode))
 {
 std::wcout << L"Write Tag failed, Tag name: " << str << L", ErrorCode:
" << errorCode << std::endl;
 PrintErrorInformation(errorCode, L"Write Tag", pRuntime);
 }
 }
 }
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1276 System Manual, 11/2019, Online help printout

Copy code
}

See also
IProcessValue (Page 1251)

ITagCallback (Page 1259)

ITagSetQCDItem (Page 1277)

IErrorResultEnumerator (Page 1247)

19.10.3.7 ITagSetQCDItem (RT Uni)

Description
The C++ interface "ITagSetQCDItem" specifies methods for adapting tags of the Runtime
system. You can read in tags into a TagSetQCD and then change all names, values, time
stamps and QualityCodes of the tags.

Note
Reaction to external tags

For external tags, only the tag value is set. The QualityCode and time stamp are set internally
by the system.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"GetName" method
Return the name of the tag.

CFRESULT GetName(CFSTR *name)
name
[out]: Points to the name of the tag.

"SetName" method
Change name of the tag.

CFRESULT SetName(const CFSTR name)
name
[in]: New name of the tag.

"GetValue" method
Return value of the tag at the moment of the read operation.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1277

CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the tag.

"SetValue" method
Change value of the tag.

CFRESULT SetValue(const CFVARIANT value)
value
[in]: New process value of the tag.

"GetTimeStamp" method
Return time stamp of the tag.

CFRESULT GetTimeStamp(CFDATETIME64 *timeStamp)
timeStamp
[out]: Points to the time stamp of the tag.

"SetTimeStamp" method
Change time stamp of the tag.

CFRESULT SetTimeStamp(const CFDATETIME64 timeStamp)
timeStamp
[in]: New time stamp of the tag

"GetQuality" method
Return quality code of the read operation of the tag.

CFRESULT GetQuality(int32_t *qualityCode)
qualityCode
[out]: Points to the quality code of the tag.

"SetQuality" method
Change quality code of the tag.

CFRESULT SetQuality(const int32_t qualityCode)
qualityCode
[in]: New quality code of the tag

See also
ITagSetQCD (Page 1272)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1278 System Manual, 11/2019, Online help printout

19.10.3.8 ILoggedTagValue (RT Uni)

Description
The C++ interface "ILoggedTagValue" specifies the properties for process values of logging
tags of a logging system. The "ILoggedTagValue" interface displays historical process values.

Members
The following methods are specified in the interface:

"GetTagName" method
Return name of the logging tag.

CFRESULT GetTagName(CFSTR *value)
value
[out]: Points to the name of the process value belonging to the logging tag.

"GetValue" method
Return process value of the logging tag.

CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the logging tag.

"GetQuality" method
Return quality code of the process value.

CFRESULT GetQuality(int16_t *value)
value
[out]: Points to the quality code of the process value.

"GetTimeStamp" method
Return time stamp of the process value.

CFRESULT GetTimeStamp(CFDATETIME64 *value)
value
[out]: Points to the time stamp of the process value.

"GetError" method
Return error code of the process value.

CFRESULT GetError(uint32_t *value)
value
[out]: Points to the error code of the process value.

"GetFlags" method
Return context information from the read operation for the process value.

CFRESULT GetFlags(HmiTagLoggingValueFlags *value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1279

value
[out]: Points to the context information.

The "HmiTagLoggingValueFlags" enumeration contains the following bit-by-bit-coded values:

● 0: Extra
There are still additional values at the time of the process value.

● 2: Calculated
Process value is calculated.

● 16: Bounding
Process value is a limit value.

● 32: NoData
No additional information available

● 64: FirstStored
Process value is the first value stored in the logging system.

● 128: LastStored
Process value is the last value stored in the logging system.

Example
Output process values of a logging tag:

Copy code
void PrintValues(ILoggedTagValueEnumeratorPtr pItems)
{
 // Iterate over the process value objects
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 ILoggedTagValuePtr pValue;
 CFRESULT errCode = pItems->Current(&pValue); // get current process value
 if (pValue != nullptr && CF_SUCCEEDED(errCode))
 {
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);

 std::wcout << strName << L" " << timeStamp << L" " << L" Value: " << (double)
(varValue) << std::endl;
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1280 System Manual, 11/2019, Online help printout

See also
ILoggedTagValueEnumerator (Page 1281)

ILoggedTag (Page 1287)

19.10.3.9 ILoggedTagValueEnumerator (RT Uni)

Description
The "ILoggedTagValueEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of process values of a logging tag of the Runtime system. The
methods are used by the C++-interfaces "ILoggedTag" and "ILoggedTagSet".

All the methods return CF_SUCCESS in case of successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(ILoggedTagValue **ppItem)
ppItem
[out]: Points to the current "ILoggedTagValue" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext"method subsequently moves to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of the elements of the list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1281

Example
Output process values of a logging tag:

Copy code
void PrintValues(ILoggedTagValueEnumeratorPtr pItems)
{
 // Iterate over the process value objects
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 ILoggedTagValuePtr pValue;
 CFRESULT errCode = pItems->Current(&pValue); // get current process value
 if (pValue != nullptr && CF_SUCCEEDED(errCode))
 {
 ...
 }
 }
}

See also
ILoggedTagValue (Page 1279)

ILoggedTag (Page 1287)

ILoggedTagSet (Page 1290)

ILoggedTagCallback / ILoggedTagSetCallback (Page 1282)

19.10.3.10 ILoggedTagCallback / ILoggedTagSetCallback (RT Uni)

Description
The interfaces "ILoggedTagCallback" and "ILoggedTagSetCallback" and the classes
"COdkTagSourceCBBase" and "COdkTagSetLoggingCB" define methods for implementing
asynchronous read and write operations with logging tags. The methods are used by the C++-
interfaces "ILoggedTag" and "ILoggedTagSet".

All the methods return CF_SUCCESS following successful execution.

Members of "ILoggedTagCallback"
The following methods are specified in the interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations.

CFRESULT OnReadComplete(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of the
process values.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1282 System Manual, 11/2019, Online help printout

"OnDeleteComplete" method
Callback method is called on completion of asynchronous delete operations.

CFRESULT OnDeleteComplete(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of the
process values.

"OnWriteComplete" method
Callback method is called on completion of asynchronous write operations. Can only be applied
to individual logging tags in the "ILoggedTagCallback" interface.

CFRESULT OnWriteComplete(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of the
process values.

"OnDataChanged" method
Callback method is called when a monitored logging tag is changed.

CFRESULT OnDataChanged(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of the
process values.

Members of "ILoggedTagSetCallback"
The following methods are specified in the interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations.

The "OnReadComplete" callback method is called when the "ReadAsync" method is used.

CFRESULT OnReadComplete(ILoggedTagValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
● pEnumerator

[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

● errorCode
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the logging tag.

"OnDataChanged" method
Callback method is called when a monitored logging tag is changed.

The callback method is called after the process value change of a monitored logging tag or a
LoggedTagSet.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1283

CFRESULT OnDataChanged(ILoggedTagValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
● pEnumerator

[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

● errorCode
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the logging tag.

Members of the classes
The following methods are implemented in the "COdkTagSourceCBBase" and
"COdkTagSetLoggingCB" classes:

"SetEvent" method
Signals an event.

CFBOOL SetEvent()

"ResetEvent" method
Resets the signaling of an event.

CFBOOL ResetEvent()

"WaitForcompletion" method
Waits for the signaling of an event.

uint32_t WaitForcompletion(uint32_t dwMilliseconds)
dwMilliseconds
[in]: Time interval in milliseconds for which an event is waited for.

"GetValues" method
Return process values of the asynchronous read operation.

std::vector<ILoggedTagValuePtr> GetValues()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1284 System Manual, 11/2019, Online help printout

Example
Output LoggedTagSet asynchronously:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1285

Copy code
void LogggingReadTagSetAsync(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"LoggedTagSet"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ILoggedTagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }

 CCfDateTime64 begin, end;
 begin = CCfDateTime64::Now(true);
 end = begin;
 begin.SubtractTimeSpan(Get1Minute() * 30);

 ILoggedTagValueEnumeratorPtr pItems;

 COdkTagSetLoggingCB* pTagSetCB = new COdkTagSetLoggingCB();

 if (pTagSetCB != nullptr)
 {
 pTagSetCB->AddRef();

 // Read the tag set asynchronously, result comes via callback
 if (CF_SUCCEEDED(pTagSet->ReadAsync(pTagSetCB, begin, end, true)))
 {
 if (CF_SUCCESS == pTagSetCB-
>WaitForcompletion(std::numeric_limits<uint32_t>::max()))
 {
 vector<ILoggedTagValuePtr> pValues = pTagSetCB->GetValues();

 std::wcout << L"Read finished " << std::endl;

 // display tag values
 for (int i = 0; i < pValues.size(); i++)
 {
 ILoggedTagValue* pValue = pValues[i];
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);

 std::wcout << strName << L" " << timeStamp << L" " << L" Value: " <<
(double)(varValue) << std::endl;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1286 System Manual, 11/2019, Online help printout

Copy code
 }
 else
 {
 std::wcout << L"Error, couldn't create callback interface." << std::endl;
 PrintErrorInformation(errCode, L"WaitForcompletion", pRuntime);
 }
 }
 else
 {
 std::wcout << L"ReadAsync request failed." << std::endl;
 PrintErrorInformation(errCode, L"ReadAsync", pRuntime);
 }
 }
 else
 {
 std::wcout << L"General error" << std::endl;
 PrintErrorInformation(errCode, L"COdkTagSetCB", pRuntime);
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

See also
ILoggedTag (Page 1287)

ILoggedTagSet (Page 1290)

ILoggedTagValueEnumerator (Page 1281)

19.10.3.11 ILoggedTag (RT Uni)

Description
The C++ interface "ILoggedTag" specifies methods for handling logging tags of a logging
system.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetTagName" method
Set name of the logging tag.

CFRESULT SetTagName(const CFSTR tagName)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1287

tagName
[in]: Name of the logging tag

"Read" method
Read logged process values of a logging tag of a time period synchronously from the logging
system.

CFRESULT Read(
 const CFTIMEDATE64 begin,
 const CFTIMEDATE64 end,
 ILoggedTagValueEnumerator **ppEnumerator,
 CFBOOL boundingValue)
● begin

[in]: Start date of the time period

● end
[in]: End date of the time period

● ppEnumerator
[in/out]: Points to the enumeration of process values of the logging tag as
"ILoggedTagValueEnumerator" object.

● boundingValue
[in]: True, in order to additionally return high and low limits.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1288 System Manual, 11/2019, Online help printout

Example
Read out process values of a logging tag synchronously from a logging system:

Copy code
void LoggingReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"LoggedTag"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ILoggedTagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 CCfDateTime64 begin, end;
 begin = CCfDateTime64::Now(true);
 end = begin;
 begin.SubtractTimeSpan(Get1Minute() * 3);

 ILoggedTagValueEnumeratorPtr pItems;
 // Read value of tag
 errCode = pTag->Read(begin, end, &pItems, true);

 if (pItems != nullptr && CF_SUCCEEDED(errCode))
 {
 std::wcout << "Read finished " << std::endl;
 PrintValues(pItems);
 }
 else
 {
 std::wcout << L"Read operation failed." << std::endl;
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 }
}

See also
ILoggedTagValue (Page 1279)

ILoggedTagSet (Page 1290)

ILoggedTagCallback / ILoggedTagSetCallback (Page 1282)

ILoggedTagValueEnumerator (Page 1281)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1289

19.10.3.12 ILoggedTagSet (RT Uni)

Description
The C++ interface "ILoggedTagSet" specifies methods for optimized access to several logging
tags of a logging system.

After initialization of the "ILoggedTagSet" object, you can execute read and write access to
multiple logging tags in one call. Simultaneous access demonstrates better performance and
lower communication load than single access to multiple logging tags.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetContextId" method
ID as additional identification feature of the logging tag. The ContextId can, for example, be
used to recognize identically named logging tags from different monitoring functions. Default
value -1: The ContextId is not used.

CFRESULT SetContextId(const int32_t value)
value
[in]: ContextId of the logging tag

"GetContextId" method
ID as additional identification feature of the logging tag. The ContextId can, for example, be
used to recognize identically named logging tags from different monitoring functions. Default
value -1: The ContextId is not used.

CFRESULT GetContextId(int32_t *value)
value
[out]: Points to the ContextId of the logging tag.

"Remove" method
Remove individual logging tag from a LoggedTagSet.

CFRESULT Remove(const CFSTR tagName)
tagName
[in]: Name of the logging tag that is removed from the LoggedTagSet.

"Add" method
Add logging tag to a LoggedTagSet.

CFRESULT Add(const CFSTR tagName)
tagName
[in]: Name of the logging tag for the LoggedTagSet

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1290 System Manual, 11/2019, Online help printout

"Subscribe" method
Subscribe all logging tags of a LoggedTagSet asynchronously for updating the process values
following a change. When new process values are logged, they can be processed with the
"OnDataChanged" event.

CFRESULT Subscribe(ILoggedTagSetCallback *pTagSetLoggedCb)
pTagSetLoggedCb
[in]: Points to the "ILoggedTagSetCallback" object that implements the callback interface.

"CancelSubscribe" method
Cancel updating of process values following a change for all logging tags of a LoggedTagSet.

CFRESULT CancelSubscribe()

"Read" method
Retrieve all logging tags of a LoggedTagSet for a period of time synchronously from the logging
system.

CFRESULT Read(
 const CFTIMEDATE64 begin,
 const CFTIMEDATE64 end,
 ILoggedTagValueEnumerator **ppEnumerator,
 CFBOOL boundingValue)
● begin

[in]: Start date of the time period

● end
[in]: End date of the time period

● ppEnumerator
[in/out]: Points to the enumeration of process values of the logging tags of the
LoggedTagSet as "ILoggedTagValueEnumerator" object.

● boundingValue
[in/optional]: True, in order to additionally return high and low limits.

"ReadAsync" method
Retrieve all logging tags of a LoggedTagSet for a period of time synchronously from the logging
system.

CFRESULT ReadAsync(
 ILoggedTagSetCallback *pTagLoggedCb,
 const CFTIMEDATE64 begin,
 const CFTIMEDATE64 end,
 CFBOOL boundingValue)
● pTagLoggedCb

[in]: Points to the "ILoggedTagSetCallback" object that implements the callback interface.

● begin
[in]: Start date of the time period

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1291

● end
[in]: End date of the time period

● boundingValue
[in/optional]: True, in order to additionally return high and low limits.

"GetCount" method
Return the number of logging tags of a LoggedTagSet list.

CFRESULT GetCount(int32_t *value)
value
[out]: Points to the value for the number of logging tags of the LoggedTagSet list.

"Clear" method
Remove all logging tags from a LoggedTagSet.

CFRESULT Clear()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1292 System Manual, 11/2019, Online help printout

Example
Subscribe logging tags of a LoggedTagSet for change monitoring:

Copy code
void LoggingSubscribeTagSet(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"LoggedTagSet"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 ILoggedTagSetPtr pTagSet(pUnk);
 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }

 COdkTagSetLoggingCB* pTagSetCB = new COdkTagSetLoggingCB();

 if (pTagSetCB != nullptr && CF_SUCCEEDED(errCode))
 {
 pTagSetCB->AddRef();

 // subscribe tags
 errCode = pTagSet->Subscribe(pTagSetCB);
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Error, couldn't create callback interface." << std::endl;
 PrintErrorInformation(errCode, L"Subscribe", pRuntime);
 }
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

See also
ILoggedTag (Page 1287)

ILoggedTagCallback / ILoggedTagSetCallback (Page 1282)

ILoggedTagValueEnumerator (Page 1281)

19.10.3.13 ITags (RT Uni)

Description
The C++ interface "ITags" defines methods with which you can access configured tags.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1293

The interface inherits from the "ICfDispatch" interface.

All the methods return CF_SUCCESS following successful execution. In the case of an error, the
methods return the corresponding error code.

Members

"Find" method
Supplies an enumerator for access to the "ITagAttributes" instances of the specified tag.

CFRESULT Find(
 CFVARIANT systemIDs,
 int32_t language,
 CFSTR filter,
 ITagAttributesEnumerator** ppITagAttributesEnumerator)
Find(CFVARIANT systemIDs, uint32_t language, CFSTR filter,
ITagAttributesEnumerator** ppITagAttributesEnumerator)
● systemIDs

[in]: Collection of SystemNames on which the tags were configured.

● language
[in]: Language code ID of filter

● filter
[in]: Filter by name of the tags to restrict the search.
Supports searching with wildcard (*)

● ppITagAttributesEnumerator
[out]: Enumerator which supplies access to the "ITagAttributes" instances.

"FindAsync" method
For asynchronous searching for "ITagAttributes" instances of the specified tags.

FindAsync(
 CFVARIANT systemIDs
 uint32_t language
 CFSTR filter
 ITagAttributesCallback* pCallback)
● systemIDs

[in]: Collection of SystemNames on which the tags were configured.

● language
[in]: Language code ID of filter

● filter
[in]: Filter by name of the tags to restrict the search.
Supports searching with wildcard (*)

● filterpCallback:
[in]: Callback pointer to an "ITagAttributesCallback" instance

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1294 System Manual, 11/2019, Online help printout

19.10.3.14 ITagAttributes (RT Uni)

Description
The C++ interface "ITagAttributes" defines methods for access to the attributes of a tag.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"GetName" method
Supplies the name of the tags. Must be unique throughout the device.

GetName(
 CFSTR* name)
● name

[out]: The name

"GetDisplayName" method
Supplies the display name of the tags.

GetDisplayName(
 CFSTR* name)
● name

[out]: The display name

"GetDataType" method
Supplies the data type of the tags.

GetDataType(
 CFENUM* datatype)
● datatype

[out]: The data type of the tag

"GetConnection" method
Supplies the connection of the tag.

The memory location of the tag in the controller is accessed via the connection.

GetConnection(
 CFSTR* connection)
● connection

[out]: The connection

"GetAcquisitionCycle" method
Specifies the tag acquisition cycle.

If you configure a tag at an object, the acquisition cycle of the tag is displayed at the object.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1295

GetAcquisitionCycle(
 CFSTR* acquisitionCycle)
● acquisitionCycle

[out]: The acquisition cycle

"GetAcquisitionMode" method
Supplies the acquisition mode of the tag.

GetAcquisitionMode(
 CFENUM* acquisitionMode)
● acquisitionMode

[out]: Value of the enumeration "HmiAcquisitionMode".
The enumeration "HmiAcquisitionMode" can contain the following values:

– Undefined (0)

– CyclicOnUse (1)

– CyclicContinous (2)

– OnDemand (3)

– OnChange (4)

"GetMaxLength" method
Supplies the length of the tags.

The length is only available with a string tag. The length is preset for structure tags and cannot
be changed.

GetMaxLength(
 uint32_t* maxLength)
● maxLength

[out]: Maximum length

"GetPersistent" method
Supplies the persistence of the tags.

GetPersistent(
 CFBOOL* persistent)
● persistent

[out]: The persistence

"GetInitialValue" method
Supplies the start value of the tag.

After Runtime starts, the tag retains the start value until an operator or the PLC changes the
value.

GetInitialValue(
 CFVARIANT * initialValue)
● initialValue

[out]: The start value

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1296 System Manual, 11/2019, Online help printout

"GetInitialMaxValue" method
Supplies the start value for the event "On exceeding".

InitialMaxValue(
 CFVARIANT * initialValue)
● initialValue

[out]: The start value

"GetInitialMinValue" method
Supplies the start value for the event "On falling below".

InitialMinValue(
 CFVARIANT * initialValue)
● initialValue

[out]: The start value

"GetSubstituteValue" method
Supplies the substitute value of the tags.

If the selected condition occurs, the tag is filled with the substitute value in runtime.

GetSubstituteValue(
 CFVARIANT * substituteValue)
● substituteValue

[out]: The substitute value

"GetSubstituteValueUsage" method
Supplies the condition for the use of the substitute value of the tag.

GetSubstituteValueUsage(
 CFVARIANT * substituteValueUsage)
● substituteValueUsage

[out]: The condition

19.10.3.15 ITagAttributesEnumerator (RT Uni)

Description
The "ITagAttributesEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of tag attributes. The enumerator enables access to individual
attributes from a set of tag attributes.

The interface inherits from the "ICfUnknown" interface.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1297

Members

"MoveNext" method
Go to the next element of the enumerator.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumerator

CFRESULT Current(
 ITagAttributes** ppItem)
● ppItem

[out]: The current "ITagAttributes" instance

"Reset" method
Reset the current position in the enumerator. The "MoveNext" method moves afterwards to the
first element.

CFRESULT Reset()

"Count" method
Output the size of the enumerator or the number of its elements.

CFRESULT Count(
 uint32_t* value)
● value

[out]: Number of attributes

19.10.3.16 ITagAttributesCallback (RT Uni)

Description
The C++ interface "ITagAttributesCallback" defines the callback method
"OnTagAttributesRead". The method is used for implementing asynchronous read operations
of tag attributes. The method is used by the C++ interface "ITags".

The interface implements the methods of the "ICfUnknown" interface.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"OnTagAttributesRead" method
Callback method, is called on completion of an asynchronous search for "ITagAttributes"
instances.
OnTagAttributesRead(
 ITagAttributesEnumerator* pEnumerator,
 CFBOOL bIsCompleted)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1298 System Manual, 11/2019, Online help printout

● ITagAttributesEnumerator
[in/out]: Reference to an "ITagAttributesEnumerator" instance which provides access to the
tag attributes.

● bIsCompleted
[out]: Supplies information on whether the read operation was successfully completed.

19.10.3.17 ILoggingTags (RT Uni)

Description
The C++ interface "ILoggingTags" defines methods with which you can access configured
logging tags.

The interface inherits from the "ICfDispatch" interface.

All the methods return CF_SUCCESS following successful execution. In the case of an error, the
methods return the corresponding error code.

Members

"Find" method
Supplies an enumerator for access to the "ITagAttributes" instances of the specified logging tag.

CFRESULT Find(
 CFVARIANT systemIDs,
 uint32_t language,
 CFSTR filter,
 ILoggingTagAttributesEnumerator**
ppILoggingTagAttributesEnumerator)
● systemIDs

[in]: Collection of SystemNames on which the logging tags were configured.

● language
[in]: Language code ID of filter

● filter
[in]: Filter by name of the logging tags to restrict the search.
Supports searching with wildcard (*).
Example:
Tag1:* Supplies all logging tags of "Tag1".

● ppILoggingTagAttributesEnumerator
[out]: Enumerator which supplies access to the "ILoggingTagAttributes" instances.

"FindAsync" method
For asynchronous searching for "ILoggingTagAttributes" instances.

CFRESULT FindAsync(CFVARIANT systemIDs,
 uint32_t language,

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1299

 CFSTR filter,
 ILoggingTagAttributesCallback* pCallback)
● systemIDs

[in]: Collection of SystemNames on which the logging tags were configured.

● language
[in]: Language code ID of filter

● filter
[in]: Filter by name of the logging tags to restrict the search.
Supports searching with wildcard (*).

● pCallback
[in]: Callback pointer to an "ILoggingTagAttributesCallback" instance

19.10.3.18 ILoggingTagAttributes (RT Uni)

Description
The C++ interface "ITagAttributes" defines methods for access to the attributes of a logging tag.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"GetName" method
Supplies the name of the logging tag.

GetName(
 CFSTR* name)
● name

[out]: The name

"GetDisplayName" method
Supplies the display name of the logging tags.

GetDisplayName(
 CFSTR* name)
● name

[out]: The display name

"GetDataType" method
Supplies the data type of the logging tags.

GetDataType(
 CFENUM* datatype)
● datatype

[out]: The data type

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1300 System Manual, 11/2019, Online help printout

19.10.3.19 ILoggingTagAttributesEnumerator (RT Uni)

Description
The "ILoggingTagAttributesEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of logging tag attributes. The enumerator enables access to
individual attributes from a set of tag attributes.

The interface inherits from the "ICfUnknown" interface.

 All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"MoveNext" method
Go to the next element of the enumerator.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumerator

CFRESULT Current(
 ITagAttributes** ppItem)
● ppItem

[out]: The current "ITagAttributes" instance

"Reset" method
Reset the current position in the enumerator. The "MoveNext" method moves afterwards to the
first element.

CFRESULT Reset()

"Count" method
Output the size of the enumerator or the number of its elements.

CFRESULT Count(
 uint32_t* value)
● value

[out]: Number of attributes

19.10.3.20 ILoggingTagAttributesCallback (RT Uni)

Description
The C++ interface "ILoggingTagAttributesCallback" defines the callback method
"OnTagAttributesRead". The method is used for implementing asynchronous read operations
of logging tag attributes. The method is used by the C++ interface "ILoggingTags".

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1301

The interface implements the methods of the "ICfUnknown" interface.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"OnTagAttributesRead" method
Callback method, is called on completion of an asynchronous search for "ITagAttributes"
instances.
OnTagAttributesRead(
 ILoggingTagAttributesEnumerator* pEnumerator,
 CFBOOL bIsCompleted)
● ILoggingTagAttributesEnumerator

[in]: Reference to an "ILoggingTagAttributesEnumerator" instance which provides access to
the tag attributes.

● bIsCompleted
Supplies information on whether the result of the read operation is complete or whether
other events will come.

19.10.4 Interfaces of the alarms (RT Uni)

19.10.4.1 IAlarmResult (RT Uni)

Description
The C++ interface "IAlarmResult" specifies methods for accessing properties of active alarms
of the Runtime system.

An "IAlarmResult" object is a pure data object that maps all properties of an active alarm.

Members
The following methods are specified in the interface:

"GetInstanceID" method
Return InstanceID for an alarm with multiple instances.

CFRESULT GetInstanceID(uint32_t *value)
value
[out]: Points to the InstanceID of the alarm.

"GetSourceID" method
Return source at which the alarm was triggered.

CFRESULT GetSourceID(CFSTR *value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1302 System Manual, 11/2019, Online help printout

value
[out]: Points to the source of the alarm.

"GetName" method
Return name of the alarm.

CFRESULT GetName(CFSTR *value)
value
[out]: Shows the name of the alarm.

"GetAlarmClassName" method
Return name of the alarm class.

CFRESULT GetAlarmClassName(CFSTR *value)
value
[out]: Points to the symbol of the associated alarm class.

"GetAlarmClassSymbol" method
Return symbol of the alarm class

CFRESULT GetAlarmClassSymbol(CFSTR *value)
value
[out]: Shows the name of the associated alarm class.

"GetState" method
Return current alarm state.

CFRESULT GetState(int32_t *value)
value
[out]: Shows the current alarm status.

"GetStateText" method
Return current alarm state as text, for example "Incoming" or "Outgoing".

CFRESULT GetStateText(CFSTR *value)
value
[out]: Shows the current alarm status as text.

"GetEventText" method
Return text that describes the alarm event.

CFRESULT GetEventText(CFSTR *value)
value
[out]: Points to the text that describes the alarm event.

"GetInfoText" method
Return text that describes the alarm event.

CFRESULT GetInfoText(CFSTR *value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1303

value
[out]: Points to the text that describes an operator instruction for the alarm.

"GetAlarmText1GetAlarmText9" method
Return additional texts 1-9 of the alarm.

CFRESULT GetAlarmText1(CFSTR *value)
…

CFRESULT GetAlarmText9(CFSTR *value)
value
[out]: Points to the additional text of the alarm.

"GetTextColor" method
Return text color of the alarm state.

CFRESULT GetTextColor(uint32_t *value)
value
[out]: Points to the text color of the alarm state.

"GetBackColor" method
Return background color of the alarm state.

CFRESULT GetBackColor(uint32_t *value)
value
[out]: Points to the background color of the alarm state.

"GetFlashing" method
Return flashing background color of the alarm state.

CFRESULT GetFlashing(CFBOOL *value)
value
[out]: Points to the flashing background color of the alarm state.

"GetModificationTime" method
Return time of the last modification to the alarm state.

CFRESULT GetModificationTime(CFDATETIME64 *value)
value
[out]: Points to the time of the last change of the alarm state.

"GetChangeReason" method
Return trigger event for change of the alarm state.

CFRESULT GetChangeReason(uint16_t *value)
value
[out]: Points to the trigger event for the change of the alarm state.

"GetRaiseTime" method
Return trigger time of the alarm.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1304 System Manual, 11/2019, Online help printout

CFRESULT GetRaiseTime(CFDATETIME64 *value)
value
[out]: Shows the triggering time of the alarm.

"GetAcknowledgementTime" method
Return time of alarm acknowledgment.

CFRESULT GetAcknowledgementTime(CFDATETIME64 *value)
value
[out]: Points to the time of alarm acknowledgment.

"GetClearTime" method
Return time of alarm reset

CFRESULT GetClearTime(CFDATETIME64 *value)
value
[out]: Points to the time of alarm reset.

"GetResetTime" method
Return time of alarm reset.

CFRESULT GetResetTime(CFDATETIME64 *value)
value
[out]: Points out the time of the alarm reset.

"GetSuppressionState" method
Return status of alarm visibility.

CFRESULT GetSuppressionState(uint8_t *value)
value
[out]: Points to the status of the alarm visibility.

"GetPriority" method
Return relevance for display and sorting of the alarm.

CFRESULT GetPriority(uint8_t *value)
value
[out]: Points to the relevance of the alarm.

"GetOrigin" method
Return origin for display and sorting of the alarm

CFRESULT GetOrigin(CFSTR *value)
value
[out]: Points to the origin of the alarm.

"GetArea" method
Return origin area for display and sorting of the alarm.

CFRESULT GetArea(CFSTR *value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1305

value
[out]: Points to the origin area of the alarm.

"GetValue" method
Return current process value of the alarm.

CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the current process value of the alarm.

"GetValueQuality" method
Return quality of the process value of the alarm.

CFRESULT GetValueQuality(uint16_t *value)
value
[out]: Points to the quality of the process value of the alarm.

"GetValueLimit" method
Return limit of the process value of the alarm.

CFRESULT GetValueLimit(CFVARIANT *value)
value
[out]: Points to the limit of the process value of the alarm.

"GetUserName" method
Return user name of the operator input alarm.

CFRESULT GetUserName(CFSTR *value)
value
[out]: Points to the user name of the operator input alarm.

"GetLoopInAlarm" method
Return function that navigates from the alarm view to its origin.

CFRESULT GetLoopInAlarm(CFSTR *value)
value
[out]: Points to the function name that navigates to the origin of the alarm.

"GetAlarmParameterValues" method
Return parameter values of the alarm.

CFRESULT GetAlarmParameterValues(CFVARIANT *value)
value
[out]: Points to the parameter values of the alarm.

"GetInvalidFlags" method
Return marking of the alarm with invalid data.

CFRESULT GetInvalidFlags(uint8_t *value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1306 System Manual, 11/2019, Online help printout

value
[out]: Points to the invalid data of the alarm.

"GetConnection" method
Return connection by which the alarm was triggered.

CFRESULT GetConnection CFSTR *value)
value
[out]: Points to the connection of the alarm.

"GetSystemSeverity" method
Return severity of the system error.

CFRESULT GetSystemSeverity(uint8_t *value)
value
[out]: Points to the severity of the system error.

"GetUserResponse" method
Return expected or required user response to the alarm.

CFRESULT GetUserResponse(uint8_t *value)
value
[out]: Points to the expected or required user response to the alarm.

"GetSourceType" method
Return source from which the alarm was generated, e.g. tag-based, controller-based or system-
based alarm.

CFRESULT GetSourceType(uint16_t *value)
value
[out]: Points to the type of source.

"GetDeadBand" method
Return range of the triggering tag in which no alarms are generated.

CFRESULT GetDeadBand(CFVARIANT *value)
value
[out]: Points to the non-triggering range.

"GetId" method
Return ID of the alarm that is also used in the display.

CFRESULT GetId(uint32_t *value)
value
[out]: Points to the ID of the alarm.

"GetAlarmGroupID" method
Return the ID of the alarm group to which the alarm belongs.

CFRESULT GetAlarmGroupID(uint32_t* groupId)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1307

groupId
[out]: The ID of the alarm group

"GetHostName" method
Return name of the host that triggered the alarm.

CFRESULT GetHostName(CFSTR *value)
value
[out]: Points to the host name.

"GetNotificationReason" method
Return the reason for the notification.

CFRESULT GetNotificationReason(CFENUM* value)
value:
[out]: Points to the enumeration of the notification reason. The notification reason can have the
following values:

● Unknown (0)

● Add (1)
The alarm was added to the filtered result list. The alarm meets the filter criteria that apply
to the monitoring.

● Modify (2)
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

● Remove (3)
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.

Note

Changes to the alarm only lead to notifications again when the alarm meets the filter criteria
again. In this case, "NotificationReason" is set to Add.

Note
Removing alarm from business logic

The use case of the client determines whether the client ignores notifications via alarms with
the "NotificationReason" Modify or Remove.

For example:
● State-based monitoring: The client wants to show a list of incoming alarms. All notification

reasons are relevant. The client removes an alarm from the list as soon as the notification
reason is Remove.

● Event-based monitoring: The client wants to send an email when an alarm comes in. Only
the notification reason Add is relevant.

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1308 System Manual, 11/2019, Online help printout

An ODK client begins monitoring with the filter criterion "State" = 1. An alarm is triggered.
Runtime notifies the ODK client of the "NotificationReason" as follows:

Notification‐
Reason

Description

Add ● The "State" property is 1. The alarm has come in.
Modify ● The "State" property has not changed.

● Another property that is not part of the filter criterion has changed, e.g. "Priority".
Remove The "State" property has changed, e.g. alarm has gone out.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1309

Example
When alarm are incoming, output a selection of properties of the "IAlarmResult" objects:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1310 System Manual, 11/2019, Online help printout

Copy code
// Callback for alarm notifications
CFRESULT CFCALLTYPE CAlarmValue::OnAlarm(IAlarmResultEnumerator* pItems, uint32_t
systemError, CFSTR systemName, CFBOOL completed)
{
 CFRESULT hr = CF_FALSE;
 CFBOOL bSet = false;
 uint32_t nsize;
 pItems->Count(&nsize);

 if (nsize > 0 && CF_SUCCEEDED(systemError)) {
 m_AlarmValue.clear();
 int index = 0;

 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 IAlarmResultPtr ppValues;
 if (CF_SUCCEEDED(pItems->Current(&ppValues)))
 {
 AlarmAttributes AlarmValue;
 AlarmValue.m_nInstanceID;
 ppValues->GetInstanceID(&AlarmValue.m_nInstanceID);
 AlarmValue.m_strSourceID;
 CCfString strId;
 ppValues->GetSourceID(&strId);
 AlarmValue.m_strSourceID = CCfSmartString(strId);
 CCfString strName;
 ppValues->GetName(&strName);
 AlarmValue.m_strName = CCfSmartString(strName);
 CCfString strClassName;
 ppValues->GetAlarmClassName(&strClassName);
 AlarmValue.m_strAlarmClassName = CCfSmartString(strClassName);
 ppValues->GetState(&AlarmValue.m_nState);
 CCfString strEvent;
 ppValues->GetEventText(&strEvent);
 AlarmValue.m_strEventText = CCfSmartString(strEvent);
 CCfString strText;
 ppValues->GetStateText(&strText);
 AlarmValue.m_strStateText = CCfSmartString(strText);
 ppValues->GetBackColor(&AlarmValue.m_nBackColor);
 ppValues->GetTextColor(&AlarmValue.m_nTextColor);
 ppValues->GetFlashing(&AlarmValue.m_bFlashing);

 ...

 AlarmValue.m_nAlarmsSize = nsize;

 AlarmValue.m_strSystemName = systemName;
 std::cout << "System name = " << AlarmValue.m_strSystemName.ToUTF8().c_str()
<< std::endl;

 m_AlarmValue.push_back(AlarmValue);
 std::cout << "Alarm name = " << strName.ToUTF8().c_str() << std::endl;
 }
 index++;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1311

Copy code

 this->SetEvent();
 return CF_SUCCESS;
 }
 return hr;
}

See also
IAlarmResultEnumerator (Page 1312)

IAlarm (Page 1313)

IAlarmSubscription (Page 1338)

19.10.4.2 IAlarmResultEnumerator (RT Uni)

Description
The "IAlarmResultEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of active alarms of the Runtime system. Through the enumeration you access
individual alarms from the quantity of all active alarm of the runtime system.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IAlarmResult **ppItem)
ppItem
[out]: Points to the current "IAlarmResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1312 System Manual, 11/2019, Online help printout

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

Example
When alarms are incoming, the "IAlarmResult" objects enumerate:

Copy code
// Callback for alarm notifications
CFRESULT CFCALLTYPE CAlarmValue::OnAlarm(IAlarmResultEnumerator* pItems, uint32_t
systemError, CFSTR systemName, CFBOOL completed)
{
 CFRESULT hr = CF_FALSE;
 CFBOOL bSet = false;
 uint32_t nsize;
 pItems->Count(&nsize);

 if (nsize > 0 && CF_SUCCEEDED(systemError)) {
 m_AlarmValue.clear();
 int index = 0;

 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 IAlarmResultPtr ppValues;
 if (CF_SUCCEEDED(pItems->Current(&ppValues)))
 {
 //AlarmResult processing...
 }
 index++;
 }
 this->SetEvent();
 hr = CF_SUCCESS;
 }
 return hr;
}

See also
IAlarmResult (Page 1302)

19.10.4.3 IAlarm (RT Uni)

Description
The C++ interface "IAlarm" specifies properties and methods for handling active alarms of the
Runtime system.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1313

Members
The following methods are specified in the interface:

"SetSourceID" method
Set the ID of the source at which the active alarm was triggered.

CFRESULT SetSourceID(CFVARIANT sourceID)
sourceID
[in]: ID of the source of the active alarm

"SetName" method
Set the name of the active alarm.

CFRESULT SetName(CFSTR name)
name
[in]: Name of the active alarm

"GetName" method
Read out name of the active alarm.

CFRESULT GetName(CFSTR *name)
name
[out]: Points to a name of the active alarm.

"SetErrorCode" method
Set error code of the alarm.

CFRESULT SetErrorCode(uint32_t errorCode)
errorCode
[in]: Error code

"GetError" method
Read out error code of the alarm.

CFRESULT GetError(uint32_t *error)
error
[out]: Error code

"Disable" method
Deactivate generation of the alarm in the alarm source synchronously.

CFRESULT Disable()

"Enable" method
Activate generation of the alarm in the alarm source synchronously again.

CFRESULT Enable()

"Shelve" method
Hide active alarm synchronously.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1314 System Manual, 11/2019, Online help printout

CFRESULT Shelve()

"Unshelve" method
Display hidden alarm synchronously again.

CFRESULT Unshelve()

"Acknowledge" method
Acknowledge active alarm or instance of an active alarm synchronously.

CFRESULT Acknowledge(uint32_t instanceId)
● instanceId

Value "0": Acknowledge active alarm.
Value > "0": Acknowledge instance with this ID.

"Reset" method
Acknowledge outgoing state of an active alarm or an instance of an active alarm synchronously.

CFRESULT Reset(uint32_t instanceId)
● instanceId

Value "0": Acknowledge the counter state of the active alarm.
Value > "0": Acknowledge the counter state of an instance with this ID.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1315

Example
Acknowledge list of active alarm synchronously:

Copy code
vector<AlarmAttributes> g_vecAlarmList;

void AcknowledgeAlarmSync(IRuntimePtr pRuntime)
{
 SubscribeAlarm(pRuntime);
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"Alarm"), &pUnk)))
 {
 IAlarmPtr pAlarm(pUnk);
 if (g_vecAlarmList.size() > 0)
 {
 vector<AlarmAttributes>::iterator it = g_vecAlarmList.begin();

 // iterate through list of notified alarms and acknowledge each alarm
 while (it != g_vecAlarmList.end())
 {
 CCfVariant vtAlarmName = it->m_strName;
 pAlarm->SetName(vtAlarmName);
 CFRESULT errCode = pAlarm->Acknowledge();
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Sync Acknowledge failed" << endl;
 PrintErrorInformation(errCode, L"Acknowledge", pRuntime);
 }
 it++;
 }
 }
 g_vecAlarmList.clear();
 }
}

See also
IAlarmResult (Page 1302)

19.10.4.4 IAlarmCallback (RT Uni)

Description
The C++ interface "IAlarmCallback" defines methods for implementing asynchronous
operations for monitoring active alarms. The methods are used by the "IAlarmSubscription"
interface.

Members
The following methods are specified in the "IAlarmCallback" interface:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1316 System Manual, 11/2019, Online help printout

"OnAlarm" method
Callback method is called when active alarms on monitored systems change the alarm state.

The "OnAlarm" callback method is called when the "IAlarmSubscription.Start" method is used.

CFRESULT OnAlarm(
 IAlarmResultEnumerator* pItems,
 uint32_t systemError,
 CFSTR systemName,
 CFBOOL completed)
● pItems

[in]: Points to an "IAlarmResultEnumerator" object that contains the enumeration of the
changed active alarms.

● systemError
[in]: Error code for the asynchronous operation

● systemName
[in]: System of the associated Runtime system.

● completed
[in]: True, if no more data from the callback can be expected.

"OnPendingAlarmsComplete" method
Callback method is called to display the completion of the handling of all the active alarms of a
system.

The "OnPendingAlarmsComplete" callback method is called when the
"IAlarmSubscription.Start" method is used.

CFRESULT OnPendingAlarmsComplete()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1317

Example
In the following section monitored active alarms are written asynchronously into the
"g_vecAlarmList" map at a change. To this purpose the "SubscribeAlarm" function uses a
"CAlarmValue" object that implements the "IAlarmCallback" interface and that uses the
"COdkTagSourceCBBase" class. The service life of the "CAlarmValue" object is determined
via reference counting.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1318 System Manual, 11/2019, Online help printout

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList;

void SubscribeAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk)))
 {
 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback *pCB = pAlarmValue;

 CCfDafeArrayBound bounds(1UL, 0);

 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;

 CCfSmartString daFilter = L"";

 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);

 CCfVariant daLanguage = 1033;
 CFRESULT errCode;

 daSystemID.Detach(&vSystemIDs);

 CCfSmartString strFilter = L"";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);

 errCode = pAlarm->Start(pCB);
 if (errCode == CF_SUCCESS)
 {
 std::wcout<< "Subscription Success"<<endl;
 }

 // Wait for alarm nofications
 if (pAlarmValue->WaitForcompletion(g_nMaxWaitTime) == CF_SUCCESS)
 {
 errCode = pAlarm->Stop();
 if (CF_FAILED(errCode))
 {
 std::wcout << "CancelSubscribe failed" << endl;
 PrintErrorInformation(errCode, L"CancelSubscribe", pRuntime);
 }

 // Get current alarms from callback
 pAlarmValue->GetAlarmAttributes(g_vecAlarmList);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1319

Copy code
 }
 }
}

See also
IAlarmSubscription (Page 1338)

19.10.4.5 IAlarmSourceCommandCallback (RT Uni)

Description
The C++ interface "IAlarmSourceCommandCallback" defines methods for implementing
asynchronous operations with active alarms. The methods are used by the "IAlarmSet"
interface.

Members
The following methods are specified in the interface:

"OnAcknowledge" method
Callback method is called when an active alarm was acknowledged.

The "OnAcknowledge" callback method is called when the "IAlarmSet.Acknowledge" and
"IAlarmSet.AcknowledgeInstance" methods are used.

CFRESULT OnAcknowledge(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
● SystemError

[in]: Basic errors that occurred during the asynchronous transfer.

● AlarmSetResult
[in]: Points to an enumeration with the alarms of the callback

● MoreFollows
[in]: Status of the asynchronous transfer:

– True: Further callbacks are to be expected.

– False: This is the last callback.

"OnReset" method
Callback method is called when an active alarm was removed.

The "OnReset" callback method is called when the "IAlarmSet.Reset" and
"IAlarmSet.ResetInstance" methods are used.

CFRESULT OnReset(
 CFRESULT SystemError,

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1320 System Manual, 11/2019, Online help printout

 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
● SystemError

[in]: Basic errors that occurred during the asynchronous transfer.

● AlarmSetResult
[in]: Points to an enumeration with the alarms of the callback

● MoreFollows
[in]: Status of the asynchronous transfer:

– True: Further callbacks are to be expected.

– False: This is the last callback.

"OnDisable" method
Callback method is called when the generation of the alarm in the alarm source was
deactivated.

The "OnDisable" callback method is called when the "IAlarmSet.Disable" method is used.

CFRESULT OnDisable(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
● SystemError

[in]: Basic errors that occurred during the asynchronous transfer.

● AlarmSetResult
[in]: Points to an enumeration with the alarms of the callback

● MoreFollows
[in]: Status of the asynchronous transfer:

– True: Further callbacks are to be expected.

– False: This is the last callback.

"OnEnable" method
Callback method is called when the generation of the alarm in the alarm source was reactivated.

The "OnEnable" callback method is called when the "IAlarmSet.Enable" method is used.

CFRESULT OnEnable(
 CFRESULT SystemError,

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1321

 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
● SystemError

[in]: Basic errors that occurred during the asynchronous transfer.

● AlarmSetResult
[in]: Points to an enumeration with the alarms of the callback

● MoreFollows
[in]: Status of the asynchronous transfer:

– True: Further callbacks are to be expected.

– False: This is the last callback.

"OnShelve" method
Callback method is called when an active alarm was hidden.

The "OnShelve" callback method is called when the "IAlarmSet.Shelve" method is used.

CFRESULT OnShelve(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
● SystemError

[in]: Basic errors that occurred during the asynchronous transfer.

● AlarmSetResult
[in]: Points to an enumeration with the alarms of the callback

● MoreFollows
[in]: Status of the asynchronous transfer:

– True: Further callbacks are to be expected.

– False: This is the last callback.

"OnUnShelve" method
Callback method is called when an active alarm was displayed.

The "OnUnshelve" callback method is called when the "IAlarmSet.Unshelve" method is used.

CFRESULT OnUnshelve(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
● SystemError

[in]: Basic errors that occurred during the asynchronous transfer.

● AlarmSetResult
[in]: Points to an enumeration with the alarms of the callback

● MoreFollows
[in]: Status of the asynchronous transfer:

– True: Further callbacks are to be expected.

– False: This is the last callback.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1322 System Manual, 11/2019, Online help printout

Example
In the following section monitored active alarms of the "g_vecAlarmList" vector are
acknowledged asynchronously. To this purpose the "AcknowledgeAlarmAsync" function uses
a "CAlarmSourceCommandCB" object that implements the "IAlarmSourceCommandCallback"
interface and that uses the "COdkTagSourceCBBase" class. The service life of the
"CAlarmSourceCommandCB" object is determined via reference counting.

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList;

void AcknowledgeAlarmAsync(IRuntimePtr pRuntime)
{
 SubscribeAlarm(pRuntime);
 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSet"), &pUnk)))
 {
 IAlarmSetPtr pAlarmSet(pUnk);
 CAlarmSourceCommandCB* pAlarmSoureCommand = new CAlarmSourceCommandCB();
 pAlarmSoureCommand->AddRef();
 IAlarmSourceCommandCallback* pCB = pAlarmSoureCommand;
 if (g_vecAlarmList.size() > 0)
 {
 vector<AlarmAttributes>::iterator it = g_vecAlarmList.begin();
 // iterate through list of notified alarms and acknowledge each alarm
 while (it != g_vecAlarmList.end())
 {
 IAlarm* pAlarm = nullptr;
 CCfVariant vtAlarmName = it->m_strName;
 errCode = pAlarmSet->Add(vtAlarmName, &pAlarm);
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmSet", pRuntime);
 }
 it++;
 }
 // acknowledged the AlarmSet
 errCode = pAlarmSet->Acknowledge(pCB);
 // wait for acknowledge callback
 if (CF_SUCCEEDED(errCode) && pAlarmSoureCommand-
>WaitForcompletion(g_nMaxWaitTime) == CF_SUCCESS)
 {
 //Check if an alarm could not be acknowledged
 pAlarmSoureCommand->PrintError(pRuntime, L"Acknowledge");
 }
 g_vecAlarmList.clear();
 }
 }
}

See also
IAlarmSet (Page 1324)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1323

19.10.4.6 IAlarmSet (RT Uni)

Description
The C++ interface "IAlarmSet" specifies properties and methods for optimized access to
several active alarms of the Runtime system.

After initialization of the "IAlarmSet" object, you can execute asynchronous operations with
multiple alarms in one call, e. g. acknowledgment or commenting. Simultaneous access
demonstrates better performance and lower communication load than single access to multiple
alarms.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"GetCount" method
Return the number of alarms of an AlarmSet list.

CFRESULT GetCount(uint32_t *value)
value
[out]: Points to the value for the number of alarms of the AlarmSet list.

"Remove" method
Remove a single alarm or an instance of an alarm from an AlarmSet.

CFRESULT Remove(CFSTR name, uint32_t instanceId)
● name

[in]: Name of the alarm that is removed from the AlarmSet.

● instanceId
[in]:
Value = "0": Remove active alarm.
Value > "0": Remove instance with this ID.

"Add" method
Add an active alarm or instance of the alarm to an AlarmSet.

CFRESULT Add(
 CFVARIANT p_varName,

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1324 System Manual, 11/2019, Online help printout

 IAlarm** pAlarm,
 uint32_t instanceId)
● p_varName

[in]: Name of alarm tag that is added to the AlarmSet.

● pAlarm
[out]: Points to the added "IAlarm" object of the AlarmSet.

● instanceId
[in]:
Value = "0": Add active alarm.
Value > "0": Add instance with this ID.

"Get" method
Reference an alarm or an instance of an alarm from an AlarmSet.

CFRESULT Get(
 const CFSTR p_varName,
 IAlarm** pAlarm,
 uint32_t instanceId)
● p_varName

[in]: Name of the alarm tag.

● pAlarm
[out]: Points to the "IAlarm" object of the AlarmSet.

● instanceId
[in]:
Value = "0": Reference active alarm.
Value > "0": Reference instance with this ID.

"Disable" method
Deactivate generation of the alarms of the AlarmSet in the alarm source asynchronously.

CFRESULT Disable(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Enable" method
Reactivate generation of the alarms of the AlarmSet in the alarm source asynchronously.

CFRESULT Enable(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Shelve" method
Hide alarms of the AlarmSet asynchronously.

CFRESULT Shelve(IAlarmSourceCommandCallback* p_pCallback)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1325

p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Unshelve" method
Display hidden alarms of the AlarmSet once again.

CFRESULT Unshelve(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Acknowledge" method
Acknowledge alarms of the AlarmSet asynchronously.

CFRESULT Acknowledge(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Reset" method
Acknowledge outgoing state of the alarms of the AlarmSet asynchronously.

CFRESULT Reset(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Clear" method
Remove all alarms from an AlarmSet.

CFRESULT Clear()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1326 System Manual, 11/2019, Online help printout

Example
Remove active alarms from the "g_vecAlarmList" list as an AlarmSet asynchronously:

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList;
SubscribeAlarm(pRuntime);
 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSet"), &pUnk)))
 {
 IAlarmSetPtr pAlarmSet(pUnk);
 CAlarmSourceCommandCB* pAlarmSoureCommond = new CAlarmSourceCommandCB();
 pAlarmSoureCommond->AddRef();
 IAlarmSourceCommandCallback* pCB = pAlarmSoureCommond;
 if (g_vecAlarmList.size() > 0)
 {
 vector<AlarmAttributes>::iterator it = g_vecAlarmList.begin();
 // iterate through list of notified alarms and reset each alarm
 while (it != g_vecAlarmList.end())
 {
 IAlarm* palarm = nullptr;
 CCfVariant vtAlarmName = it->m_strName;
 errCode = pAlarmSet->Add(vtAlarmName, &palarm);
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmSet", pRuntime);
 }
 it++;
 }
 // Reset the AlarmSet
 errCode = pAlarmSet->Reset(pCB);
 if (CF_SUCCEEDED(errCode) && pAlarmSoureCommond-
>WaitForcompletion(g_nMaxWaitTime) == CF_SUCCESS)
 {
 //Check if an alarm could not be Reset
 pAlarmSoureCommond->PrintError(pRuntime, L"Reset");
 }
 g_vecAlarmList.clear();
 }
 }
}

See also
IAlarmSourceCommandCallback (Page 1320)

IAlarmSetResult (Page 1328)

IAlarmSetResultEnumerator (Page 1329)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1327

19.10.4.7 IAlarmSetResult (RT Uni)

Description
The C++ interface "IAlarmSetResult" specifies methods for accessing properties of monitored
alarms in AlarmSets.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"GetSystemName" method
Return system name of the Runtime system of an alarm in the AlarmSet.

CFRESULT GetSystemName(CFSTR *value)
value
[out]: Points to the associated system name.

"GetName" method
Return name of an alarm in the AlarmSet.

CFRESULT GetName(CFSTR *value)
value
[out]: Points to the name of an alarm.

"GetInstanceID" method
Return InstanceID of an alarm in the AlarmSet.

CFRESULT GetInstanceID(uint32_t *value)
value
[out]: Points to the InstanceID of an alarm

"GetErrorCode" method
Return error code of an alarm in the AlarmSet.

CFRESULT GetErrorCode(uint32_t *value)
value
[out]: Points to the error code of an alarm

See also
IAlarmSet (Page 1324)

IAlarmSetResultEnumerator (Page 1329)

IAlarmSubscription (Page 1338)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1328 System Manual, 11/2019, Online help printout

19.10.4.8 IAlarmSetResultEnumerator (RT Uni)

Description
The "IAlarmSetResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of monitored alarms of the Runtime system.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IAlarmSetResult **ppItem)
ppItem
[out]: Points to the current "IAlarmSetResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

See also
IAlarmSet (Page 1324)

IAlarmSetResult (Page 1328)

19.10.4.9 IAlarmTrigger (RT Uni)

Description
The C++ interface "AlarmTrigger" specifies methods for triggering alarms.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1329

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"CreateSystemAlarm" method
Generates an alarm of the class SystemAlarmWithoutClearEvent with the state machine alarm
without outgoing status with acknowledgment.

CFRESULT CreateSystemAlarm(
CFVARIANT alarmText,
CFSTR area,
CFVARIANT p_AlarmParameterValue1,
CFVARIANT p_AlarmParameterValue2,
CFVARIANT p_AlarmParameterValue3,
CFVARIANT p_AlarmParameterValue4,
CFVARIANT p_AlarmParameterValue5,
CFVARIANT p_AlarmParameterValue6,
CFVARIANT p_AlarmParameterValue7)
● alarmText

[in]: The alarm text. You have the following options:

– Transferring a text list of type "ITextList".
The list entries of the text list can contain the multilingual text or references to other text
lists.

Note
Only user-definedtext lists

This method processes only user-defined text lists.

– Transfer static string with monolingual text.

● area
[in]: The area of origin of the alarm

● p_AlarmParameterValue<Number>
[in]: User-defined comments

The alarm triggers an event with the following event path:

● For multilingual alarm
texts:
@ScriptingSystemEvents.SystemAlarmWithoutClearEvent:SystemAlarmWit
houtClearEvent

● For monolingual alarm
text:
@ScriptingSystemEvents.SystemAlarmWithoutClearEventText:SystemAlar
mWithoutClearEvent

"CreateSystemInformation" method
Generates an alarm of the class SystemInformation with the state machine alarm without
outgoing status without acknowledgment.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1330 System Manual, 11/2019, Online help printout

CFRESULT CreateSystemInformation(
CFVARIANT alarmText,
CFSTR area,
CFVARIANT p_AlarmParameterValue1,
CFVARIANT p_AlarmParameterValue2,
CFVARIANT p_AlarmParameterValue3,
CFVARIANT p_AlarmParameterValue4,
CFVARIANT p_AlarmParameterValue5,
CFVARIANT p_AlarmParameterValue6,
CFVARIANT p_AlarmParameterValue7)
● alarmText

[in]: The alarm text. You have the following options:

– Transferring a text list of the type "ITextList".
The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.

Note
Only user-definedtext lists

This method processes only user-defined text lists.

– Transfer static string with monolingual text.

● area
[in]: The area of origin of the alarm

● p_AlarmParameterValue<Number>
[in]: User-defined comments

The alarm triggers an event with the following event path:

● For multilingual alarm
texts: @ScriptingSystemEvents.SystemInformation:SystemInformation

● For monolingual alarm
text: @ScriptingSystemEvents.SystemInformationText:SystemInformation

"CreateOperatorInputInformation" method
Generates an alarm of the class OperatorInputInformation with the state machine alarm without
outgoing status without acknowledgment.

CFRESULT CreateOperatorInputInformation(
CFVARIANT alarmText,
CFSTR area,
CFVARIANT p_AlarmParameterValue1,
CFVARIANT p_AlarmParameterValue2,
CFVARIANT p_AlarmParameterValue3,
CFVARIANT p_AlarmParameterValue4,
CFVARIANT p_AlarmParameterValue5,

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1331

CFVARIANT p_AlarmParameterValue6,
CFVARIANT p_AlarmParameterValue7)
● alarmText

[in]: The alarm text. You have the following options:

– Transferring a text list of the type "ITextList".
The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.

Note
Only user-definedtext lists

This method processes only user-defined text lists.

– Transfer static string with monolingual text.

● area
[in]: The area of origin of the alarm

● p_AlarmParameterValue<Number>
[in]: User-defined comments

The alarm triggers an event with the following event path:

● For multilingual alarm
texts:
@ScriptingSystemEvents.OperatorInputInformationText:OperatorInputI
nformation

● For monolingual alarm
text:
@ScriptingSystemEvents.OperatorInputInformationText:OperatorInputI
nformation

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1332 System Manual, 11/2019, Online help printout

Example
The following code examples show how to trigger alarms of the class
SystemAlarmWithoutClearEvent. Alarms of the classes SystemInformation and
OperatorInputInformation are triggered in the same way.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1333

Copying code
void CreateSystemAlarm(IRuntimePtr pRuntime)
{
 //Create SystemAlarm with monolingual alarm text
 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk)))
 {
 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback* pCB = pAlarmValue;
 CCfSafeArrayBound bounds(1UL, 0);
 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);
 CCfSmartString strFilter = L"AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);
 errCode = pAlarm->Start(pCB);
 if (CF_SUCCEEDED(errCode))
 {
 ICfUnknownPtr pUnktrig;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmTrigger"), &pUnktrig)))
 {
 IAlarmTriggerPtr pTrigger(pUnktrig);
 if (pTrigger != nullptr)
 {
 errCode = pTrigger->CreateSystemAlarm(CCfVariant(L"Alarm Text"),
CCfString(L"Alarm Area"), CCfVariant(L"param1"), CCfVariant(L"param2"),
CCfVariant(L"param3"), CCfVariant(L"param4"), CCfVariant(L"param5"), CCfVariant("param6"),
CCfVariant("param7"));
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmTrigger", pRuntime);
 }
 }
 }
 }
 // Wait for alarm nofications
 if (CF_SUCCEEDED(errCode) && pAlarmValue->WaitForcompletion(g_nMaxWaitTime) ==
CF_SUCCESS)
 {
 errCode = pAlarm->Stop();
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmSubscription", pRuntime);
 }
 pAlarmValue->Release();

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1334 System Manual, 11/2019, Online help printout

Copying code
 }
 }
}

void CreateSystemAlarmWithAlarmTextAsTextList(IRuntimePtr pRuntime)
{
 //Create SystemAlarm with multilingual alarm text; the tranlsations are directly stored
in the text list
 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk)))
 {
 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback* pCB = pAlarmValue;
 CCfSafeArrayBound bounds(1UL, 0);
 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);
 CCfSmartString strFilter = L"AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);
 errCode = pAlarm->Start(pCB);
 if (CF_SUCCEEDED(errCode))
 {
 ICfUnknownPtr pUnktrig;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmTrigger"), &pUnktrig)))
 {
 IAlarmTriggerPtr pTrigger(pUnktrig);
 if (pTrigger != nullptr)
 {
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString("TextList"), &pUnktrig)))
 {
 ITextListPtr ptextList(pUnktrig);
 if (nullptr != ptextList)
 {
 ptextList->SetName(CCfString(L"AlarmTextTemplate"));
 ptextList->SetTextListEntryIndex(101);
 errCode = pTrigger->CreateSystemAlarm(CCfVariant(ptextList),
CCfString(L"Alarm Area"), CCfVariant(L"param1"), CCfVariant(L"param2"),
CCfVariant(L"param3"), CCfVariant(L"param4"), CCfVariant(L"param5"), CCfVariant("param6"),
CCfVariant("param7"));
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmTrigger", pRuntime);
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1335

Copying code
 }
 }
 }
 }
 // Wait for alarm nofications
 if (CF_SUCCEEDED(errCode) && pAlarmValue->WaitForcompletion(g_nMaxWaitTime) ==
CF_SUCCESS)
 {
 errCode = pAlarm->Stop();
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmSubscription", pRuntime);
 }
 pAlarmValue->Release();
 }
 }
}

void CreateSystemAlarmWithTextListAsParameterValue(IRuntimePtr pRuntime)
{
 //
Create SystemAlarm with multilingual alarm text; the text list references other text lists
with tranlsations
 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk)))
 {
 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback* pCB = pAlarmValue;
 CCfSafeArrayBound bounds(1UL, 0);
 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);
 CCfSmartString strFilter = L"AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);
 errCode = pAlarm->Start(pCB);
 if (CF_SUCCEEDED(errCode))
 {
 ICfUnknownPtr pUnktrig;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmTrigger"), &pUnktrig)))
 {
 IAlarmTriggerPtr pTrigger(pUnktrig);
 if (pTrigger != nullptr)
 {
 ICfUnknownPtr pUnktextList, pUnktextList1;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1336 System Manual, 11/2019, Online help printout

Copying code
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString("TextList"),
&pUnktextList)) && CF_SUCCEEDED(pRuntime->GetObject(CCfString("TextList"),
&pUnktextList1)))
 {
 ITextListPtr pTextList_1(pUnktextList);
 if (nullptr != pTextList_1)
 {
 pTextList_1->SetName(CCfString(L"Text_List_2"));
 pTextList_1->SetTextListEntryIndex(1); //Eng TL @1%t#2T@ Val: @3%s@
 }
 ITextListPtr pTextList_2(pUnktextList1);
 if (nullptr != pTextList_2)
 {
 pTextList_2->SetName(CCfString(L"Text_List_2"));
 }
 errCode = pTrigger->CreateSystemAlarm(CCfVariant(pTextList_1),
CCfString(L"Alarm Area"),
 CCfVariant(1), // Index for Text_list_2
 CCfVariant(pTextList_2), // text list object
 CCfVariant(L"Hello"), // Dynamic value of @3%s@
 CCfVariant(), CCfVariant(), CCfVariant(), CCfVariant());
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmTrigger", pRuntime);
 }
 }
 }
 }
 }
 // Wait for alarm nofications
 if (CF_SUCCEEDED(errCode) && pAlarmValue->WaitForcompletion(g_nMaxWaitTime) ==
CF_SUCCESS)
 {
 errCode = pAlarm->Stop();
 if (CF_FAILED(errCode))
 {
 PrintErrorInformation(errCode, L"AlarmSubscription", pRuntime);
 }
 pAlarmValue->Release();
 }
 }
}

19.10.4.10 ITextList (RT Uni)

Description
The C++ interface "ITextList" is used to transfer multilingual alarm texts for system alarms and
operator input alarms. See section IAlarmTrigger (Page 1329), CreateSystemInformation
method. An ITextList instance is passed to the alarm text. When the operator input alarm is
generated, it is replaced by the configured text from the text list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1337

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members

"GetName" method
Returns the name of the text list.

GetName(CFSTR* name)
● name:

[out]: The name

"SetName" method
Set the name of the text list.

SetName(CFSTR name)
● name:

[in]: The name

"GetTextListEntryIndex" method
Return the index of the list entry.

GetTextListEntryIndex)(OUT uint32_t* pIndex)
● pIndex

[out]: The index

"SetTextListEntryIndex" method
Set the index of the list entry.

SetTextListEntryIndex)(IN uint32_t pIndex)
● pIndex

[in]: The index

19.10.4.11 IAlarmSubscription (RT Uni)

Description
The C++ interface "IAlarmSubscription" specifies methods for monitoring tags of the Runtime
system. The subscribed tags are monitored for a change of alarm state.

Members
The following methods are specified in the interface:

"Start" method
Start monitoring of active alarms.

CFRESULT Start(IAlarmCallback* callbackPtr)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1338 System Manual, 11/2019, Online help printout

callbackPtr
[in/out]: Points to an "IAlarmCallback" object that implements the asynchronous monitoring.

"Stop" method
Stop monitoring of active alarms.

Note
Start and Stop in Windows Forms applications

Do not call the "Stop" method for a Windows Forms application in the same thread where you
called "Start".

CFRESULT Stop()

"SetSystemNames" method
Set system names of Runtime systems for monitoring of active alarms.

CFRESULT SetSystemNames(CFVARIANT systemIDs)
systemIDs
[in]: System names of Runtime systems

"GetSystemNames" method
Read out system names of Runtime systems for monitoring of active alarms.

CFRESULT GetSystemNames(CFVARIANT* systemIDs)
systemIDs
[out]: Points to system names of Runtime systems.

"SetLanguage" method
Set country identification of the language for monitored alarms.

CFRESULT SetLanguage(uint32_t language)
language
[in]: Country identification of the language

"GetLanguage" method
Read out country identification of the language for monitored alarms.

CFRESULT GetLanguage(uint32_t* language)
language
[out]: Points to country identification of the language.

"GetFilter" method
Supplies the string by which the result set is filtered.

CFRESULT GetFilter(CFSTR* filter)
● filter

[out]: SQL-type string for filtering the result set of active alarms.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1339

"SetFilter" method
Sets the string for filtering the result set of active alarms.

CFRESULT SetFilter(IN CFSTR filter)
● filter

[in]: SQL-type string for filtering the result set of active alarms.
All properties of an alarm can be used in the filter string. The filter string can contain
operators. Refer to the section Syntax of the alarm filter (Page 1084).

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1340 System Manual, 11/2019, Online help printout

Example
In the following section monitored active alarms are written asynchronously into the
"g_vecAlarmList" map at a change. To this purpose the "SubscribeAlarm" function uses a
"CAlarmValue" object that implements the "IAlarmCallback" interface and that uses the
"COdkTagSourceCBBase" class. The service life of the "CAlarmValue" object is determined
via reference counting.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1341

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList;

void SubscribeAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk)))
 {
 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback *pCB = pAlarmValue;

 CCfSafeArrayBound bounds(1UL, 0);

 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;

 CCfSmartString daFilter = L"";

 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);

 CCfVariant daLanguage = 1033;
 CFRESULT errCode;

 daSystemID.Detach(&vSystemIDs);

 CCfSmartString strFilter = L"";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);

 errCode = pAlarm->Start(pCB);
 if (errCode == CF_SUCCESS)
 {
 std::wcout<< "Subscription Success"<<endl;
 }

 // Wait for alarm nofications
 if (pAlarmValue->WaitForcompletion(g_nMaxWaitTime) == CF_SUCCESS)
 {
 errCode = pAlarm->Stop();
 if (CF_FAILED(errCode))
 {
 std::wcout << "CancelSubscribe failed" << endl;
 PrintErrorInformation(errCode, L"CancelSubscribe", pRuntime);
 }

 // Get current alarms from callback
 pAlarmValue->GetAlarmAttributes(g_vecAlarmList);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1342 System Manual, 11/2019, Online help printout

Copy code
 }
 }
}

See also
IAlarmResult (Page 1302)

IAlarmCallback (Page 1316)

IAlarmSetResult (Page 1328)

19.10.4.12 ILoggedAlarmResult (RT Uni)

Description
The C++ interface "ILoggedAlarmResult" specifies methods for accessing properties of logged
alarms of a logging system.

An "ILoggedAlarmResult" object is a pure data object that maps all properties of a logged alarm.

Members
The following methods are specified in the interface:

"GetInstanceID" method
Return InstanceID of a logged alarm.

CFRESULT GetInstanceID(uint32_t *value)
value
[out]: Points to the InstanceID of the logged alarm.

"GetName" method
Return name of the logged alarm.

CFRESULT GetName(CFSTR *value)
value
[out]: Points to the name of the logged alarm.

"GetAlarmClassName" method
Return name of the alarm class.

CFRESULT GetAlarmClassName(CFSTR *value)
value
[out]: Points to the symbol of the alarm class of the logged alarm.

"GetAlarmClassSymbol" method
Return symbol of the alarm class

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1343

CFRESULT GetAlarmClassSymbol(CFSTR *value)
value
[out]: Points to the name of the alarm class of the logged alarm.

"GetState" method
Return alarm state of the logged alarm.

CFRESULT GetState(int32_t* *value)
value
[out]: Points to the alarm state.

"GetStateText" method
Return alarm state of the logged alarm as text, for example "Incoming" or "Outgoing".

CFRESULT GetStateText(CFSTR *value)
value
[out]: Points to the alarm state as text.

"GetEventText" method
Return text that describes the alarm event of the logged alarm.

CFRESULT GetEventText(CFSTR *value)
value
[out]: Points to the text that describes the alarm event.

"GetAlarmText1GetAlarmText9" method
Return alarm texts 1-9 of the logged alarm.

CFRESULT GetAlarmText1(CFSTR *value)
…

CFRESULT GetAlarmText9(CFSTR *value)
value
[out]: Points to the additional text of the logged alarm.

"GetTextColor" method
Return text color of the alarm state of the logged alarm.

CFRESULT GetTextColor(uint32_t *value)
value
[out]: Points to the text color of the alarm state.

"GetBackColor" method
Return background color of the alarm state of the logged alarm.

CFRESULT GetBackColor(uint32_t *value)
value
[out]: Points to the background color of the alarm state.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1344 System Manual, 11/2019, Online help printout

"GetFlashing" method
Return flashing background color of the alarm state of the logged alarm.

CFRESULT GetFlashing(CFBOOL *value)
value
[out]: Points to the flashing background color of the alarm state.

"GetModificationTime" method
Time of the last change of the alarm state of the logged alarm.

CFRESULT GetModificationTime(CFDATETIME64 *value)
value
[out]: Points to the time of the last change of the alarm state.

"GetChangeReason" method
Return trigger event for the change of the alarm state of the logged alarm.

CFRESULT GetChangeReason(uint16_t *value)
value
[out]: Points to the trigger event for the change of the alarm state.

"GetRaiseTime" method
Return time at which the logged alarm was triggered.

CFRESULT GetRaiseTime(CFDATETIME64 *value)
value
[out]: Points to the time of the logged alarm trigger.

"GetAcknowledgementTime" method
Return time at which the logged alarm was acknowledged.

CFRESULT GetAcknowledgementTime(CFDATETIME64 *value)
value
[out]: Points to the time of the logged alarm acknowledgment.

"GetClearTime" method
Return time at which the logged alarm was cleared.

CFRESULT GetClearTime(CFDATETIME64 *value)
value
[out]: Points to the time of the logged alarm clearing.

"GetResetTime" method
Return time at which the logged alarm was reset.

CFRESULT GetResetTime(CFDATETIME64 *value)
value
[out]: Points to the time of the logged alarm reset.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1345

"GetSuppressionState" method
Return status of the visibility of the logged alarm.

CFRESULT GetSuppressionState(uint8_t *value)
value
[out]: Points to the status of the visibility of the logged alarm.

"GetPriority" method
Return relevance for display and sorting of the logged alarm.

CFRESULT GetPriority(uint8_t *value)
value
[out]: Points to the relevance of the logged alarm.

"GetOrigin" method
Return origin for display and sorting of the logged alarm.

CFRESULT GetOrigin(CFSTR *value)
value
[out]: Points to the origin of the logged alarm.

"GetArea" method
Return origin area for display and sorting of the logged alarm.

CFRESULT GetArea(CFSTR *value)
value
[out]: Points to the origin area of the logged alarm.

"GetValue" method
Return process value of the logged alarm.

CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the logged alarm.

"GetValueQuality" method
Return quality of the process value of the logged alarm.

CFRESULT GetValueQuality(uint16_t *value)
value
[out]: Points to the quality of the process value of the logged alarm.

"GetValueLimit" method
Return limit of the process value of the logged alarm.

CFRESULT GetValueLimit(CFVARIANT *value)
value
[out]: Points to the limit of the process value of the logged alarm.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1346 System Manual, 11/2019, Online help printout

"GetUserName" method
Return user name of the logged operator input alarm.

CFRESULT GetUserName(CFSTR *value)
value
[out]: Points to the user name of the logged operator input alarm.

"GetLoopInAlarm" method
Return function that navigates from the alarm view to its origin.

CFRESULT GetLoopInAlarm(CFSTR *value)
value
[out]: Points to the function name that navigates to the origin of the logged alarm.

"GetAlarmParameterValues" method
Return parameter values of the logged alarm.

CFRESULT GetAlarmParameterValues(CFVARIANT *value)
value
[out]: Points to the parameter values of the logged alarm.

"GetInvalidFlags" method
Return marking of the logged alarm with invalid data.

CFRESULT GetInvalidFlags(uint8_t *value)
value
[out]: Points to the invalid data of the logged alarm.

"GetConnection" method
Return connection via which the logged alarm was triggered.

CFRESULT GetConnection CFSTR *value)
value
[out]: Points to the connection of the logged alarm.

"GetSystemSeverity" method
Return severity of the system error.

CFRESULT GetSystemSeverity(uint8_t *value)
value
[out]: Points to the severity of the system error.

"GetUserResponse" method
Return expected or required user response to the logged alarm.

CFRESULT GetUserResponse(uint8_t *value)
value
[out]: Points to the expected or required user response to the logged alarm.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1347

"GetDeadBand" method
Return range of the triggering tag in which no alarms are generated.

CFRESULT GetDeadBand(CFVARIANT *value)
value
[out]: Points to the DeadBand of the logged alarm.

"GetHostName" method
Return name of the host that triggered the alarm.

CFRESULT GetHostName(CFSTR *value)
value
[out]: Points to host name.

"GetInfoText" method
Return text for the alarm that contains the associated work instruction.

CFRESULT GetInfoText(CFSTR *value)
value
[out]: Points to the text of the operator instruction.

"GetStateMachine" method
Return StateMachine model of the alarm. The StateMachine represents the behavior of alarms
through arrangement of alarm states and alarm events, e.g. "RaiseClear",
"RaiseRequiresAcknowledgment" or "RaiseClearOptionalAcknowledgment".

CFRESULT GetStateMachine(uint8_t *value)
value
[out]: Shows the model of the StateMachine of the logged alarm.

"GetSingleAcknowledgement" method
Returns whether an alarm may be acknowledged only individually or may be acknowledged as
a group or multiple selection.

CFRESULT GetSingleAcknowledgement(CFBOOL *value)
value
[out]: Points to the acknowledgement specification.

"GetLoggedAlarmStateObjectID" method
Return ID of alarm state for referencing within the logging system.

CFRESULT GetLoggedAlarmStateObjectID(CFSTR *value)
value
[out]: Points to the ID of the alarm state of the logged alarm.

"GetID" method
Return user-defined ID of the alarm that is also used in the display.

CFRESULT GetID(uint32_t *value)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1348 System Manual, 11/2019, Online help printout

value
[out]: Points to the ID of the logged alarm.

"GetSourceType" method
Return source from which the alarm was generated, e.g. tag-based, controller-based or system-
based alarm.

CFRESULT GetSourceType(uint16_t *value)
value
[out]: Points to the type of source of the logged alarm.

See also
ILoggedAlarmResultEnumerator (Page 1349)

IAlarmLogging (Page 1350)

IAlarmLoggingSubscription (Page 1354)

19.10.4.13 ILoggedAlarmResultEnumerator (RT Uni)

Description
The "ILoggedAlarmResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of logged alarms of a logging system. Through the enumeration you
access individual alarms from the set of logged alarm of a logging system.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(ILoggedAlarmResult **ppItem)
ppItem
[out]: Points to the current "ILoggedAlarmResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1349

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

See also
ILoggedAlarmResult (Page 1343)

IAlarmLogging (Page 1350)

19.10.4.14 IAlarmLogging (RT Uni)

Description
The C++ interface "IAlarmLogging" specifies methods for reading out logged alarms of a
logging system.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"Read" method
Read out logged alarms of a time period synchronously from logging system.

CFRESULT Read(
 CFDATETIME64 begin,
 CFDATETIME64 end,
 CFSTR filter,
 uint32_t language,
 CFVARIANT systemIDs,
 ILoggedAlarmResultEnumerator **ppEnumerator)
● begin

[in]: Start date of the time period

● end
[in]: End date of the time period

● filter
[in]: Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.

● language
[in]: Country identification of the language of the logged alarm text

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1350 System Manual, 11/2019, Online help printout

● systemIDs
[in]: System names of the Runtime systems of the logged alarms. Default: local system

● ppEnumerator
[out]: Points to the logged alarms as an "ILoggedAlarmResultEnumerator" object.

"ReadAsync" method
Read out logged alarms of a time period asynchronously from logging system.

CFRESULT ReadAsync(
 CFDATETIME64 begin,
 CFDATETIME64 end,
 CFSTR filter,
 uint32_t language,
 CFVARIANT systemIDs,
 IAlarmLoggingCallback *pLoggedAlarmCb)
● begin

[in]: Start date of the time period

● end
[in]: End date of the time period

● filter
[in]: Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.

● language
[in]: Country identification of the language of the logged alarm text

● systemIDs
[in]: System names of the Runtime systems of the logged alarms. Default: local system

● pLoggedAlarmCb
[in]: Points to the "IAlarmLoggingCallback" object that implements the callback interface.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1351

Example
Read historical alarms synchronously from the logging system:

Copy code
void LoggingReadAlarmSync(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"LoggedAlarm"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 CCfVariant vSystemIDs = 0;
 CFSAFEARRAYBOUND* bounds = nullptr;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, bounds);
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);

 IAlarmLoggingPtr pAlarm(pUnk);

 CCfDateTime64 begin, end;
 begin = CCfDateTime64::Now(true);
 end = begin;
 begin.SubtractTimeSpan(Get1Minute() * 3);

 ILoggedAlarmResultEnumeratorPtr pItems;
 // Read value of tag
 errCode = pAlarm->Read(begin, end, CCfString(""), 1033, vSystemIDs, &pItems);

 if (pItems != nullptr && CF_SUCCEEDED(errCode))
 {
 std::wcout << "Read finished " << std::endl;
 PrintValues(pItems);
 }
 else
 {
 std::wcout << L"Read operation failed." << std::endl;
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 }
}

See also
ILoggedAlarmResult (Page 1343)

ILoggedAlarmResultEnumerator (Page 1349)

IAlarmLoggingCallback (Page 1353)

IAlarmLoggingSubscription (Page 1354)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1352 System Manual, 11/2019, Online help printout

19.10.4.15 IAlarmLoggingCallback (RT Uni)

Description
The C++ interface "IAlarmLoggingCallback" defines methods for implementing asynchronous
operations for monitoring active alarms. The methods are used by the "IAlarmLogging" and
"IAlarmLoggingSubscription" interfaces.

All the methods return CF_SUCCESS after execution.

Members
The following methods are specified in the "IAlarmCallback" interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations in logging systems.

The "OnReadComplete" callback method is called when the "IAlarmLogging.ReadAsync"
method is used.

CFRESULT OnReadComplete(ILoggedAlarmResultEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
● pEnumerator

[out]: Points to an "ILoggegAlarmResultEnumerator" object that contains the enumeration
of the logged alarms.

● errorCode
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the logged alarms.

"OnDataChanged" method
Callback method is called upon a change of a monitored alarm in logging systems.

The "OnDataChanged" callback method is called when the "IAlarmLoggingSubscription.Start"
method is used.

CFRESULT OnDataChanged(ILoggedAlarmResultEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
● pEnumerator

[out]: Points to an "ILoggegAlarmResultEnumerator" object that contains the enumeration
of the logged alarms.

● errorCode
[out]: Error code for the asynchronous operation

● contextId
[out]: ContextID as additional identification feature of the logged alarms.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1353

See also
IAlarmLogging (Page 1350)

IAlarmLoggingSubscription (Page 1354)

19.10.4.16 IAlarmLoggingSubscription (RT Uni)

Description
The C++ interface "IAlarmLoggingSubscription" specifies methods for monitoring logged
alarms of an archive system.

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetFilter" method
Set SQL-like string for filtering the result set of the logged alarms.

CFRESULT SetFilter(CFSTR filter)
filter
[in]: Filter string for logged alarms

"SetLanguage" method
Set country identifier of the language for monitoring of logged alarms.

CFRESULT SetLanguage(uint32_t language)
language
[in]: Country identification of the language

"SetSystemName" method
Set system names of Runtime systems for monitoring of logged alarms.

CFRESULT SetSystemName(CFVARIANT systemIDs)
systemIDs
[in]: System name of Runtime systems

"Start" method
Start monitoring of logged alarms.

CFRESULT Start(IAlarmLoggingCallback* pLoggedAlarmCb)
● filter

[in]: Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.

● pLoggedAlramCb
[in/out]: Points to an "IAlarmLoggingCallback" object that implements asynchronous
monitoring.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1354 System Manual, 11/2019, Online help printout

"Stop" method
Stop monitoring of all logged alarms.

CFRESULT Stop()

Example
Monitoring logged alarms. The values are returned by the "IAlarmLoggingCallback" object:

Copy code
void LoggingSubscribeAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"LoggedAlarmSubscribtion"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 CCfVariant vSystemIDs = 0;
 CFSAFEARRAYBOUND* bounds = nullptr;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, bounds);
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);

 IAlarmLoggingSubscriptionPtr pAlarm(pUnk);
 pAlarm->SetSystemName(vSystemIDs);
 pAlarm->SetLanguage(1033);

 COdkAlarmLoggingCB* pAlarmCB = new COdkAlarmLoggingCB();

 if (pAlarmCB != nullptr && CF_SUCCEEDED(errCode))
 {
 pAlarmCB->AddRef();

 // subscribe tags
 errCode = pAlarm->Start(pAlarmCB);
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Error, couldn't create callback interface." << std::endl;
 PrintErrorInformation(errCode, L"Start", pRuntime);
 }
 }
 }
 else
 {
 std::wcout << L"Error, couldn't create ODK object." << std::endl;
 PrintErrorInformation(errCode, L"GetObject", pRuntime);
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1355

See also
IAlarmLogging (Page 1350)

IAlarmLoggingCallback (Page 1353)

ILoggedAlarmResult (Page 1343)

19.10.5 Interfaces for connections (RT Uni)

19.10.5.1 IConnectionResult (RT Uni)

Description
The C++ interface "IConnectionResult" provides methods for access to the details of
connections.

Members
The following methods are specified in the interface:

"GetName" method
Return name of the connection.

CFRESULT GetName(CFSTR *pName)
pName
[out]: Points to the name of the connection.

"GetConnectionState" method
Return status of the connection.

CFRESULT GetConnectionState(CFENUM *pConnectionState)
pConnectionState
[out]: Points to the enumeration, which can contain the following values:

● Disabled (0)

● Connecting (1)

● Connected (2)

● Disconnecting (3)

● Disconnected (4)

● Reconnecting (5)

"GetEstablishmentMode" method
Return mode in which the connection is established.

CFRESULT GetEstablishmentMode(CFENUM *pEstablishmentMode)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1356 System Manual, 11/2019, Online help printout

pEstablishmentMode
[out]: Points to the enumeration, which can contain the following values:

● None (0)

● AutomaticActive (1)

● AutomaticPassive (2)

● OnDemandActive (3)

● OnDemandPassive (4)

"GetTimeSynchronizationMode" method
Mode of time synchronization between HMI system and AS.

CFRESULT GetTimeSynchronizationMode(CFENUM
*pTimeSynchronizationMode)
pTimeSynchronizationMode
[out]: Points to the enumeration, which can contain the following values:

● None (0)

● Slave (1)

● Master (2)

"GetDisabledAtStartup" method
Indicates whether the connection is disabled at the start of Runtime.

CFRESULT GetDisabledAtStartup(CFBOOL *pDisabledAtStartup)
pDisabledAtStartup
[out]: Points to a Boolean value.

"GetEnabled" method
Indicates whether the connection is active.

CFRESULT GetEnabled(CFBOOL *pEnabled)
pbEnabled
[out]: Points to a Boolean value.

"GetConnectionType" method
Return protocol of a communication driver, e.g. "S7 Classic".

CFRESULT GetConnectionType(CFSTR *pConnectionType)
pConnectionType
[out]: Points to the name of the protocol.

"GetError" method
Return error code of the connection.

CFRESULT GetError(uint32_t *pError)
pError
[out]: Points to the error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1357

Example
Output connection details:

Copy code
void DisplayConnectionInfo(IConnectionResultPtr pConnectionresult)
{
 if (nullptr != pConnectionresult)
 {
 CCfString strName;
 pConnectionresult->GetName(&strName);
 std::cout << "ConnectionName:" << strName.ToUTF8() << std::endl;

 CCfString strConnectiontype;
 pConnectionresult->GetConnectionType(&strConnectiontype);
 std::cout << "ConnectionType:" << strConnectiontype.ToUTF8() << std::endl;

 CFENUM enConnectionState;
 pConnectionresult->GetConnectionState(&enConnectionState);
 HmiConnectionState enumconnectionState =
static_cast<HmiConnectionState>(enConnectionState);

 ConnectionState(enumconnectionState);
 CFENUM enEstablishmentMode;
 pConnectionresult->GetEstablishmentMode(&enEstablishmentMode);
 HmiConnectionEstablishmentMode enumEstablishmentMode =
static_cast<HmiConnectionEstablishmentMode>(enEstablishmentMode);
 Establishmentmode(enumEstablishmentMode);

 CFENUM enTimeSynchronizationMode;
 pConnectionresult->GetTimeSynchronizationMode(&enTimeSynchronizationMode);
 HmiTimeSynchronizationMode enumTimeSynchronizationMode =
static_cast<HmiTimeSynchronizationMode>(enTimeSynchronizationMode);
 TimeSynchronizationmode(enumTimeSynchronizationMode);

 CFBOOL bDisableatStartup;
 pConnectionresult->GetDisabledAtStartup(&bDisableatStartup);
 std::cout << "DisableStartup:" << (int)bDisableatStartup << std::endl;

 CFBOOL bEnabled;
 pConnectionresult->GetEnabled(&bEnabled);
 std::cout << "Enabled:" << (int)bEnabled << std::endl;

 uint32_t nerror;
 pConnectionresult->GetError(&nerror);
 std::cout << "Error:" << nerror << std::endl;
 }
 std::cout << std::endl;
}

See also
IConnection (Page 1364)

IConnectionResultEnumerator (Page 1359)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1358 System Manual, 11/2019, Online help printout

19.10.5.2 IConnectionResultEnumerator (RT Uni)

Description
The "IConnectionResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of connection details of the Runtime system. The enumeration is
used, for example, when reading out connections of a connection set.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IConnectionResult **ppItem)
ppItem
[out]: Points to the current "IConnectionResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *pCount)
pCount
[out]: Points to the value for the number of elements of the list.

See also
IConnectionResult (Page 1356)

IConnectionSet (Page 1370)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1359

19.10.5.3 IConnectionStatusResult (RT Uni)

Description
The C++ interface "IConnectionStatusResult" provides methods for access to the status of
connections.

Members
The following methods are specified in the interface:

"GetName" method
Return name of the connection.

CFRESULT GetName(CFSTR *pName)
pName
[out]: Points to the name of the connection.

"GetConnectionStatus" method
Return status of the connection.

CFRESULT GetConnectionStatus(CFENUM *pConnectionStatus)
pConnectionStatus
[out]: Points to the enumeration, which can contain the following values:

● Disabled (0)

● Connecting (1)

● Connected (2)

● Disconnecting (3)

● Disconnected (4)

● Reconnecting (5)

"GetError" method
Return error code of the connection.

CFRESULT GetError(uint32_t *pError)
pError
[out]: Points to the error code.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1360 System Manual, 11/2019, Online help printout

Example
Output status of a certain connection:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1361

Copy code
void ConnectionSet_GetConnectionState(IRuntimePtr pRuntime)
{
 std::cout << "ConnectionSet_GetConnectionState Start" << std::endl;
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;
 CFRESULT errorCode = pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 if (pUnk != nullptr && CF_SUCCEEDED(errorCode))
 {
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfSmartString strName(L"HMI-Connection");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 hr = pConnectionsetPtr->Add(connectionNames);

 if (nullptr != pConnectionsetPtr)
 {
 IConnectionStatusResultEnumeratorPtr pConnectionStatusResultEnum;
 IConnectionStatusResultPtr pConnectionStatusresult;
 errorCode = pConnectionsetPtr->GetConnectionState(&pConnectionStatusResultEnum);
 if (CF_SUCCEEDED(errorCode))
 {
 uint32_t nCount;
 pConnectionStatusResultEnum->Count(&nCount);
 for (int32_t i = 0; i < nCount; i++)
 {
 pConnectionStatusResultEnum->MoveNext();
 if (CF_SUCCEEDED(pConnectionStatusResultEnum-
>Current(&pConnectionStatusresult)))
 {
 if (nullptr != pConnectionStatusresult)
 {
 CCfString strName;
 pConnectionStatusresult->GetName(&strName);
 std::cout << "ConnectionName:" << strName.ToUTF8() << std::endl;
 uint32_t nerror;
 pConnectionStatusresult->GetError(&nerror);
 std::cout << "Error:" << nerror << std::endl;
 CFENUM enConnectionState;
 pConnectionStatusresult->GetConnectionStatus(&enConnectionState);
 HmiConnectionState enumconnectionState =
static_cast<HmiConnectionState>(enConnectionState);
 ConnectionState(enumconnectionState);
 }
 }
 }
 }
 else
 {
 std::cout << L" ConnectionSet_GetConnectionState failed." << "errCode = "
<< errorCode << std::endl;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1362 System Manual, 11/2019, Online help printout

Copy code
 }
 }
 std::cout << std::endl;
}

See also
IConnection (Page 1364)

IConnectionStatusResultEnumerator (Page 1363)

19.10.5.4 IConnectionStatusResultEnumerator (RT Uni)

Description
The "IConnectionStatusResultEnumerator" interface is a C++ interface that specifies methods
for handling the enumeration of connection status of the Runtime system. The enumeration is
used, for example, when reading out connections of a connection set.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.

CFRESULT Current(IConnectionStatusResult **ppItem)
ppItem
[out]: Points to the current "IConnectionStatusResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.

CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.

CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.

CFRESULT Count(uint32_t *pCount)
pCount
[out]: Points to the value for the number of elements of the list.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1363

See also
IConnectionStatusResult (Page 1360)

IConnectionSet (Page 1370)

19.10.5.5 IConnection (RT Uni)

Description
The C++ interface "IConnection" provides properties and methods for access to a connection.

Members
The following methods are specified in the interface:

"GetName" method
Return name of the connection.

CFRESULT GetName(CFSTR *pName)
pName
[out]: Points to the name of the connection.

"SetName" method
Change name of the connection.

CFRESULT SetName(CFSTR name)
name
[in]: Name of the connection

"Read" method
Read connection details synchronously from the Runtime system.

CFRESULT Read(IConnectionResult **ppConnectionResult)
ppConnectionResult
[out]: Points to an object of type "IConnectionResult" that contains the connection details.

"GetConnectionState" method
Return connection status of a connection.

CFRESULT GetConnectionState(IConnectionStatusResult
**ppConnectionStatusResult)
ppConnectionStatusResult
[out]: Points to an object of type "IConnectionStatusResult" that contains the status of
connections.

"SetConnectionMode" method
Change connection status of a connection.

CFRESULT SetConnectionMode(CFENUM connectionmode)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1364 System Manual, 11/2019, Online help printout

connectionmode
[in]: Enumeration which contains the mode of connections:

● Disabled (0)

● Enabled (1)

Examples
Change status of a connection:

Copy code
void Connection_SetConnectionState(IRuntimePtr pRuntime, ConnectionMode connectionMode)
{
 std::cout << "Connection_SetConnectionState Start :" << std::endl;
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"Connection"), &pUnk)))
 {
 IConnectionPtr pConnection(pUnk);

 CCfSmartString daName = L"HMI-Connection";
 pConnection->SetName(daName.AllocCFSTR());
 CFRESULT hr = pConnection->SetConnectionMode(int32_t(connectionMode));
 if(CF_SUCCEEDED(hr))
 std::cout << "Connection_SetConnectionState Succeeded" << std::endl;
 else
 {
 std::cout << "Connection_SetConnectionState failed" << std::endl;
 }
 }
 std::cout << std::endl;
}

See also
IConnectionResult (Page 1356)

IConnectionStatusResult (Page 1360)

IConnectionSet (Page 1370)

19.10.5.6 IConnectionReadNotification (RT Uni)

Description
The C++ interface "IConnectionReadNotification" defines a callback method for
implementation of operations following read operations of connections.

Members
The following method is specified in the interface:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1365

"OnReadComplete" method
Callback method is called following read operations of connections.

The "OnReadComplete" callback method is called when the IConnectionSet.ReadAsync
method is used.

CFRESULT OnReadComplete(IConnectionResultEnumerator *pEnumerator,
uint32_t errorCode, int32_t contextId)
● pEnumerator

[out]: Points to an "IConnectionResultEnumerator" object that contains the enumeration of
the connection details.

● errorCode
[out]: Error code for the asynchronous operation.

● contextId
[out]: ContextID as additional identification feature of the connections.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1366 System Manual, 11/2019, Online help printout

Example
Read out connection asynchronously:

Copy code
void ConnectionSet_ReadAsync(IRuntimePtr pRuntime)
{
 std::cout << "ConnectionSet_ReadAsync Start :" << std::endl;
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;

 CFRESULT errorCode = pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 if (pUnk != nullptr && CF_SUCCEEDED(errorCode))
 {
 IConnectionSetPtr pConnectionset(pUnk);
 IConnectionResultPtr pConnectionResult;
 CCfString strName(L"HMI-Connection");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 hr = pConnectionset->Add(connectionNames);
 if (nullptr != pConnectionset)
 {
 CCfRefPtr<CConnectionReadNotification>pRead = new CConnectionReadNotification();
 IConnectionReadNotification *pNotification = pRead;
 errorCode = pConnectionset->ReadAsync(pNotification);
 if (CF_SUCCEEDED(errorCode))
 {
 if (pRead->WaitForcompletion(dwMilliseconds) == CF_SUCCESS)
 {
 std::cout << " OnRead Succeded." << "errCode = " << errorCode << std::endl;
 }
 }
 else
 {
 std::cout << L" ConnectionSet_ReadAsync failed." << "errCode = " << errorCode
<< std::endl;
 }
 }
 }
 std::cout << std::endl;
}

See also
IConnectionSet (Page 1370)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1367

19.10.5.7 IConnectionStateChangeNotification (RT Uni)

Description
The C++ interface "IConnectionStateChangeNotification" defines a callback method for
implementing asynchronous change monitoring of connections.

Members
The following method is specified in the interface:

"OnDataChanged" method
Callback method is called after changes of a monitored connection.

The "OnDataChanged" callback method is called when the IConnectionSet.Subscribe
method is used.

CFRESULT OnDataChanged(IConnectionStatusResultEnumerator*
pEnumerator, uint32_t errorCode, int32_t contextId)
● pEnumerator

[out]: Points to an "IConnectionStatusResultEnumerator" object that contains the
enumeration of the connection status.

● errorCode
[out]: Error code for the asynchronous operation.

● contextId
[out]: ContextID as additional identification feature of the connections.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1368 System Manual, 11/2019, Online help printout

Example
Monitor connection status:

Copy code
void ConnnectionSet_Subscribe(IRuntimePtr pRuntime)
{
 std::cout << "ConnnectionSet_Subscribe Start" << std::endl;
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;

 CFRESULT errorCode = pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 if (pUnk != nullptr && CF_SUCCEEDED(errorCode))
 {
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfString strName(L"RUNTIME_1::Connection3");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);

 hr = pConnectionsetPtr->Add(connectionNames);

 if (nullptr != pConnectionsetPtr)
 {
 CConnectionSubscriptionNotification *pSubscribe = new
CConnectionSubscriptionNotification();
 IConnectionStateChangeNotification *pNotification = pSubscribe;
 errorCode = pConnectionsetPtr->Subscribe(pNotification);
 if (CF_SUCCEEDED(errorCode))
 {
 if (pSubscribe->WaitForcompletion(dwMilliseconds) == CF_SUCCESS)
 {
 //cancel subscription
 pConnectionsetPtr->CancelSubscribe();
 }
 }
 else
 {
 std::cout << L" ConnnectionSet_Subscribe failed." << "errCode = " << errorCode
<< std::endl;
 }
 }
 }
 std::cout << std::endl;
}

See also
IConnectionSet (Page 1370)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1369

19.10.5.8 IConnectionSet (RT Uni)

Description
The C++ interface "IConnectionSet" specifies properties and methods for optimized access to
several connections of the Runtime system.

After initialization of the "IConnectionSet" object, you have read/write access to multiple
connections in one call. Simultaneous access takes place with better performance and lower
communication load than single access to multiple connections.

Members
The following methods are specified in the interface:

"SetContextId" method
Change ID as additional identification feature of a connection. The ContextId can, for example,
be used to recognize identically named connections.

CFRESULT SetContextId(uint32_t id)
id
[in]: ContextID of the connection

"GetContextId" method
Return ID as additional identification feature of a connection. The ContextId can, for example,
be used to recognize identically named connections.

CFRESULT GetContextId(uint32_t *pId)
pId
[out]: Points to the ContextID of the connection.

"Add" method
Add connections to a connection set.

CFRESULT Add(ICfArrayVariant *connectionNames)
connectionNames
[in]: Points to an array that contains the names of connections.

"Remove" method
Remove individual connection from connection set.

CFRESULT Remove(CFSTR connectionName)
connectionName
[in]: Name of the connection.

"Clear" method
Remove all connections from connection set.

CFRESULT Clear()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1370 System Manual, 11/2019, Online help printout

"GetCount" method
Return number of connections of a connection set list.

CFRESULT GetCount(int32_t *pCount)
pCount
[out]: Points to the number of connections in the connection set.

"Read" method
Read connection details of all connections of the connection set synchronously from the
Runtime system.

CFRESULT Read(IConnectionResultEnumerator
**ppConnectionResultEnumerator)
ppConnectionResultEnumerator
[out]: Points to the enumeration of the details of the individual connections.

"ReadAsync" method
Read connection details of all connections of the connection set asynchronously from the
Runtime system.

CFRESULT ReadAsync(IConnectionReadNotification *pReadReply)
pReadReply
[in]: Points to the "IConnectionReadNotification" callback interface for read operations and
returns the "IConnectionResultEnumerator" object.

"GetConnectionState" method
Read connection status synchronously from the Runtime system.

CFRESULT GetConnectionState(IConnectionStatusResultEnumerator
**ppConnectionStatusResultEnumerator)
ppConnectionStatusResultEnumerator
[out]: Points to an object of type "IConnectionStatusResultEnumerator" that contains the
enumeration of the connection status.

"Subscribe" method
Subscribe all connections of a connection set asynchronously for change monitoring.

CFRESULT Subscribe(IConnectionStateChangeNotification
*ppNotificationCB)
ppNotificationCB
[in]: Points to the "IConnectionStateChangeNotification" callback interface for monitoring and
returns the "IConnectionStatusResultEnumerator" object following a change.

"CancelSubscribe" method
Cancel change monitoring of all connections of a connection set.

CFRESULT CancelSubscribe()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1371

Examples
Monitor connection:

Copy code
void ConnnectionSet_Subscribe(IRuntimePtr pRuntime)
{
 std::cout << "ConnnectionSet_Subscribe Start" << std::endl;
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;

 CFRESULT errorCode = pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errorCode))
 {
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfString strName(L"RUNTIME_1::Connection3");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);

 hr = pConnectionsetPtr->Add(connectionNames);

 if (nullptr != pConnectionsetPtr)
 {
 CConnectionSubscriptionNotification *pSubscribe = new
CConnectionSubscriptionNotification();
 IConnectionStateChangeNotification *pNotification = pSubscribe;
 errorCode = pConnectionsetPtr->Subscribe(pNotification);
 if (CF_SUCCEEDED(errorCode))
 {
 if (pSubscribe->WaitForcompletion(dwMilliseconds) == CF_SUCCESS)
 {
 //cancel subscription
 pConnectionsetPtr->CancelSubscribe();
 }
 }
 else
 {
 std::cout << L" ConnnectionSet_Subscribe failed." << "errCode = " << errorCode
<< std::endl;
 }
 }
 }
 std::cout << std::endl;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1372 System Manual, 11/2019, Online help printout

Read out connection asynchronously:

Copy code
void ConnectionSet_ReadAsync(IRuntimePtr pRuntime)
{
 std::cout << "ConnectionSet_ReadAsync Start :" << std::endl;
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;

 CFRESULT errorCode = pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errorCode))
 {
 IConnectionSetPtr pConnectionset(pUnk);
 IConnectionResultPtr pConnectionResult;
 CCfString strName(L"HMI-Connection");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);

 hr = pConnectionset->Add(connectionNames);

 if (nullptr != pConnectionset)
 {
 CCfRefPtr<CConnectionReadNotification>pRead = new CConnectionReadNotification();
 IConnectionReadNotification *pNotification = pRead;
 errorCode = pConnectionset->ReadAsync(pNotification);
 if (CF_SUCCEEDED(errorCode))
 {
 if (pRead->WaitForcompletion(dwMilliseconds) == CF_SUCCESS)
 {
 std::cout << " OnRead Succeded." << "errCode = " << errorCode << std::endl;
 }
 }
 else
 {
 std::cout << L" ConnectionSet_ReadAsync failed." << "errCode = " << errorCode
<< std::endl;
 }
 }
 }
 std::cout << std::endl;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1373

Add/remove connection for connection set

Copy code
void Connection_AddRemove(IRuntimePtr pRuntime)
{
 std::cout << "Connection_AddRemove Start :" << std::endl;
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;

 CFRESULT errorCode = pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);

 if (pUnk != nullptr && CF_SUCCEEDED(errorCode))
 {
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfString strName(L"HMI-Connection");
 CCfSmartString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 hr = pConnectionsetPtr->Add(connectionNames);
 int32_t count;
 pConnectionsetPtr->GetCount(&count);
 std::cout << "Count = " << count << std::endl;
 pConnectionsetPtr->Remove(strName1.AllocCFSTR());
 pConnectionsetPtr->GetCount(&count);
 std::cout << "Count = " << count << std::endl;
 pConnectionsetPtr->Clear();
 pConnectionsetPtr->GetCount(&count);
 std::cout << "Count = " << count << std::endl;
 }
 std::cout << std::endl;
}

See also
IConnectionReadNotification (Page 1365)

IConnectionStateChangeNotification (Page 1368)

IConnection (Page 1364)

IConnectionResultEnumerator (Page 1359)

IConnectionStatusResultEnumerator (Page 1363)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1374 System Manual, 11/2019, Online help printout

19.10.6 Interfaces of the Plant Model (RT Uni)

19.10.6.1 IPlantModel (RT Uni)

Description
The C++ interface "IPlantModel" specifies methods for access to object instances of the plant
model of a Runtime system. The "IPlantModel" object represents the plant model of the
graphical Runtime system.

The interface inherits from the "ICfDispatch" interface.

Formatting of a hierarchy path
A hierarchy path of object instances consists of several components and has the following
syntax:

[SystemName].HierarchyName::[PlantObjectID/.../]PlantObjectID
The system name can be omitted for referencing a local hierarchy. The dot before the hierarchy
name must stay.

Members
The following methods are specified in the interface:

"GetPlantObject" method
Supplies an "IPlantObject" instance.

CFRESULT GetPlantObject(const CFSTR Node, IPlantObject**
ppPlantObject)
● Node

[in]: Identifies an IPlantObject instance by its name or its path in the hierarchy.

● ppPlantObject
[out]: Points to an "IPlantObject" instance.

"GetPlantObjectsByType" method
Supplies an enumeration with "IPlantObject" instances that have a specific type.

GetPlantObjectsByType(const CFSTR plantObjectTypeFilter, const CFSTR
ViewFilter, IPlantObjectEnumerator** ppPlantObjects)
● plantObjectTypeFilter

[in]: Filter for the "IPlantObject" type on which the instances are based.

● ViewFilter
[in]: Filter for the path in the hierarchy. Only instances from a specific node are returned.

● ppPlantObjects
[out]: Points to an "IPlantObjectEnumerator" enumeration with "IPlantObject" instances.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1375

"GetObjectsByPropertyName" method
Supplies an enumeration with "IPlantObject" instances that have specific properties and
originate in a specific plant node.

GetPlantObjectsByPropertyNames(const CFVARIANT PropertyNames, const
CFSTR ViewFilter, IPlantObjectEnumerator** ppPlantObjects)
● PropertyNames

[in]: Property names

● ViewFilter
[in]: Filter for a hierarchy path.

● ppPlantObjects
[out]: Points to an "IPlantObjectEnumerator" enumeration with "IPlantObject" instances.

"GetPlantObjectsByExpression" method
Supplies an enumeration with "IPlantObject" instances. The instances are filtered by type and
property values.

GetPlantObjectsByExpression(const CFVARIANT PropertyNames, const
CFSTR plantObjectTypeFilter, const CFSTR expressionFilter, const
CFSTR ViewFilter, IPlantObjectEnumerator** ppPlantObjects)
● PropertyNames

[in]: Property names
If the list contains multiple values, all properties must be available at the object.

● plantObjectTypeFilter
[in]: Filter for the object type on which the instances are based.

● expressionFilter
[in]: An expression that is a filter for the property values.

● ViewFilter
Filter for a hierarchy path.

● ppCpmNodes
[out]: Points to an "IPlantObjectEnumerator" enumeration with "IPlantObject" instances.

Example

Hierarchy path Referenced object instance
System2.TechnologicalHierarchy::P1/S1/L2/
LeftPump

References the "LeftPump" object instance in the "Technolo‐
gicalHierarchiy" of system2.

.TechnologicalHierarchy::P1/S1/L2/LeftPump References the "LeftPump" object instance in the "Technolo‐
gicalHierarchiy" of the local system.

U4711 References the "U4711" object instance of the local system.
System2::U4711 References the "U4711" object instance of System2.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1376 System Manual, 11/2019, Online help printout

Copy code
void PlantModelGetPlantObjectsByType(IRuntimePtr pRuntime)
{
 if (nullptr != pRuntime)
 {
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 if (CF_SUCCEEDED(errCode) && nullptr != pUnk)
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectEnumeratorPtr pPlantObjectEnum;
 errCode = pPlantModel->GetPlantObjectsByType(CCfString(L"BLOWER").Get(),
CCfString(L"").Get(),
 &pPlantObjectEnum);
 if (CF_SUCCEEDED(errCode) && nullptr != pPlantObjectEnum)
 {
 IPlantObjectPtr pItem; pPlantObjectEnum->MoveNext(); 　
 while (CF_SUCCEEDED(pPlantObjectEnum->Current(&pItem)))
 {
 displayNodeInfo(pItem);
 pPlantObjectEnum->MoveNext();
 }
 } 　
 else
 {
 std::wcout << L"PlantModelGetPlantObjectsByType operation Failed" << L"ErrCode
= " << errCode <<
 endl;
 PrintErrorInformation(errCode, CCfSmartString(L"objectbytype"), pRuntime);
 }
 } 　
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode= " << errCode <<
std::endl;
 }
 }
}

void PlantModelGetPlantObjectsByExpressionByAllFilter(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 if (pUnk != nullptr&& CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectEnumeratorPtr pPlantObjectEnum;
 CCfString str1 = L"NumberOfNodes";
 CCfString str2 = L"Quality";
 CCfSafeArray daSafeArray(CF_VT_STR, 1U, 2U);
 int32_t index = 0;
 daSafeArray.PutElement(&index, (void*)&str1);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str2);
 ++index;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1377

Copy code
 CCfVariant vtProperties;
 daSafeArray.Detach(&vtProperties);
 errCode = pPlantModel->GetPlantObjectsByExpression(vtProperties,
CCfString(L"BLOWER").Get(), CCfString(L"NumberOfNodes>=0"),
 CCfString(L"RUNTIME_1.hierarchy").Get(), &pPlantObjectEnum);
 if (pPlantObjectEnum != nullptr && CF_SUCCEEDED(errCode))
 {
 pPlantObjectEnum->MoveNext();
 IPlantObject* pPlantObject;
 while (CF_SUCCEEDED(pPlantObjectEnum->Current(&pPlantObject)))
 {
 displayNodeInfo(pPlantObject);
 pPlantObjectEnum->MoveNext();
 }
 }
 else
 {
 std::cout << L"GetPlantObjectsByExpression operation failed." << "errCode
= " << errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode = " << errCode
<< std::endl;
 }
}

19.10.6.2 IPlantObject (RT Uni)

Description
The C++ interface "IPlantObject" specifies methods for handling object instances of the plant
model of a Runtime system.

An object instance in the plant model is based on an object type and its data structure. Each
object instance receives its position within the plant hierarchy by assigning it to a hierarchy
node.

The interface inherits from the "ICfDispatch" interface.

Formatting of a hierarchy path
A hierarchy path of object instances consists of several components and has the following
syntax:

[SystemName].HierarchyName::[NodeID/.../]NodeID
The system name can be omitted for referencing a local hierarchy. The dot before the hierarchy
name must stay.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1378 System Manual, 11/2019, Online help printout

Members
The following methods are specified in the interface:

"GetName" method
Supplies the name of the "IPlantObject" instance for unique identification.

CFRESULT GetName(CFSTR* pName)
● pName

[out]: Name of the instance

"GetParent" method
Supplies the parent of the "IPlantObject" instance in the hierarchy.

CFRESULT GetParent(IPlantObject** ppParent)
● ppParent

[out]: The parent as "IPlantObject" instance.

"GetChildren" method
Supplies an enumeration with the children of the "IPlantObject" instance in the hierarchy.

CFRESULT GetChildren(IPlantObjectEnumerator** ppChildren)
● ppChildren

[out]: An enumeration of the type "IPlantObjectEnumerator" with child object instances.

"GetPlantViewPaths" method
Supplies a map with hierarchy names and hierarchy paths that the "IPlantObject" instance has
in all hierarchies in which it is included.

CFRESULT GetPlantViewPaths(ICfMapStringToVariant **pViewPaths)
● pViewPaths

[out]: A map with String/String pairs (hierarchy name to hierarchy path).

"GetCurrentPlantView" method
Supplies the path and names of the "IPlantObject" instance in the current hierarchy.

If the "IPlantObject" instance is only contained in one hierarchy, this path is returned.

CFRESULT GetCurrentPlantView)(CFSTR* pView)
● pView

[out]: Hierarchy path and name of the "IPlantObject" instance.

"SetCurrentPlantView" method
"CurrentPlantView" is the basis for navigation with the "GetParent" or "GetChildren" methods.
If the "IPlantObject" instance is contained in several hierarchies, the path must be set via
"SetCurrentPlantView" before the "GetParent" or "GetChildren" method can be used.

CFRESULT SetCurrentPlantView)(CFSTR const& View)
● View

[in]: The current hierarchy

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1379

"GetProperty" method
Supplies a property of the "IPlantObject" instance.

CFRESULT GetProperty(const CFSTR propertyName,
IPlantObjectProperty** ppPlantObjectProperty)
● propertyName

[in]: Name of a property of the "IPlantObject" instance

● ppPlantObjectProperty
[out]: Points to an "IPlantObjectProperty" instance.

"GetProperties" method
Supplies a two-dimensional list (name-object pairs) of the data structure of the "IPlantObject"
instance. The list allows access to the instance properties.

CFRESULT GetProperties(const CFVARIANT propertyNames,
IPlantObjectPropertySet** ppPlantObjectPropertySet)
● Optional: propertyNames

[in]: List with names of one or multiple properties of the "IPlantObject" instance.
Without "propertyNames" parameter, all properties of the instance are referenced in the list.

● ppPlantObjectPropertySet
[out]: Points to the list of the type "IPlantObjectPropertySet" that contains the names of one
or multiple properties of the "IPlantObject" instance.

"GetActiveAlarms" method
Supplies all active alarms that the "IPlantObject" instance contains at the time it is called in the
active hierarchy. Unlike with an AlarmSubscription, no status changes or new alarms are
signaled that occur after the function call. Users can filter the alarms or specify a SystemName
if they only want to receive the active alarms of a specific system.

CFRESULT GetActiveAlarms(uint32_t language, CFBOOL IncludeChildren,
CFSTR filter,IN IPlantObjectAlarmCallback* pCallback)
● language

[in]: Language code of the language for all alarm texts and the filters. See chapter Locale IDs
of the supported languages (Page 1085).

● IncludeChildren
[in]: The active alarms of the child instances are returned as well.

● filter
[in]: SQL-type string for filtering the alarm texts. The filter can contain operators. See
also Syntax of the alarm filter (Page 1084).

● pCallback
[in]: Callback pointer.

"CreateAlarmSubscription" method
Supplies a "PlantObjectAlarmSubscription" that can be used to start and stop an alarm
subscription.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1380 System Manual, 11/2019, Online help printout

CFRESULT CreateAlarmSubscription)(IPlantObjectAlarmSubscription**
ppPlantObjectAlarmSubscription)
● ppPlantObjectAlarmSubscription

[out] Points to a "PlantObjectAlarmSubscription" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1381

Example

Copy code
void PlantObjectGetProperties(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 {
 if (nullptr != pUnk && CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView\\Unit1";

 //gets node for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (nullptr != pPlantObject && CF_SUCCEEDED(errCode))
 {
 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 errCode = pPlantObject->GetProperties(vtProperties,
&pPlantObjectPropertySet);
 if (nullptr != pPlantObjectPropertySet && CF_SUCCEEDED(errCode))
 {
 uint32_t nCount = 0;
 pPlantObjectPropertySet->GetCount(&nCount);
 std::cout << "Count :" << nCount << std::endl; 　
 }
 else
 {
 std::cout << L" GetProperties operation failed." << "errCode = " <<
errCode << std::endl;
 PrintErrorInformation(errCode, L"Getproperties", pRuntime);
 }
 }
 else
 {
 std::cout << L"GetPlantObject operation failed." << "errCode = " <<
errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode = " <<
errCode << std::endl;
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1382 System Manual, 11/2019, Online help printout

19.10.6.3 IPlantObjectProperty (RT Uni)

Description
The C++ interface "IPlantObjectProperty" specifies the handling of properties of object
instances of the plant model of a Runtime system. The properties represent the data structure
of an object instance.

The object instance communicates with the automation system through the properties of the
data structure. The values of the properties are obtained from linked process tags or internal
tags.

You reference an object using the IPlantObject.GetProperty or
IPlantObject.GetProperties methods.

The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"GetName" method
Supplies the name of the property.

CFRESULT GetName(CFSTR *pName)
● pName

[out]: Points to the name of the property.

"Read" method
Reads the value of the "IPlantObjectProperty" instance synchronously and returns it as an
"IPlantObjectPropertyValue" object. The value, the quality code and the time stamp of the
property are determined when the property is read.

CFRESULT Read(IPlantObjectPropertyValue**
ppPlantObjectPropertyValue)
● ppPlantObjectPropertyValue

[out]: Values of the property as "IPlantObjectPropertyValue" instance

"Write" method
Writes the value synchronously to the "IPlantObjectProperty" instance.

CFRESULT Write)(const CFVARIANT value)
● value

[in]: New process value of the property

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1383

Example

Copy code
void PlantObjectReadproperty(IRuntimePtr pRuntime)
{
 std::cout << "PlantObjectReadproperty Start" << std::endl;
 ICfUnknownPtr pUnk;CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"),
&pUnk);
 {
 if (nullptr != pUnk && CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;CCfString strNode = L".hierarchy::PlantView\
\Unit1";

 //gets node for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (nullptr != pPlantObject && CF_SUCCEEDED(errCode))
 {

 CCfString strName(L"NumberOfNodes");
 IPlantObjectPropertyPtr PlantObjectProperty;
 //get the PlantObject property by name
 pPlantObject->GetProperty(strName.Get(), &PlantObjectProperty);

 IPlantObjectPropertyValuePtr pPlantObjectPropertyValue;
 // Read PlantObject Property
 PlantObjectProperty->Read(&pPlantObjectPropertyValue);
 if (nullptr != pPlantObjectPropertyValue)
 {
 CCfString strName;
 pPlantObjectPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "PlantModelPropertyName:" << strName.ToUTF8() << std::endl;
 int64_t qc;
 pPlantObjectPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl;
 int64_t ec;
 pPlantObjectPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl;
 CCfDateTime64 dt;
 pPlantObjectPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() << std::endl;
 CCfVariant vtVal;
 pPlantObjectPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl;
 }
 else
 {
 std::cout << L" GetProperties operation failed." << "errCode = " <<
errCode << std::endl;
 PrintErrorInformation(errCode, L"GetProperties", pRuntime);
 }
 }
 else
 {
 std::cout << L"GetPlantObject operation failed." << "errCode = " << errCode
<< std::endl;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1384 System Manual, 11/2019, Online help printout

Copy code
 PrintErrorInformation(errCode, L"GetPlantObject", pRuntime);
 }
 }
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode = " << errCode
<< std::endl;
 }
 }
}

19.10.6.4 IPlantObjectPropertyValue (RT Uni)

Description
The C++ interface "IPlantObjectPropertyValue" specifies the handling of process tag
properties of the Runtime system.

Members
The following methods are specified in the interface:

"GetPlantObjectPropertyName" method
Supplies the name of the tag.

CFRESULT GetPlantObjectPropertyName(CFSTR* pName)
● pName

[out]: Points to the name.

"GetValue" method
Supplies the tag value.

CFRESULT GetValue(CFVARIANT* pValue)
● pValue

[out]: Points to the process value.

"GetQuality" method
Supplies the quality code of the tag.

CFRESULT GetQuality(int64_t* pQualityCode)
● pQualityCode

[out]: Points to the quality code.

"GetTimeStamp" method
Supplies the time stamp of the last modification to the tag.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1385

CFRESULT GetTimeStamp(CFDATETIME64* pTimeStamp)
● pTimeStamp

[out]: Points to the time stamp.

"GetError" method
Supplies the error code of the tag.

CFRESULT GetError(int64_t* pErrorCode)
● pErrorCode

[out]: Points to the error code.

Example
For example, see IPlantObjectProperty (Page 1383).

19.10.6.5 IPlantModelPropertySubscriptionNotification (RT Uni)

Description
The C++ interface "IPlantModelPropertySubscriptionNotification" defines methods for
implementing asynchronous change monitoring of object instance properties. The methods are
used by the C++ interface "ICpmNodePropertySet".

All the methods return CF_SUCCESS following successful execution.

The interface inherits the "ICfUnknown" interface.

Members
The following methods are specified in the interface:

"OnDataChanged" method
Callback method is called when a monitored object instance property is changed.

CFRESULT OnDataChanged(IPlantObjectPropertyValueEnumerator*
pEnumerator)
● pEnumerator:

[in]: Points to the "IPlantObjectPropertyValueEnumerator" object that provides access to an
enumeration of "IPlantObjectPropertyValue" instances.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1386 System Manual, 11/2019, Online help printout

Example
Register a PropertySet for monitoring:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1387

Copy code
void PlantObjectSubscribePropertySet(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 {
 if (nullptr != pUnk && CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView\\Unit1\\Filler1";

 //gets node for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (nullptr != pPlantObject && CF_SUCCEEDED(errCode))
 {
 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 errCode = pPlantObject->GetProperties(vtProperties,
&pPlantObjectPropertySet);
 if (nullptr != pPlantObjectPropertySet && CF_SUCCEEDED(errCode))
 {
 CPlantModelPropertySubscriptionNotification* pSubscribe = new
CPlantModelPropertySubscriptionNotification();
 IPlantModelPropertySubscriptionNotification* pNotification = pSubscribe;
 //Subscribe for all PlantObject properties errCode =
pPlantObjectPropertySet->Subscribe(pNotification);
 }
 else
 {
 std::cout << L" GetProperties operation failed." << "errCode = " <<
errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"GetPlantObject operation failed." << "errCode = " << errCode
<< std::endl;
 }
 }
 }
}
CFRESULT CFCALLTYPE
CPlantModelPropertySubscriptionNotification::OnDataChanged(IPlantObjectPropertyValueEnumer
ator* pEnumerator)
{
 if (nullptr != pEnumerator)
 {
 uint32_t nCount = 0;
 pEnumerator->Count(&nCount);
 for (int i = 0;i < (int32_t)nCount; i++)
 {
 pEnumerator->MoveNext();
 IPlantObjectPropertyValue* pPlantModelPropertyValue; 　 　

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1388 System Manual, 11/2019, Online help printout

Copy code
 if (CF_SUCCEEDED(pEnumerator->Current(&pPlantModelPropertyValue)) && nullptr !=
pPlantModelPropertyValue)
 {
 CCfString strName;
 pPlantModelPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "Name:" << strName.ToUTF8() << std::endl; 　
 int64_t qc;
 pPlantModelPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl; 　
 int64_t ec;
 pPlantModelPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl; 　
 CCfDateTime64 dt;
 pPlantModelPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() << std::endl; 　
 CCfVariant vtVal;
 pPlantModelPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl; 　
 }
 }
 }
 return CF_SUCCESS;
}

19.10.6.6 IPlantObjectPropertyValueEnumerator (RT Uni)

Description
The C++ interface "IPlantObjectPropertyValueEnumerator" specifies methods for handling the
enumeration of "IPlantObjectPropertyValue" instances.

All the methods return CF_SUCCESS following successful execution.

The interface inherits the "ICfUnknown" interface.

Members
The following methods are specified in the interface:

"Current" method
Supplies the current element of the enumeration.

Current(IPlantObjectPropertyValue** ppItem)
● ppItem

[out]:

"MoveNext" method
Move to the next element of the enumeration.

CFRESULT MoveNext()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1389

"Reset" method
Resets the current position in the enumeration to the first element.

CFRESULT Reset()
"MoveNext" then supplies the first element of the enumeration.

"Count" method
Output the size of the enumeration or the number of elements in an enumeration.

CFRESULT Count(uint32_t *pValue)
● value

[out]: Points to the value for the number of elements in the enumeration.

Example
For example, see IPlantModelPropertySubscriptionNotification (Page 1386).

19.10.6.7 IPlantObjectPropertySet (RT Uni)

Description
The C++ interface "IPlantObjectPropertySet" specifies methods for optimized access to
several "IPlantObjectProperty" instances of an "IPlantObject" instance of the Runtime system.

After initialization of the "IPlantObjectPropertySet" object, you have read/write access to
multiple "IPlantObjectProperty" instances in one call. Simultaneous access has better
performance and a lower communication load than single access to multiple properties.

The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"GetContextID" method
Supplies an ID as additional identification feature of a property. "ContextId" can, for example,
be used to recognize properties having the same name but from different systems.

Default value -1: "ContextId" is not used.

CFRESULT GetContextId)(int32_t* pContextId)
● pContextId

[out]: "ContextId" of the property

"SetContextID" method
Sets an ID as additional identification feature of a property. "ContextId" can, for example, be
used to recognize properties having the same name but from different systems.

Default value -1: "ContextId" is not used.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1390 System Manual, 11/2019, Online help printout

CFRESULT SetContextId(int32_t contextId)
● contextId

[in]: "ContextId" of the property

"Read" method
Supplies all values of the "IPlantObjectProperty" instances contained in the
"IPlantObjectPropertySet" instance. The values are read synchronously.

CFRESULT Read(IPlantObjectPropertyValueEnumerator**
ppPlantObjectPropertyValueEnumerator)
● ppPlantObjectPropertyValueEnumerator

[out]: Points to the enumeration of the tag values as an
"IPlantObjectPropertyValueEnumerator" object.

"ReadAsync" method
Reads the values of all "IPlantObjectProperty" instances of the "IPlantObjectPropertySet"
instance asynchronously.

CFRESULT ReadAsync(IPlantObjectPropertySetReadReply* pReadReply)
● pReadReply

[in]: Points to the "IPlantObjectPropertySetReadReply" object that implements the callback
interface for read operations.

"Write" method
Writes the values of the "IPlantProperty" instances of the "PlantObjectPropertySet" instance
synchronously to the Runtime system.

CFRESULT Write(HmiUnified::Rt::IErrorResultEnumerator**
ppEnumerator)
● pWriteReply

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with
errors for the write operations of the "IPlantObjectProperty" instances.

"WriteAsync" method
Writes the values of all "IPlantObjectProperty" instances of the "PlantObjectPropertySet"
instance asynchronously to the Runtime system.

CFRESULT WriteAsync(IPlantObjectPropertySetWriteReply *pWriteReply)
● pWriteReply

[in]: Points to the "IPlantObjectPropertySetWriteReply" object that implements the callback
interface for write operations.

"GetCount" method
Supplies the number of properties of the "IPlantObjectPropertySet" instance.

CFRESULT GetCount(uint32_t *pCount)
● pCount

[out]: Points to the number of properties.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1391

"Subscribe" method
Subscribes all properties of the "IPlantObjectPropertySet" instance asynchronously for change
monitoring.

CFRESULT Subscribe(IPlantModelPropertySubscriptionNotification*
pPlantModelSubscriptionCallback)
● pPlantModelSubscriptionCallback

[in]: Points to the "IPlantObjectPropertySubscriptionNotification" object that implements the
callback interface of the change monitoring.

"CancelSubscribe" method
Cancels change monitoring for all properties of the "IPlantObjectPropertySet" instance.

CFRESULT CancelSubscribe()

"Add" method
Adds an "IPlantObjectProperty" instance with property value or more "IPlantObjectProperty"
instances to the "IPlantObjectPropertySet" instance.

CFRESULT Add(ICfArrayVariantPtr propertyNames)
● propertyNames

[in]: Array with names of several "IPlantObjectProperty" instances

or

CFRESULT Add(const CFSTR propertyName, const CFVARIANT value)
● propertyName

[in]: Name of the "IPlantObjectProperty" instance

● value
[in]: New process value of the "IPlantObjectProperty" instance

"Remove" method
Removes a property from the "IPlantObjectPropertySet" instance.

CFRESULT Remove(const CFSTR propertyName)
● propertyName

[in]: Name of the property that is being removed.

"Clear" method
Removes all properties from the "IPlantObjectPropertySet" instance.

CFRESULT Clear()

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1392 System Manual, 11/2019, Online help printout

New example

Copy code
void PlantObjectWriteAsyncPropertySet(IRuntimePtr pRuntime)
{
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 {
 if (nullptr != pUnk && CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView\\Unit1";

 //gets node for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (nullptr != pPlantObject && CF_SUCCEEDED(errCode))
 {
 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 errCode = pPlantObject->GetProperties(vtProperties,
&pPlantObjectPropertySet);
 if (nullptr != pPlantObjectPropertySet && CF_SUCCEEDED(errCode))
 {
 CCfString strName(L"NumberOfNodes");
 CCfVariant vtValue(1000);
 hr = pPlantObjectPropertySet->Add(strName, vtValue);
 if (CF_SUCCEEDED(hr))
 {
 CPlantObjectPropertySetWriteReply* pReply = new
CPlantObjectPropertySetWriteReply();
 IPlantObjectPropertySetWriteReplyPtr pWritReply = pReply; 　

 //Write PlantObject properties values asynchronously
 pPlantObjectPropertySet->WriteAsync(pWritReply);
 }
 }
 else
 {
 std::cout << L" GetProperties operation failed." << "errCode = " <<
errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"GetPlantObject operation failed." << "errCode = " <<
errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode = " << errCode
<< std::endl;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1393

Copy code
 }
}

19.10.6.8 IPlantObjectPropertySetReadReply (RT Uni)

Description
The C++ interface "IPlantObjectPropertySetReadReply" defines the "OnReadComplete"
method as callback method of a "ReadAsync" call. The method is used by the C++ interface
"IPlantObjectPropertySet".

Members
The following methods are specified in the interface:

"OnReadComplete" method
The "OnReadComplete" callback method is called when the "ReadAsync" method is used.

CFRESULT OnReadComplete(CFVARIANT systemError,
IPlantObjectPropertyValueEnumerator*
pPlantObjectPropertyValueEnumerator)
● systemError

[in]: Supplies an error code when a global error has occurred.

● ppPlantObjectPropertyValueEnumerator
[in]: Points to an "IPlantObjectPropertyValueEnumerator" object that contains the
enumeration of the process values of object instance properties.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1394 System Manual, 11/2019, Online help printout

Example

Copy code
void PlantObjectReadAsycPropertySet(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 { 　
 if (nullptr != pUnk && CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView\\Unit1";

 //gets node for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (nullptr != pPlantObject && CF_SUCCEEDED(errCode))
 {
 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;

 // get the PlantObject properties by property names
 errCode = pPlantObject->GetProperties(vtProperties,
&pPlantObjectPropertySet);
 if (nullptr != pPlantObjectPropertySet && CF_SUCCEEDED(errCode))
 {
 CPlantObjectPropertySetReadReply* pReply = new
CPlantObjectPropertySetReadReply();
 IPlantObjectPropertySetReadReplyPtr pReadReply = pReply;

 // Read PlantObject properties values asynchronously
 pPlantObjectPropertySet->ReadAsync(pReadReply); 　
 }
 else
 {
 std::cout << L" GetProperties operation failed." << "errCode =
" << errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"GetPlantObject operation failed." << "errCode = " <<
errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode = " << errCode
<< std::endl;
 }
 }
}
CFRESULT CFCALLTYPE CPlantObjectPropertySetReadReply::OnReadComplete(IN CFVARIANT
SystemError, IN IPlantObjectPropertyValueEnumerator* pPlantObjectPropertySet)
{
 if (nullptr != pPlantObjectPropertySet)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1395

Copy code
 {
 uint32_t nCount = 0;pPlantObjectPropertySet->Count(&nCount);
 for (int i = 0;i < (int32_t)nCount; i++)
 {
 pPlantObjectPropertySet->MoveNext();
 IPlantObjectPropertyValue* pPlantModelPropertyValue;
 if (CF_SUCCEEDED(pPlantObjectPropertySet-
>Current(&pPlantModelPropertyValue)) && nullptr != pPlantModelPropertyValue)
 {
 CCfString strName;
 pPlantModelPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "Name:" << strName.ToUTF8() << std::endl;
 int64_t qc;
 pPlantModelPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl;
 int64_t ec;
 pPlantModelPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl;
 CCfDateTime64 dt; pPlantModelPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() <<
std::endl;
 CCfVariant vtVal;
 pPlantModelPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl; 　
 }
 }
 }
 return CF_SUCCESS;
}

19.10.6.9 IPlantObjectPropertySetWriteReply (RT Uni)

Description
The C++ interface "IPlantObjectPropertySetWriteReply" defines the "OnWriteComplete"
method as callback method of a "WritedAsync" call. The method is used by the C++ interface
"IPlantObjectPropertySet".

Members
The following methods are specified in the interface:

"OnWriteComplete" method
The "OnWriteComplete" callback method is called when the "WriteAsync" method is used.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1396 System Manual, 11/2019, Online help printout

CFRESULT OnWriteComplete(CFVARIANT systemError,
IPlantObjectPropertyValueEnumerator*
pPlantObjectPropertyValueEnumerator)P
● systemError

[in]: Supplies an error code when a global error has occurred.

● ppPlantObjectPropertyValueEnumerator
[in]: Points to an "IPlantObjectPropertyValueEnumerator" object that contains the
enumeration of the process values of "IPlantObjectProperty" instances.

Example

Copy code
CFRESULT CFCALLTYPE CPlantObjectPropertySetWriteReply::OnWriteComplete(IN CFVARIANT
SystemError, IN IPlantObjectPropertyValueEnumerator* pPlantObjectPropertySet)
{
 if (nullptr != pPlantObjectPropertySet)
 {
 uint32_t nCount = 0;
 pPlantObjectPropertySet->Count(&nCount); 　
 for (int i = 0;i < (int32_t)nCount; i++)
 {
 pPlantObjectPropertySet->MoveNext();
 IPlantObjectPropertyValue* pPlantModelPropertyValue;
 if (CF_SUCCEEDED(pPlantObjectPropertySet-
>Current(&pPlantModelPropertyValue)) && nullptr !=
pPlantModelPropertyValue)
 {
 CCfString strName;
 pPlantModelPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "Name:" << strName.ToUTF8() << std::endl;
 int64_t qc;
 pPlantModelPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl; 　
 int64_t ec;
 pPlantModelPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl; 　
 CCfDateTime64 dt;
 pPlantModelPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() <<
std::endl;
 CCfVariant vtVal;
 pPlantModelPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl; 　
 }
 }
 }
 return CF_SUCCESS;
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1397

19.10.6.10 IPlantObjectEnumerator (RT Uni)

Description
The "IPlantObjectEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of object instances of the plant model of a Runtime system.

All the methods return CF_SUCCESS following successful execution.

The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"Current" method
Supplies the current element of the enumeration.

CFRESULT Current(IPlantObject **ppItem)
● ppItem

[out]: Points to the current "IPlantObject" object as an element of the list.

"MoveNext" method
Move to the next element of the enumeration.

CFRESULT MoveNext()

"Reset" method
Resets the current position in the enumeration to the first element.

CFRESULT Reset()
"MoveNext" then supplies the first element of the enumeration.

"Count" method
Output the size of the enumeration or the number of elements in an enumeration.

CFRESULT Count(uint32_t *pValue)
● value

[out]: Points to the value for the number of elements in the enumeration.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1398 System Manual, 11/2019, Online help printout

Example

Copy code
void PlantObjectCurrentPlantViewPath(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"),
&pUnk); 　
 if (pUnk != nullptr&& CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectEnumeratorPtr pPlantObjectEnum; 　
 CCfString str1 = L"NumberOfNodes";
 CCfString str2 = L"Quality";
 CCfString str3 = L"Quantity";
 CCfString str4 = L"DateActivation";
 CCfSafeArray daSafeArray(CF_VT_STR, 1U, 4U);
 int32_t index = 0;
 daSafeArray.PutElement(&index, (void*)&str1);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str2);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str3);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str4);
 CCfVariant vtProperties; 　
 daSafeArray.Detach(&vtProperties); 　

 // gets PlantObjects for specified filter
 errCode = pPlantModel->GetPlantObjectsByExpression(vtProperties,
CCfString (L"BLOWER").Get(),
CCfString(L"NumberOfNodes>=0"), CCfString
(L"RUNTIME_1.hierarchy::PlantView\\Unit1\\Blower1").Get
(),&pPlantObjectEnum);
 if (pPlantObjectEnum != nullptr && CF_SUCCEEDED(errCode))
 {
 pPlantObjectEnum->MoveNext();
 IPlantObject* pPlantObject;
 while (CF_SUCCEEDED(pPlantObjectEnum-
>Current(&pPlantObject)))
 {
 displayNodeInfo(pPlantObject);
 pPlantObjectEnum->MoveNext();
 }
 }
 else
 {
 std::cout << L"GetPlantObjectsByExpression operation failed."
<< "errCode = " << errCode << std::endl;
 }
 }
 else
 {
 std::cout << L"Error, couldn't create ODK object." << "errCode =
" << errCode << std::endl;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1399

Copy code
}

19.10.6.11 IPlantObjectAlarmSubscription (RT Uni)

Description
The C++ interface "IPlantObjectAlarmSubscription" specifies methods for starting and
stopping an "AlarmSubscription".

The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"Start" method
Subscribe systems for monitoring of changes of active alarms.

CFRESULT Start(IPlantObjectAlarmSubscriptionCallback* callbackPtr)
● callbackPtr

[in]: Points to the "IPlantObjectAlarmSubscriptionCallback" object that implements the
callback interface of the change monitoring.

"Stop" method
Unsubscribe monitoring of active alarms.

CFRESULT Stop(void)

"GetFilter" method
Supplies the string by which the result set is filtered.

CFRESULT GetFilter(CFSTR* filter)
● filter

[out]: SQL-type string for filtering the result set of active alarms.

"SetFilter" method
Sets the string for filtering the result set of active alarms.

CFRESULT SetFilter(IN CFSTR filter)
● filter

[in]: SQL-type string for filtering the result set of active alarms.
All properties of an alarm can be used in the filter string. The filter string can contain
operators. Refer to the section Syntax of the alarm filter (Page 1084).

"GetLanguage" method
Supplies the country identifier of the language of the monitored alarms.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1400 System Manual, 11/2019, Online help printout

CFRESULT GetLanguage(uint32_t* language)
● language

[out]: Code of the country identification. See also sectionLocale IDs of the supported
languages (Page 1085).

"SetLanguage" method
Sets the country identifier of the language of the monitored alarms.

CFRESULT SetLanguage)(uint32_t language)
● language

[in]: Code of the country identification See also sectionLocale IDs of the supported
languages (Page 1085).

"GetIncludeChildren" method
Supplies the setting for the child instances.

CFRESULT GetIncludeChildren(CFBOOL* bIsIncludeChildren)
● bIsIncludeChildren

[out]: Reads out whether the child instances are part of monitoring.

"SetIncludeChildren" method
Determines the setting for the child instances.

CFRESULT SetIncludeChildren(CFBOOL bIsIncludeChildren)
● bIsIncludeChildren

[in]: Controls whether the child instances are part of monitoring.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1401

Example

Copy code
void PlantObjectSubscription(IRuntimePtr pRuntime)
{
 if (nullptr != pRuntime)
 {
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel").Get(), &pUnk);
 if (CF_SUCCEEDED(errCode) && nullptr != pUnk)
 {
 IPlantModelPtr pPlantModel(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IPlantObjectAlarmCallback *pCB = pAlarmValue;
 CCfString strNode = L".hierarchy::RootNodeName\\Node1";
 IPlantObjectPtr pPlantObject;
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (pPlantObject != nullptr && CF_SUCCEEDED(errCode))
 {
 CCfSmartString daFilter; //= L"AlarmClassName = 'Alarm'";　
 uint32_t daLanguage = 1033;
 //IPlantObjectAlarmCallbackPtr pAlarmCallback;
 IPlantObjectAlarmSubscriptionPtr pPlantObjectAlarmSubscription;
 errCode = pPlantObject-
>CreateAlarmSubscription(&pPlantObjectAlarmSubscription);
 if (errCode == CF_SUCCESS && nullptr != pPlantObjectAlarmSubscription)
 {
 pPlantObjectAlarmSubscription->SetFilter(daFilter.AllocCFSTR());
 pPlantObjectAlarmSubscription->SetLanguage(1033);
 pPlantObjectAlarmSubscription->SetFilter(false);
 pPlantObjectAlarmSubscription->SetIncludeChildren(false);
 CCfRefPtr<CPlantObjectAlarmSubscriptionCallback> pCallback =
 new
CPlantObjectAlarmSubscriptionCallback();
 pPlantObjectAlarmSubscription->Start(pCallback);
 }
 }
 }
 }
}

19.10.6.12 IPlantObjectAlarmCallback (RT Uni)

Description
The C++ interface "IPlantObjectAlarmCallback" defines the callback method "OnAlarm".

Member
The following methods are defined in the interface:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1402 System Manual, 11/2019, Online help printout

"OnAlarm" method
Specifies the signature of the event handling method for the "OnAlarm" event of an
"IPlantObject" instance.

OnAlarm(uint32_t systemError,
 CFSTR systemName,

Siemens::Runtime::HmiUnified::Alarms::IAlarmResultEnumerator*
pItems,
 CFBOOL completed)
● systemError

Supplies an error code when a global error has occurred. When the error code is
set, pItems is irrelevant.

● systemName
Name of the Runtime system that is subscribed for alarm monitoring by the user.

● pItems
Supplies a pointer to "IAlarmResultEnumerator" that can be used to enumerate the active
alarms.

● completed
Status of the asynchronous transfer:

– True: All alarms are read out.

– False: Not all alarms are yet read out.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1403

Example

Copy code
CFRESULT CFCALLTYPE CPlantModelAlarmValue::OnAlarm(uint32_t systemError, CFSTR
systemName, Siemens::Runtime::HmiUnified::Alarms::IAlarmResultEnumerator* pItems, CFBOOL
completed)
{
 CFRESULT hr = CF_FALSE;
 if (!completed)
 {
 uint32_t nsize;
 pItems->Count(&nsize);
 if (nsize > 0 && CF_SUCCEEDED(systemError))
 {
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 IAlarmResultPtr ppValues;
 if (CF_SUCCEEDED(pItems->Current(&ppValues)))
 { 　
 CCfString strId;
 ppValues->GetSourceID(&strId); 　
 std::cout << "String ID = " << strId.ToUTF8().c_str() << std::endl;
 CCfString strName;
 ppValues->GetName(&strName); 　
 std::cout << "Name = " << strName.ToUTF8().c_str() << std::endl;
　
 CCfString strClassName;
 ppValues->GetAlarmClassName(&strClassName); 　
 std::cout << "Alarm Class Name = " << strClassName.ToUTF8().c_str()
<< std::endl;
 }
 }
 }
 } 　
 else
 {
 this->SetEvent();
 }
 hr = CF_SUCCESS;
 return hr;
}

19.10.6.13 IPlantObjectAlarmSubscriptionCallback (RT Uni)

Description
The C++ interface "IPlantObjectAlarmCallbackSubscription" defines the callback method
"OnAlarm".

The interface inherits the "ICfUnknown" interface.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1404 System Manual, 11/2019, Online help printout

Members
The following methods are specified in the interface:

"OnAlarm" method
Specifies the signature of the event handling method for the "OnAlarm" event of an
"IPlantObject" instance.

OnAlarm(uint32_t systemError,
 CFSTR systemName,

Siemens::Runtime::HmiUnified::Alarms::IAlarmResultEnumerator*
pItems)
● systemError

Supplies an error code when a global error has occurred. When the error code is
set, pItems is irrelevant.

● systemName
Name of the Runtime system that is subscribed for alarm monitoring by the user.

● pItems
– Supplies a pointer to "IAlarmResultEnumerator" that can be used to enumerate the

active alarms.

19.10.7 Interfaces of the Calendar option (RT Uni)

19.10.7.1 ISHCCalendarOption (RT Uni)

Description
The C++ interface "ISHCCalendarOption" specifies the "GetObject" method. The method
supplies the calendar object of an "IPlantObject" instance. A calendar is always integrated via
an "IPlantObject" instance.

Members

"GetObject" method
Supplies an error code of the type CFRESULT.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1405

CFRESULT
GetObject(Siemens::Runtime::HmiUnified::PlantModel::IPlantObject *
pCpmNode, CFSTR objectName, ICfUnknown** ppObject)
● cpmNode

[in]: Reference to the "IPlantObject" instance currently selected in the hierarchy

● objectName
[in]: The name of the "IPlantObject" instance

● ppObject
[out]: Returns an object of the type "ICfUnknown". The object is cast to a calendar object
using the "QueryInterface" method.
Example:
ISHCCalendarOptionPtr pShcOption;
ISHCCalendarPtr pCalendar;
pRuntime->GetOption(CCfString(ODK_SHC_OPTION),
(IOption**)&pShcOption);
if (nullptr != pShcOption)
{
 ICfUnknownPtr pUnk;
 pShcOption->GetObject(pPlantObject, ODK_SHC_CALENDAR, &pUnk);
 if (nullptr != pUnk)
 {
 pUnk->QueryInterface(IID_ISHCCalendar,
(ICfUnknown**)&pCal);
 }
}

Example
The following example serves as a basis for the other examples for the C++ interfaces of the
Calendar option.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1406 System Manual, 11/2019, Online help printout

It shows how you can obtain the "IPlantObject" instance and also an "ISHCCalendar" instance.
The "ISHCCalendar" instance referenced via pCalendar is also used in the other examples.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1407

Copy code
#include <iostream>
#include "IOdkShcInterface.h"
#include "IOdkRt.h"
#include "IOdkRtAlarm.h"
using namespace Siemens::Runtime::HmiUnified::Rt;
using namespace Siemens::Runtime::HmiUnified::Common;
using namespace Siemens::Runtime::HmiUnified::PlantModel;
IRuntimePtr pRuntime;
ISHCCalendarPtr pCalendar;
ISHCCalendarSettingsProviderPtr pCalendarProvider;
ISHCCategoryProviderPtr pShcCategoryProvider;
ISHCShiftTemplatesProviderPtr pShcShiftTemplateProvider;
ISHCDayProviderPtr pShcDayProvider;
ISHCDayTemplatesProviderPtr pShcDayTemplateProvider;
ISHCActionTemplatesProviderPtr pShcActionTemplateProvider;
CCfString projectName = L"";
if (CF_SUCCEEDED(Connect(projectName, &pRuntime)))
{
 ICfUnknownPtr pPlantModelUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"PlantModel"), &pPlantModelUnk);
 IPlantObjectPtr pPlantObject;
 if (pPlantModelUnk != nullptr && CF_SUCCEEDED(errCode))
 {
 IPlantModelPtr pPlantModel(pPlantModelUnk);
 CCfString strNode = L".hierarchy::Plant/Unit1";
 //gets Object for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 if (CF_SUCCEEDED(errCode) && pPlantObject != nullptr)
 {
 IOptionPtr pOdkOption;
 pRuntime->GetOption(CCfString(ODK_SHC_OPTION), &pOdkOption);
 if (nullptr != pOdkOption)
 {
 ISHCCalendarOptionPtr pShcOption;
 pOdkOption->QueryInterface(IID_ISHCCalendarOption,
(ICfUnknown**)&pShcOption);
 if (nullptr != pShcOption)
 {
 ICfUnknownPtr pUnk;
 pShcOption->GetObject(pPlantObject, ODK_SHC_CALENDAR, &pUnk);
 if (nullptr != pUnk)
 {
 pUnk->QueryInterface(IID_ISHCCalendar, (ICfUnknown**)&pCalendar);
 if (pCalendar != nullptr)
 {
 // Get all data provider
 pCalendar-
>GetActionTemplatesProvider(&pShcActionTemplateProvider);
 pCalendar->GetCategoryProvider(&pShcCategoryProvider);
 pCalendar->GetDayProvider(&pShcDayProvider);
 pCalendar->GetDayTemplateProvider(&pShcDayTemplateProvider);
 pCalendar->GetShiftTemplateProvider(&pShcShiftTemplateProvider);
 pCalendar->GetSettings(&pCalendarProvider);
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1408 System Manual, 11/2019, Online help printout

Copy code
 }
 }
 }
 }
}

19.10.7.2 ISHCCalendar (RT Uni)

Description
The C++ interface "ISHCCalendar" specifies the methods of a calendar.

The interface inherits from the "ICfUnknown" interface.

Members

"GetSettings" method
Supplies the "ISHCCalendarSettings" instances of the calendar.

CFRESULT GetSettings(ISHCCalendarSettings** calendar)
● calendar

[out]: The "ISHCCalendarSettings" instance

"GetCategoryProvider" method
Supplies an "ISHCCategoryProvider" instance. The provider enables access to the
"ISHCategory" instances of the calendar.

CFRESULT GetCategoryProvider(ISHCCategoryProvider**
ppCatgoryProvider)
● ppCatgoryProvider

[out]: The "ISHCCategoryProvider" instance

"GetShiftTemplateProvider" method
Supplies an "ISHCShiftTemplatesProvider" instance. The provider enables access to the
"ISHCShiftTemplate" instances of the calendar.

CFRESULT GetShiftTemplateProvider(ISHCShiftTemplatesProvider**
ppShiftTemplateProvider)
● ppShiftTemplateProvider

[out]: The "ISHCShiftTemplatesProvider" instance

"GetDayTemplateProvider" method
Supplies an "ISHCDayTemplatesProvider" instance. The provider enables access to the
"ISHCShiftTemplate" instances of the calendar.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1409

CFRESULT GetDayTemplateProvider(ISHCDayTemplatesProvider**
ppDayTemplateProvider)
● ppDayTemplateProvider

[out]: The "ISHCDayTemplatesProvider" instance

"GetActionTemplatesProvider" method
Supplies an "ISHCActionTemplatesProvider" instance. The provider enables access to the
"ISHCActionTemplate" instances of the calendar.

CFRESULT GetActionTemplatesProvider)(OUT
ISHCActionTemplatesProvider** ppActionTemplatesProvider)
● ppActionTemplatesProvider

[out]: The "ISHCActionTemplatesProvider" instance

"GetDayProvider" method
Supplies an "ISHCDayProvider" instance. The provider enables access to the "ISHCDay"
instances of the calendar.

CFRESULT GetDayProvider(ISHCDayProvider** ppDayProvider)
● ppDayProvider

[out]: The "ISHCDayProvider" instance

"GetObject" method
Creates an instance of the type defined in value and supplies a reference to the instance.

CFRESULT GetObject(const CFSTR value, ICfUnknown** ppObject)
● value

[in]: Possible values:

– "ODK_SHC_OPTION"

– "ODK_SHC_CALENDAR"

– "ODK_SHC_TIME_SLICE"

– "ODK_SHC_DAY_TEMPLATE"

– "ODK_SHC_DAY"

– "ODK_SHC_DAY_TEMPLATE"

– "ODK_SHC_ACTION_TEMPLATE"

– "ODK_SHC_ACTION_TEMPLATE_ELEMENT"

● ppObject
[out]: Reference to an object of the type "ICfUnknown", which can be cast to the
corresponding type.
Example:
ICfUnknownPtr pUnk;
ISHCShiftTemplatePtr pShcShiftTemplate; 　
pCalendar->GetObject(ODK_SHC_SHIFT_TEMPLATE, &pUnk);
pShcShiftTemplate = (ISHCShiftTemplatePtr)pUnk;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1410 System Manual, 11/2019, Online help printout

19.10.7.3 ISHCCalendarSettings (RT Uni)

Description
The C++ interface "ISHCCalendarSettings" specifies methods for the calendar settings of an
"ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"GetPlantObject" method
Supplies the name of the "IPlantObject" instance to which the calendar belongs.

GetPlantObject(CFSTR* pCpmNode)
● pCpmNode

[out]: The name of the "IPlantObject" instance

"GetFirstDayOfWeek" method
Supplies the first day of the week.

CFRESULT GetFirstDayOfWeek(CFENUM * pvarRet)
● pvarRet

Points to the enumeration "ShcWeekDay", which can contain the following values:

– Sunday (0)

– Monday (1)

– Tuesday (2)

– Wednesday (3)

– Thursday (4)

– Friday (5)

– Saturday (6)

"GetFirstWeekOfYear" method
Supplies the first week of the year.

CFRESULT GetFirstWeekOfYear(CFENUM * pvarRet)
● pvarRet

[out]: Points to the enumeration "ShcWeekStart", which can contain the following values:

– FirstOfJanuary (0): The first week starts on the first of January.

– AtLeastFourDays (1): The first week must have at least four days.

– WholeWeek (2): The first week must have at least seven days.

"GetFiscalYearStartDay" method
Supplies the first day of the fiscal year.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1411

CFRESULT GetFiscalYearStartDay(uint8_t* pvarRet)
● pvarRet

[out]: The first day of the fiscal year of the calendar.

"GetFiscalYearStartMonth" method
Supplies the first month of the fiscal year.

CFRESULT GetFiscalYearStartMonth(uint8_t* pvarRet)
● pvarRet

[out]: The first month of the fiscal year of the calendar.

"GetDayOffset" method
Supplies the offset with which the workday begins, calculated from midnight.

CFRESULT GetDayOffset(CFTIMESPAN64 * pvarRet)
● pvarRet

[out]: Supplies the number of hours after midnight with which the day begins.

"GetWorkDays" method
Supplies the workdays of the calendar.

CFRESULT GetWorkDays(uint8_t* pvarRet)
● pvarRet

[out]: The workdays of the calendar.

"GetTimeZone" method
Supplies the time zone of the calendar.

CFRESULT GetTimeZone(uint32_t* pTimeZone)
● pvarRet

[out]: The time zone ID of Microsoft.

19.10.7.4 ISHCCategory (RT Uni)

Description
The C++ interface "ISHCCategory" specifies the methods of a time category of an
"ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"GetName" method
Supplies the name of the "ISHCCategory" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1412 System Manual, 11/2019, Online help printout

CFRESULT GetName(CFSTR * pvarRet)
● pvarRet

[out]: The name

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCCategory" instance and their language code
IDs.

CFRESULT GetDescriptions(OUT ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: A map with int32/string pairs (language code ID for description).

Example:
ICfMapIDToVariantPtr pDescriptions;
hr = pShcCategory->GetDescriptions(&pDescriptions);
if (pDescriptions != nullptr && CF_SUCCEEDED(hr))
{
 std::cout << "Descriptions::" << std::endl << std::endl;
 uint32_t nCount2 = 0;
 pDescriptions->Count(&nCount2);
 for (uint32_t nIndex2 = 0; nIndex2 < nCount2; nIndex2++)
 {
 int32_t nLanguageID; pDescriptions->KeyAt(nIndex2,
&nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << "
Description=" << CCfSmartString(strDescription).ToUTF8().c_str() <<
std::endl;
 }
}

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCCategory" instance and their language
code IDs.

CFRESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: A map with int32/string pairs (language code ID for display name).

Example: Similar to "GetDescriptions"

"GetColor" method
Supplies the color of the "ISHCCategory" instance.

CFRESULT GetColor(uint32_t* pColor)
● pColor

[out]: Returns a 4-byte value for an RGBA color value.

"GetIsDeleted" method
Supplies the information on whether the "ISHCCategory" instance was deleted in Engineering.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1413

CFRESULT GetIsDeleted(CFBOOL* p_bIsDeleted) = 0;
● p_bIsDeleted

[out]:

– 0: Was not deleted (default)

– 1: Was deleted

19.10.7.5 ISHCCategoryEnumerator (RT Uni)

Description
The C++ interface "ISHCCategoryEnumerator" specifies methods for handling the
enumeration of the time categories of an "ISHCCalendar" instance. The enumeration is
returned by the Read method of an "ISHCCategoryProvider" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCCategory** ppItem)
● ppItem

[out]: The current "ISHCCategory" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of categories

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1414 System Manual, 11/2019, Online help printout

Example

Copy code
void PrintCategory(const ISHCCategoryEnumeratorPtr& p_pShcCategoryEnum)
{
 std::cout << std::endl << "************PrintCategory************" << std::endl << endl;
 if (p_pShcCategoryEnum != nullptr)
 {
 uint32_t nCount = 0;
 p_pShcCategoryEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 if (CF_SUCCEEDED(p_pShcCategoryEnum->MoveNext()))
 {
 ISHCCategoryPtr pShcCategory;
 p_pShcCategoryEnum->Current(&pShcCategory);
 if (pShcCategory != nullptr)
 {
 cout << endl;
 CFRESULT hr = CF_ERROR;
 CCfString strName;
 hr = pShcCategory->GetName(&strName);
 if (CF_SUCCEEDED(hr) && (!strName.IsEmpty()))
 {
 cout << "CategoryName= " << strName.ToUTF8().c_str() << endl;
 }
 uint32_t nColor;
 hr = pShcCategory->GetColor(&nColor);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Color= " << nColor << endl;
 }
 CFBOOL bIsDeleted;
 hr = pShcCategory->GetIsDeleted(&bIsDeleted);
 if (CF_SUCCEEDED(hr))
 {
 cout << "IsDeleted= " << (uint32_t)bIsDeleted << endl;
 }
 ICfMapIDToVariantPtr pDisplayNames;
 hr = pShcCategory->GetDisplayNames(&pDisplayNames);
 if (pDisplayNames != nullptr && CF_SUCCEEDED(hr))
 {
 std::cout << "DisplayNames::" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pDisplayNames->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName
=" << CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
 }
 }
 ICfMapIDToVariantPtr pDescriptions;
 hr = pShcCategory->GetDescriptions(&pDescriptions);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1415

Copy code
 if (pDescriptions != nullptr && CF_SUCCEEDED(hr))
 {
 std::cout << "Descriptions::" << std::endl << std::endl;
 uint32_t nCount2 = 0;
 pDescriptions->Count(&nCount2);
 for (uint32_t nIndex2 = 0; nIndex2 < nCount2; nIndex2++)
 {
 int32_t nLanguageID;
 pDescriptions->KeyAt(nIndex2, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << "
Description=" << CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
 }
 }
 }
 }
 }
 }
}

19.10.7.6 ISHCCategoryProvider (RT Uni)

Description
The C++ interface "ISHCCategoryProvider" provides you with read access to an
"ISHCCategoryEnumerator" instance which contains an enumeration with the time categories
of an "ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"Browse" method
Supplies an "ISHCCategoryEnumerator" instance which has access to an enumeration with
the "ISHCCategory" instances of the calendar.

CRFESULT Browse(ISHCCategoryEnumerator** data)
● data

[out]: The enumerator

Example:
ISHCCategoryEnumeratorPtr pShcCategoryEnum;
CFRESULT hr = pShcCategoryProvider->Browse(&pShcCategoryEnum);
if (CF_SUCCEEDED(hr))
 PrintCategory(pShcCategoryEnum);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1416 System Manual, 11/2019, Online help printout

19.10.7.7 ISHCTimeSlice (RT Uni)

Description
The C++ interface "ISHCTimeSlice" specifies the methods of a time slice.

The interface inherits from the "ICfUnknown" interface.

Members

"GetStartTime" method
Returns the start time of the "ISHCTimeSlice" instance.

CFRESULT GetStartTime(CFDATETIME64* pStartTime)
● pStartTime

[out]: Time stamp with the start time of the time slice

"GetDuration" method
Supplies the duration of the "ISHCTimeSlice" instance.

CFRESULT GetDuration(CFTIMESPAN64* pDuration)
● pDuration

[out]: The duration of the time slice

"GetCategory" method
Returns the time category time of the "ISHCTimeSlice" instance.

CFRESULT GetCategory(CFSTR* pstrCategoryName)
● pstrCategoryName

[out]: The name of the time category

"SetCategory" method
Sets the time category of the "ISHCTimeSlice" instance.

CFRESULT SetCategory(CFSTR pstrCategoryName)
● pstrCategoryName

[in]: The name of the new time category.

"SetStartTime" method
Sets the start time of the "ISHCTimeSlice" instance.

CFRESULT SetStartTime(CFDATETIME64 startTime)
● startTime

[in]: The new start time of the time slice.

"SetDuration" method
Sets the duration of the "ISHCTimeSlice" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1417

CRFESULT SetDuration(CFTIMESPAN64 duration)
● duration

[in]: The new duration of the time slice

19.10.7.8 ISHCTimeSliceEnumerator (RT Uni)

Description
The C++ interface "ISHCTimeSliceEnumerator" specifies methods for handling the
enumeration of the time slices of an "ISHCShiftTemplate" instance or "ISHCShift" instance.

The enumeration is returned by the Read method of these instances.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCTimeSlice** ppItem)
● ppItem

[out]: The current "ISHCTimeSlice" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of time slices

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1418 System Manual, 11/2019, Online help printout

Example

Copy code
void printTimeSlice(const ISHCTimeSliceEnumeratorPtr& p_pShcTimeSliceEnum)
{
 std::cout << endl << "***********TimeSlice*********" << std::endl << endl;
 if (p_pShcTimeSliceEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCout = 0;
 p_pShcTimeSliceEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 if (CF_SUCCEEDED(p_pShcTimeSliceEnum->MoveNext()))
 {
 cout << endl;
 ISHCTimeSlicePtr pTimeSlice;
 p_pShcTimeSliceEnum->Current(&pTimeSlice);
 if (pTimeSlice != nullptr)
 {
 CCfString strCategoryName;
 hr = pTimeSlice->GetCategory(&strCategoryName);
 if (CF_SUCCEEDED(hr) && (!strCategoryName.IsEmpty()))
 {
 std::cout << "Category= " << strCategoryName.ToUTF8().c_str() <<
std::endl;
 }
 CCfTimeSpan64 tsDuration;
 hr = pTimeSlice->GetDuration(&tsDuration);
 if (CF_SUCCEEDED(hr))
 {
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() <<
std::endl;
 }
 CCfDateTime64 dtStartTime;
 hr = pTimeSlice->GetStartTime(&dtStartTime);
 if (CF_SUCCEEDED(hr))
 {
 CCfString strStarttime = dtStartTime.GetDateTimeString(false);
 std::cout << "Start Time= " << strStarttime.ToUTF8().c_str() <<
std::endl;
 }
 }
 }
 }
 }
}

19.10.7.9 ISHCDay (RT Uni)

Description
The C++ interface "ISHCDay" specifies the methods of a day.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1419

The interface inherits from the "ICfUnknown" interface.

Members

"CreateShift" method
Returns a new "ISHCShift" instance.

CRFESULT CreateShift(ISHCShiftTemplate* pShiftTemplate, CFTIMESPAN64
startTime, ISHCShift** pShift)
● pShiftTemplate

[in]: The "ISHCShiftTemplate" instance on which the new shift is to be based.

● startTime
[in]: Time stamp for the start time of the new shift.

● pShift
[out]: The new shift

"DeleteShift" method
Deletes an "ISHCShift" instance.

CRFESULT DeleteShift(ISHCShift* pShift)
● pShift

[in]: Reference to the shift to be deleted.

"GetShifts" method
Supplies an "ISHCShiftEnumerator" instance via which you access the "ISHCShift" instances
of the "ISHCDay" instance.

CRFESULT GetShifts(ISHCShiftEnumerator** ppSHCShiftEnumerator)
● ppSHCShiftEnumerator

[out]: The enumerator with which you access the shifts of the "ISHCDay" instance. The shifts
are contained in an array.

"GetComments" method
Supplies a map with the comments of the "ISHCDay" instance and their language code IDs.

CRFESULT GetComments(ICfMapIDToVariant** ppComments)
● ppComments

[out]: A map with int32/string pairs (language code ID for comment).

Example:
ICfMapIDToVariantPtr pComments;
hr = pShcshift->GetComments(&pComments);
if (pComments != nullptr && CF_SUCCEEDED(hr))
{
 std::cout << "comments:-" << std::endl << std::endl;
 uint32_t nCount = 0; pComments->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1420 System Manual, 11/2019, Online help printout

 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID =" << nLanguageID << " Comments="
<< CCfSmartString(strComments).ToUTF8().c_str() << std::endl;
 }
}

"SetComments" method
Adds a new comment in the specified language to the "ISHCDay" instance.

CRFESULT SetComment(CFLCID languageId , CFSTR pComments)
● languageId

[in]: The language code ID

● pComments
[in]: The comment text

"GetStartTime" method
Returns the start time of the "ISHCDay" instance.

CRFESULT GetStartTime(CFDATETIME64* pStartTime)
● pStartTime

[out]: The start time

"SetStartTime" method
Sets the start time of the "ISHCDay" instance.

CRFESULT SetStartTime(CFDATETIME64 startTime)
● startTime

[in]: The new start time

"GetIsCustomized" method
Supplies the information on whether the "ISHCDay" instance was edited by users.

CRFESULT GetIsCustomized)(CFBOOL* pIsCustomized)
● pIsCustomized

[out]:

– 0: Was not processed

– 1: Was processed

"GetDayTemplate" method
Supplies the "ISHCDayTemplate" instance on which the "ISHCDay" instance is based.

CRFESULT GetDayTemplate(CFSTR* pDayTemplate)
● pDayTemplate

[out]: The day template

"SetDayTemplate" method
Sets the "ISHCDayTemplate" instance of the "ISHCDay" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1421

CRFESULT SetDayTemplate(CFSTR pDayTemplate)
● pDayTemplate

[in]: The new day template

19.10.7.10 ISHCDayEnumerator (RT Uni)

Description
The C++ interface "ISHCDayEnumerator" specifies methods for handling the enumeration of
the days of an "ISHCCalendar" instance. The enumeration is returned by the "Read" method
of an "ISHCDayProvider" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCTimeSlice** ppItem)
● ppItem

[out]: The current "ISHCDay" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

"Count" method
Output the size of the enumeration or the number of its elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of days

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1422 System Manual, 11/2019, Online help printout

Example

Copy code
void PrintDay(const ISHCDayEnumeratorPtr& p_pShcdayEnum)
{
 cout << endl << "****************PrintDay******************" << endl << endl;
 if (p_pShcdayEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCount = 0;
 p_pShcdayEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 if (CF_SUCCEEDED(p_pShcdayEnum->MoveNext()))
 {
 ISHCDayPtr pShcday;
 p_pShcdayEnum->Current(&pShcday);
 if (pShcday != nullptr)
 {
 CCfString strDaytemplate;
 hr = pShcday->GetDayTemplate(&strDaytemplate);
 if (CF_SUCCEEDED(hr))
 {
 cout << "DayTemplate= " << strDaytemplate.ToUTF8().c_str() << endl;
 }
 ICfMapIDToVariantPtr pComments;
 hr = pShcday->GetComments(&pComments);
 if (CF_SUCCEEDED(hr) && pComments != nullptr)
 {
 std::cout << "comments:-" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pComments->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID = " << nLanguageID << " Comments= " <<
CCfSmartString(strComments).ToUTF8().c_str() << std::endl;
 }
 }
 CFBOOL bIsCustomized;
 hr = pShcday->GetIsCustomized(&bIsCostomized);
 if (CF_SUCCEEDED(hr))
 {
 cout << "IsCustomized=" << (uint32_t)bIsCostomized << endl;
 }
 CCfDateTime64 dtStartTime;
 hr = pShcday->GetStartTime(&dtStartTime);
 if (CF_SUCCEEDED(hr))
 {
 cout << "StartTime= " <<
dtStartTime.GetDateTimeString(false).ToUTF8().c_str() << endl;
 }
 ISHCShiftEnumeratorPtr pDayShifts;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1423

Copy code
 hr = pShcday->GetShifts(&pDayShifts);
 if (CF_SUCCEEDED(hr)) printShift(pDayShifts);
 }
 }
 }
 }
}

19.10.7.11 ISHCDayProvider (RT Uni)

Description
The C++ interface "ISHCDayProvider" provides you with access to an "ISHCDayEnumerator"
instance which contains an enumeration with the days of an "ISHCCalendar" instance. With the
methods of the provider, you can create, read, update and delete days. The provider is returned
by the "GetDayProvider" method of an "ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"Browse" method
Supplies an "ISHCDayEnumerator" instance which has access to an enumeration with the
"ISHCDay" instances of a specific time period of the calendar.

CRFESULT Browse(CFDATETIME64 StartTime, CFDATETIME64 endTime,
ISHCDayEnumerator** ppISHCDayEnumerator)
● startTime

[in]: Start time

● endTime
[in]: End time

● ppISHCDayEnumerator
[out]: The enumerator

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1424 System Manual, 11/2019, Online help printout

Example:

Copy code
CCfTimeSpan64 Get1Hour()
{
 CCfDateTime64 dt = CCfDateTime64::Now(false);
 CFDATETIMEST st2; 　
 dt.GetDateTimeStruct(st2);
 st2.cHours = st2.cHours - 1; 　
 CCfDateTime64 dt2;
 dt2.SetFromDateTimeStruct(&st2);
 return dt.GetDifference(dt2);
} 　
CCfDateTime64 GetStartoftheDay()
{
 CCfDateTime64 dt = CCfDateTime64::Now(false);
 CFDATETIMEST st;
 dt.GetDateTimeStruct(st);
 st.cHours = 0;
 st.cMinutes = 0;
 st.cSeconds = 0;
 st.sHundredNanoSeconds = 0;
 st.sMicroSeconds = 0;
 st.sMilliSeconds = 0; 　
 dt.SetFromDateTimeStruct(&st);
 return dt;
} 　 　
ISHCDayEnumeratorPtr pDayEnum; // Get day instances for a timespan of three days
CFRESULT hr = pShcDayProvider->Browse(GetStartoftheDay() - (Get1Hour() * 24),
GetStartoftheDay() + (Get1Hour() * 48), &pDayEnum);

"Create" method
Adds new days to the enumeration with the "ISHCDay" instances of the calendar.

CFRESULT Create(ICfArrayIUnknown* pDays)i
● pDays

[in]: An array with the days to be added.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1425

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1426 System Manual, 11/2019, Online help printout

Copy code
void CreateDayWithShift()
{
 if (nullptr != pShcDayTemplateProvider && nullptr != pCalendar && nullptr !=
pShcDayProvider && pShcShiftTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 CCfArrayIUnknown arrDays;
 ICfArrayIUnknownPtr pDays;
 hr = pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);
 if (CF_SUCCEEDED(hr) && pShcDayTemplates != nullptr)
 {
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 if (nCount > 0)
 {
 if (CF_SUCCEEDED(pShcDayTemplates->MoveNext()))
 {
 ISHCDayTemplatePtr pShcDayTemplate;
 hr = pShcDayTemplates->Current(&pShcDayTemplate);
 CCfString strDayTemplateName;
 pShcDayTemplate->GetName(&strDayTemplateName);
 ICfUnknownPtr pUnk;
 pCalendar->GetObject(ODK_SHC_DAY, &pUnk);
 ISHCDayPtr pShcDay = (ISHCDayPtr)pUnk;
 if (pShcDay != nullptr)
 {
 hr = pShcDay->SetDayTemplate(strDayTemplateName);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDayTemplate" << std::endl;
 }
 CCfDateTime64 dt = GetStartoftheDay();
 hr = pShcDay->SetStartTime(dt);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetStartTime" << std::endl;
 }
 hr = pShcDay->SetComment(1033, CCfString(L"DayComments"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetComment" << std::endl;
 }
 }
 arrDays.Append(pShcDay);
 arrDays.DetachEnumerator(&pDays);
 hr = pShcDayProvider->Create(pDays);
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplateEnum;
 hr = pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplateEnum);
 if (CF_SUCCEEDED(hr) && pShcShiftTemplateEnum != nullptr)
 {
 if (CF_SUCCEEDED(pShcShiftTemplateEnum->MoveNext()))
 {
 ISHCShiftTemplatePtr pshcShiftTemplate;
 pShcShiftTemplateEnum->Current(&pshcShiftTemaplate);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1427

Copy code
 ISHCShiftPtr pShcdayShift;
 CCfTimeSpan64 starttime = Get1Hour() * 10;
 hr = pShcDay->CreateShift(pshcShiftTemaplate, starttime,
&pShcdayShift);
 if (CF_FAILED(hr) || pShcdayShift == nullptr)
 {
 std::cout << "failed to Create Shift" << std::endl;
 }
 }
 }
 }
 }
 }
 }
}

"Update" method
Updates "ISHCDay" instances of the enumeration.

CRFESULTUpdate(ICfArrayIUnknown* pDays)
● pDays

[in]: An array with the days to be updated.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1428 System Manual, 11/2019, Online help printout

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1429

Copy code
void UpdateDayWithShift()
{
 if (pShcDayProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCDayEnumeratorPtr pDayEnum;
 hr = pShcDayProvider->Browse(GetStartoftheDay() - (Get1Hour() * 24),
GetStartoftheDay() + (Get1Hour() * 24), &pDayEnum);
 if (pDayEnum != nullptr && CF_SUCCEEDED(hr))
 {
 hr = pDayEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 CCfArrayIUnknown ArrayDays;
 ICfArrayIUnknownPtr pArrayDays;
 ISHCDayPtr pShcDay;
 pDayEnum->Current(&pShcDay);
 if (pShcDay != nullptr)
 {
 CCfDateTime64 dt;
 pShcDay->GetStartTime(&dt);
 dt.AddTimeSpan(Get1Hour());
 hr = pShcDay->SetStartTime(dt);//Update StartTime Not Supported
 hr=pShcDay->SetComment(1033, CCfString(L"DayComment"));
 if (CF_FAILED(hr))
 {
 std::cout << "Failed to SetComment" << std::endl;
 }
 ISHCShiftEnumeratorPtr pShiftEnum;
 hr = pShcDay->GetShifts(&pShiftEnum);
 if (CF_SUCCEEDED(hr) && pShiftEnum != nullptr)
 {
 hr = pShiftEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 if (pShcShift != nullptr)
 {
 CCfTimeSpan64 ts;
 hr = pShcShift->GetDuration(&ts);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to GetDuration" << std::endl;
 }
 hr = pShcShift->SetDuration(ts + Get1Hour());
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDuration" << std::endl;
 }
 hr = pShcShift->SetComment(1033,
CCfString(L"UpdatedShiftComments"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetComment" << std::endl;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1430 System Manual, 11/2019, Online help printout

Copy code
 }
 }
 }
 }
 ArrayDays.Append(pShcDay);
 ArrayDays.DetachEnumerator(&pArrayDays);
 hr = pShcDayProvider->Update(pArrayDays);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Update" << std::endl;
 }
 }
 }
 }
 }
}

"Delete" method
Deletes "ISHCDay" instances of the calendar from the enumeration.

CRFESULT Delete(ICfArrayIUnknown* pActionTemplates)
● pActionTemplates

[in]: An array with the days to be deleted.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1431

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1432 System Manual, 11/2019, Online help printout

Copy code
void DeleteDayWithShift()
{
 if (pShcDayProvider != nullptr)
 { 　
 CFRESULT hr = CF_ERROR;
 ISHCDayEnumeratorPtr pDayEnum;
 hr = pShcDayProvider->Browse(GetStartoftheDay() - (Get1Hour() * 24),
GetStartoftheDay() + (Get1Hour() * 48), &pDayEnum);
 if (pDayEnum != nullptr && CF_SUCCEEDED(hr))
 {
 uint32_t nSize = 0;
 pDayEnum->Count(&nSize);
 CCfArrayIUnknown ArrayDays;
 ICfArrayIUnknownPtr pArrayDays;
 for (uint32_t nIdnex = 0;nIdnex < nSize;nIdnex++)
 {
 hr = pDayEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 ISHCDayPtr pShcDay;
 pDayEnum->Current(&pShcDay);
 if (pShcDay != nullptr)
 {
 ISHCShiftEnumeratorPtr pShiftEnum;
 hr = pShcDay->GetShifts(&pShiftEnum);
 if (CF_SUCCEEDED(hr) && pShiftEnum != nullptr)
 {
 hr = pShiftEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 if (pShcShift != nullptr)
 {
 hr = pShcDay->DeleteShift(pShcShift);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to DeleteShift" << std::endl;
 }
 }
 }
 }
 ArrayDays.Append(pShcDay);
 }
 ArrayDays.DetachEnumerator(&pArrayDays);
 hr = pShcDayProvider->Delete(pArrayDays);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Delete" << std::endl;
 }
 }
 }
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1433

19.10.7.12 ISHCDayTemplate (RT Uni)

Description
The C++ interface "ISHCDayTemplate" specifies the methods of a day template.

The interface inherits from the "ICfUnknown" interface.

Members

"GetName" method
Supplies the name of the "ISHCDayTemplate" instance.

CFRESULT GetName(CFSTR * pvarRet)
● pvarRet

[out]: The name of the day template

"SetName" method
Sets the name of the "ISHCDayTemplate" instance.

CRFESULT SetName(CFSTR value)

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCDayTemplate" instance and their language
code IDs.

CFRESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: A map with int32/string pairs (language code ID for display name).

Example:
ICfMapIDToVariantPtr pDisplayNames;
CFRESULT hr = pShcDayTemplate->GetDisplayNames(&pDisplayNames);
if (pDisplayNames != nullptr && CF_SUCCEEDED(hr))
{
 std::cout << "DisplayNames::" << std::endl << std::endl;
 uint32_t nCount2 = 0;
 pDisplayNames->Count(&nCount2);
 for (uint32_t nIndex2 = 0; nIndex2 < nCount2; nIndex2++)
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex2, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << "
DisplayName=" << CCfSmartString(strDIsplayname).ToUTF8().c_str() <<
std::endl;
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1434 System Manual, 11/2019, Online help printout

"SetDisplayName" method
Adds a new display name in the specified language to the "ISHCDayTemplate" instance.

CRFESULT SetDisplayName(CFLCID languageId, CFSTR pDisplayName)
● languageId

[in]: The language code ID

● pDisplayName
[in]: The comment text

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCDayTemplate" instance and their language
code IDs.

CFRESULT GetDescriptions(ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: A map with int32/string pairs (language code ID for description).

Example: Similar to "GetDescriptions" of "ISHCCategory".

"SetDescription" method
Adds a new description in the specified language to the "ISHCDayTemplate" instance.

CRFESULT SetDescription)(CFLCID languageId, CFSTR pDescriptions)
● languageId

[in]: The language code ID

● pDescriptions
[in]: The description text

"GetShifts" method
Supplies an "ISHCShiftEnumerator" instance. The enumerator provides you with access to the
"ISHCShift" instances of the "ISHCDayTemplate" instance.

GetShifts(ISHCShiftEnumerator** ppSHCShiftEnumerator)
● ppSHCShiftEnumerator

[out]: The enumerator

"CreateShift" method
Adds an "ISHCShift" instance to the "ISHCDayTemplate" instance.

CRFESULT CreateShift(ISHCShiftTemplate* pShiftTemplate, CFTIMESPAN64
pStartTime, ISHCShift** pShift)
● pShiftTemplate

[in]: Reference to the shift template on which the shift is based.

● pStartTime
[in] Time stamp with the start time of the shift

● pShift
[out] reference to the new shift

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1435

"DeleteShift" method
Deletes an "ISHCShift" instance of the "ISHCDayTemplate" instance.

CFRESULTDeleteShift(ISHCShift* pShift)
● pShift

[in]: Reference to the shift to be deleted

"GetIsDeleted" method
Supplies the information on whether the "ISHCDayTemplate" instance was deleted by users.
CFRESULT GetIsDeleted(CFBOOL* pIsDeleted)
● pIsDeleted

[out]:

– 0: Was not deleted

– 1: Was deleted

19.10.7.13 ISHCDayTemplatesProvider (RT Uni)

Description
The C++ interface "ISHCDayTemplatesProvider" provides you with access to an
"ISHCDayTemplateEnumerator" instance which contains an enumeration with the day
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create,
read, update and delete day templates. The provider is returned by the
"GetDayTemplateProvider" method of an "ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"Browse" method
Supplies an "ISHCDayTemplateEnumerator" instance which has access to an enumeration
with the "ISHCDayTemplate" instances of the calendar.

CRFESULT Browse(CFBOOL includeDeleted, ISHCDayTemplateEnumerator**
ppISHCDayTemplateEnumerator)
● includeDeleted

Saves whether the enumerator also has access to the deleted day templates.

● ppISHCDayTemplateEnumerator
[out]: The enumerator

Example:
ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
CFRESULT hr = pShcDayTemplateProvider->Browse(CF_FALSE,
&pShcDayTemplates);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1436 System Manual, 11/2019, Online help printout

"Create" method
Adds new "ISHCDayTemplate" instances to the enumeration with the"ISHCDayTemplate"
instances of the calendar.

CRFESULTUpdate(ICfArrayIUnknown* pDayTemplates)
● pDayTemplates

[in]: An array with the day templates to be added.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1437

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1438 System Manual, 11/2019, Online help printout

Copy code
void CreateDayTemplateWithShift()
{
 if (pCalendar != nullptr && pShcDayTemplateProvider != nullptr &&
pShcShiftTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;
 pCalendar->GetObject(ODK_SHC_DAY_TEMPLATE, &pUnk);
 CCfArrayIUnknown ArrayTemplate;
 ICfArrayIUnknownPtr pArrayTemplate;
 ISHCDayTemplatePtr pShcDayTemplate = (ISHCDayTemplatePtr)pUnk;
 if (pShcDayTemplate != nullptr)
 {
 hr = pShcDayTemplate->SetName(CCfString(L"DaytemplateName"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetName" << std::endl;
 }
 hr = pShcDayTemplate->SetDisplayName(1033,
CCfString(L"DayTemplateDisplayName"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDisplayName" << std::endl;
 }
 hr = pShcDayTemplate->SetDescription(1033, CCfString(L"DayTemplate
Descriptions"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDescription" << std::endl;
 }
 }
 ArrayTemplate.Append(pShcDayTemplate);
 ArrayTemplate.DetachEnumerator(&pArrayTemplate);
 hr = pShcDayTemplateProvider->Create(pArrayTemplate);
 if (CF_SUCCEEDED(hr))
 {
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplates;
 hr = pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplates);
 if (CF_SUCCEEDED(hr) && pShcShiftTemplates != nullptr)
 {
 if (CF_SUCCEEDED(pShcShiftTemplates->MoveNext()))
 {
 ISHCShiftTemplatePtr pShcshiftTemplate;
 pShcShiftTemplates->Current(&pShcshiftTemplate);
 if (pShcshiftTemplate != nullptr)
 {
 CCfString strShiftTemplateName;
 pShcshiftTemplate->GetName(&strShiftTemplateName);
 ISHCShiftPtr pShift;
 hr = pShcDayTemplate->CreateShift(pShcshiftTemplate, Get1Hour() * 1,
&pShift);
 if (CF_FAILED(hr) || pShift == nullptr)
 {
 cout << "Failed to Create Shift" << endl;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1439

Copy code
 }
 }
 }
 }
 }
}

"Update" method
Updates "ISHCDayTemplate" instances of the enumeration.

CRFESULTUpdate(ICfArrayIUnknown* pDayTemplates)
● pDayTemplates

[in]: An array with the day templates to be updated.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1440 System Manual, 11/2019, Online help printout

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1441

Copy code
void UpdateDayTemplateWithShift()
{
 if (pShcDayTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 hr = pShcDayTemplateProvider->Browse(false, &pShcDayTemplates);
 CCfArrayIUnknown ArrayDayTemplate;
 ICfArrayIUnknownPtr pArrayDayTemplate;
 if (CF_SUCCEEDED(hr) && pShcDayTemplates != nullptr)
 {
 uint32_t nCount = 0; pShcDayTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 if (CF_SUCCEEDED(pShcDayTemplates->MoveNext()))
 {
 ISHCDayTemplatePtr pShcDayTemplate;
 hr = pShcDayTemplates->Current(&pShcDayTemplate);
 if (CF_SUCCEEDED(hr))
 {
 hr = pShcDayTemplate->SetName(CCfString(L"UpdatedDayTemplateName"));
 if (CF_FAILED(hr))
 {
 std::cout << "SetName failed" << std::endl;
 }
 ISHCShiftEnumeratorPtr pShiftEnum;
 hr = pShcDayTemplate->GetShifts(&pShiftEnum);
 if (CF_SUCCEEDED(hr) && pShiftEnum != nullptr)
 {
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 if (CF_SUCCEEDED(pShiftEnum->MoveNext()))
 {
 ISHCShiftPtr pShcShift;
 hr = pShiftEnum->Current(&pShcShift);
 if (CF_SUCCEEDED(hr) && pShcShift != nullptr)
 {
 ISHCTimeSliceEnumeratorPtr pShcTimeSliceEnum;
 hr = pShcShift->GetTimeSlices(&pShcTimeSliceEnum);
 pShcShift->SetDuration(Get1Hour() * 8);
 pShcShift->SetComment(1033, CCfString("ShiftComment"));
 if (CF_SUCCEEDED(hr) && pShcTimeSliceEnum != nullptr)
 {
 uint32_t nCount1 = 0;
 hr = pShcTimeSliceEnum->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1+
+)
 {
 if (CF_SUCCEEDED(pShcTimeSliceEnum->MoveNext()))
 {
 ISHCTimeSlicePtr pShctimeslice;
 hr = pShcTimeSliceEnum-
>Current(&pShctimeslice);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1442 System Manual, 11/2019, Online help printout

Copy code
 if (pShctimeslice != nullptr)
 {
 hr = pShctimeslice-
>SetCategory(CCfString(L"Maintenance"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetCategory"
<< std::endl;
 }
 }
 }
 } 　
 }
 }
 }
 }
 }
 ArrayDayTemplate.Append(pShcDayTemplate);
 }
 }
 }
 ArrayDayTemplate.DetachEnumerator(&pArrayDayTemplate);
 }
 hr = pShcDayTemplateProvider->Update(pArrayDayTemplate);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Update" << std::endl;
 }
 }
}

"Delete" method
Deletes "ISHCDayTemplate" instances of the calendar from the enumeration.

CRFESULT Delete(ICfArrayIUnknown* pDayTemplates)
● pDayTemplates

[in]: An array with the day templates to be deleted.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1443

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1444 System Manual, 11/2019, Online help printout

Copy code
void DeleteDaytemplateWithShift()
{
 if (pShcDayTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 hr = pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);
 CCfArrayIUnknown ArrayDayTemplate;
 ICfArrayIUnknownPtr pArrayDayTemplate;
 if (CF_SUCCEEDED(hr) && pShcDayTemplates != nullptr)
 {
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 if (CF_SUCCEEDED(pShcDayTemplates->MoveNext()))
 {
 ISHCDayTemplatePtr pShcDayTemplate;
 hr = pShcDayTemplates->Current(&pShcDayTemplate);
 if (CF_SUCCEEDED(hr) && pShcDayTemplate != nullptr)
 { 　 　
 ISHCShiftEnumeratorPtr pShiftEnum;
 hr = pShcDayTemplate->GetShifts(&pShiftEnum);
 if (CF_SUCCEEDED(hr) && pShiftEnum != nullptr)
 {
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 if (CF_SUCCEEDED(pShiftEnum->MoveNext()))
 {
 ISHCShiftPtr pShcShift;
 hr = pShiftEnum->Current(&pShcShift);
 if (CF_SUCCEEDED(hr) && pShcShift != nullptr)
 {
 hr = pShcDayTemplate->DeleteShift(pShcShift);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Update" << std::endl;
 }
 }
 }
 }
 }
 ArrayDayTemplate.Append(pShcDayTemplate);
 }
 }
 }
 ArrayDayTemplate.DetachEnumerator(&pArrayDayTemplate);
 hr = pShcDayTemplateProvider->Delete(pArrayDayTemplate);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Update" << std::endl;
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1445

Copy code
 }
}

19.10.7.14 ISHCShiftTemplate (RT Uni)

Description
The C++ interface "ISHCShiftTemplate" specifies the methods of a shift template.

The interface inherits from the "ICfUnknown" interface.

Members

"GetName" method
Supplies the name of the "ISHCShiftTemplate" instance.

GetName(CFSTR * pvarRet)
● pvarRet

[out]: Name

"SetName" method
Sets the name of the "ISHCShiftTemplate" instance.

CRFESULT SetName(CFSTR value)

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCShiftTemplate" instance and their language
code IDs.

CFRESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: A map with int32/string pairs (language code ID for display name).

"SetDisplayName" method
Adds a new entry to a map with the display names of the "ISHCShiftTemplate" instance and
their language code IDs.

CRFESULT SetDisplayName(CFLCID languageId, CFSTR pDisplayName)
● languageId

[in]: The language code ID

● pDisplayName
[in]: The comment text

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCShiftTemplate" instance and their language
code IDs.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1446 System Manual, 11/2019, Online help printout

CFRESULT GetDescriptions(ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: A map with int32/string pairs (language code ID for description).

"SetDescription" method
Adds a new entry to a map with the description of the "ISHCShiftTemplate" instance and their
language code IDs.

CRFESULT SetDescription(CFLCID languageId, CFSTR pDescriptions)
● languageId

[in]: The language code ID

● pDescriptions
[in]: The description text

"GetIsDeleted" method
Supplies the information on whether the "ISHCShiftTemplate" instance was deleted by users.

CFRESULT GetIsDeleted(CFBOOL* pIsDeleted)
● pIsDeleted

[out]:

– 0: Was not deleted

– 1: Was deleted

"GetDuration" method
Supplies the duration of the "ISHCShiftTemplate" instance.

CFRESULT GetDuration(CFTIMESPAN64* pDuration)
● pDuration

[out]: The duration of the shift template

"SetDuration" method
Sets the duration of the "ISHCShiftTemplate" instance.

CFRESULT SetDuration(CFTIMESPAN64 duration)
● duration

[in]: The duration of the shift template

"GetTimeSlices" method
Supplies an "ISHCTimeSliceEnumerator" instance. The enumerator provides you with access
to the "ISHCTimeSlice" instances of the "ISHCShiftTemplate" instance.

CRFESULT GetTimeSlices(ISHCTimeSliceEnumerator**
ppSHCTimeSliceEnumerator)
● ppSHCTimeSliceEnumerator

[out]: The enumerator

"CreateTimeSlice" method
Adds an "ISHCTimeSlice" instance to the "ISHCShiftTemplate" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1447

CRFESULT CreateTimeSlice(ISHCTimeSlice* pSlice)
● pSlice

[in]: Reference to the new time slice

"DeleteTimeSlice" method
Deletes an "ISHCTimeSlice" instance of the "ISHCShiftTemplate" instance.

CRFESULT DeleteTimeSlice(ISHCTimeSlice* pSlice)
● pSlice

[in]: Reference to the time slice to be deleted

19.10.7.15 ISHCShiftTemplateEnumerator (RT Uni)

Description
The C++ interface "ISHCShiftTemplateEnumerator" specifies methods for handling the
enumeration of the shift templates of an "ISHCCalendar" instance. The enumeration is returned
by the "Read" method of an "ISHCShiftTemplatesProvider" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCShiftTemplate** ppItem)
● ppItem

[out]: The current shift template

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.

Supplies the number of shift templates in the list.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of shift templates

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1448 System Manual, 11/2019, Online help printout

Example

Copy code
void PrintShiftTemplate(const ISHCShiftTemplateEnumeratorPtr& p_pShcShiftTemplateEnum)
{
 std::cout << std::endl << "************PrintShiftTemplate************" << std::endl <<
endl;
 if (p_pShcShiftTemplateEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCout = 0;
 p_pShcShiftTemplateEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 cout << endl;
 if (CF_SUCCEEDED(p_pShcShiftTemplateEnum->MoveNext()))
 {
 ISHCShiftTemplatePtr pShcShiftTemplate;
 p_pShcShiftTemplateEnum->Current(&pShcShiftTemplate);
 if (pShcShiftTemplate != nullptr)
 { 　
 CCfString strName;
 hr = pShcShiftTemplate->GetName(&strName);
 if (CF_SUCCEEDED(hr) && (!strName.IsEmpty()))
 {
 std::cout << "Name=" << strName.ToUTF8().c_str() << std::endl;
 }
 CCfTimeSpan64 tsDuration;
 hr = pShcShiftTemplate->GetDuration(&tsdurantion);
 if (CF_SUCCEEDED(hr))
 {
 CCfString strDuration = tsdurantion.GetTimeSpanString();
 std::cout << "Duration=" << strDuration.ToUTF8().c_str() <<
std::endl;
 }
 CFBOOL bIsDeleted;
 hr = pShcShiftTemplate->GetIsDeleted(&bIsDeleted);
 if (CF_SUCCEEDED(hr))
 {
 std::cout << "ISDeleted=" << (uint32_t)bIsDeleted << std::endl;
 }
 ICfMapIDToVariantPtr pDescriptions;
 hr = pShcShiftTemplate->GetDescriptions(&pDescriptions);
 if (pDescriptions != nullptr && CF_SUCCEEDED(hr))
 {
 std::cout << "Descriptions=" << std::endl << std::endl; uint32_t
nCount = 0;
 pDescriptions->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pDescriptions->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << " Description="
<< CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1449

Copy code
 }
 ICfMapIDToVariantPtr pDisplayNames;
 hr = pShcShiftTemplate->GetDisplayNames(&pDisplayNames);
 if (pDisplayNames != nullptr && CF_SUCCEEDED(hr))
 {
 std::cout << "DisplayNames::" << std::endl << std::endl;
 uint32_t nCount = 0;
 pDisplayNames->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName="
<< CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
 }
 }
 ISHCTimeSliceEnumeratorPtr pShiftTemplatetimeSlice;
 hr = pShcShiftTemplate->GetTimeSlices(&pShiftTemplatetimeSlice);
 if (CF_SUCCEEDED(hr)) printTimeSlice(pShiftTemplatetimeSlice);
 }
 }
 }
 }
}

19.10.7.16 ISHCShiftTemplatesProvider (RT Uni)

Description
The C++ interface "ISHCShiftTemplatesProvider" provides you with access to an
"ISHCShiftTemplateEnumerator" instance which contains an enumeration with the shift
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create,
read, update and delete shift templates. The provider is returned by the
"GetShiftTemplateProvider" method of an "ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"Browse" method
Supplies an "ISHCShiftTemplateEnumerator" instance which has access to an enumeration
with the "ISHCShiftTemplate" instances of the calendar.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1450 System Manual, 11/2019, Online help printout

CRFESULT Browse(CFBOOL includeDeleted, ISHCShiftTemplateEnumerator**
ppISHCShiftTemplateEnumerator)
● includeDeleted

Saves whether the enumerator also has access to the deleted shift templates.

● ppISHCShiftTemplateEnumerator
[out]: The enumerator

Example:
ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
CFRESULT hr = pShcDayTemplateProvider->Browse(CF_FALSE,
&pShcDayTemplates);

"Create" method
Adds new shift templates to the enumeration with the "ISHCShiftTemplate" instances of the
calendar.

CFRESULT Create(ICfArrayIUnknown* pShiftTemplates)
● pShiftTemplates

[in]: An array with the shift templates to be added.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1451

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1452 System Manual, 11/2019, Online help printout

Copy code
void CreateShiftTemplateWithTimeslice()
{
 if (pShcShiftTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCShiftTemplatePtr pShcShiftTemplate;
 ICfUnknownPtr pUnk;
 pCalendar->GetObject(ODK_SHC_SHIFT_TEMPLATE, &pUnk);
 pShcShiftTemplate = (ISHCShiftTemplatePtr)pUnk;
 if (pShcShiftTemplate != nullptr)
 {
 hr = pShcShiftTemplate->SetName(CCfString(L"ShiftTemplateName"));
 if (CF_FAILED(hr))
 {
 cout << "Failed to SetName" << endl;
 }
 hr = pShcShiftTemplate->SetDisplayName(1033, CCfString(L"ShiftDisplayName"));
 if (CF_FAILED(hr))
 {
 cout << "Failed to SetDisplayName" << endl;
 }
 hr = pShcShiftTemplate->SetDescription(1033,
CCfString(L"ShiftTemplateDescription"));
 if (CF_FAILED(hr))
 {
 cout << "Failed to SetDescription" << endl;
 } 　
 hr = pShcShiftTemplate->SetDuration(Get1Hour() * 8);
 if (CF_FAILED(hr))
 {
 cout << "Failed to SetDuration" << endl;
 }
 ICfArrayIUnknownPtr pArrayShiftTemplate;
 CCfArrayIUnknown ArrayShiftTemplate;
 ArrayShiftTemplate.Append(pShcShiftTemplate);
 ArrayShiftTemplate.DetachEnumerator(&pArrayShiftTemplate);
 hr = pShcShiftTemplateProvider->Create(pArrayShiftTemplate);
 if (CF_FAILED(hr))
 {
 cout << "Failed to v" << endl;
 }
 ICfUnknownPtr pUnkTimeSlice;
 pCalendar->GetObject(ODK_SHC_TIME_SLICE, &pUnkTimeSlice);
 if (pUnkTimeSlice != nullptr)
 {
 ISHCTimeSlicePtr pShcTimeSlice;
 pUnkTimeSlice->QueryInterface(IID_ISHCTimeSlice,
(ICfUnknown**)&pShcTimeSlice);
 if (pShcTimeSlice != nullptr)
 {
 pShcTimeSlice->SetCategory(CCfString(L"Working"));
 pShcTimeSlice->SetDuration(Get1Hour() * 1);
 CCfDateTime64 dt = GetStartoftheDay();
 pShcTimeSlice->SetStartTime(dt);
 hr = pShcShiftTemplate->CreateTimeSlice(pShcTimeSlice);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1453

Copy code
 if (CF_FAILED(hr))
 {
 std::cout << "Failed to Create TimeSlcie" << std::endl;
 }
 }
 }
 }
 }
}

"Update" method
Updates the enumeration with the "ISHCShiftTemplate" instances of the calendar.

CRFESULT Update(ICfArrayIUnknown* pShiftTemplates)
● pShiftTemplates

[in]: An array with the shift templates to be updated.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1454 System Manual, 11/2019, Online help printout

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1455

Copy code
void UpdateShiftTemplateWithTimeSlice()
{
 if (pShcShiftTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplates;
 hr = pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplates);
 CCfArrayIUnknown ArrayShiftTemplate;
 ICfArrayIUnknownPtr pArrayShiftTemplate;
 if (CF_SUCCEEDED(hr) && pShcShiftTemplates != nullptr)
 {
 uint32_t nCount = 0;
 pShcShiftTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 if (CF_SUCCEEDED(pShcShiftTemplates->MoveNext()))
 {
 ISHCShiftTemplatePtr pShcShiftTemplate;
 hr = pShcShiftTemplates->Current(&pShcShiftTemplate);
 if (CF_SUCCEEDED(hr))
 {
 hr = pShcShiftTemplate->SetDuration(Get1Hour() * 6);
 if (CF_FAILED(hr))
 {
 std::cout << "SetDuration failed" << std::endl;
 }
 hr = pShcShiftTemplate-
>SetName(CCfString(L"UpdatedShiftTemplateName"));
 if (CF_FAILED(hr))
 {
 std::cout << "SetName failed" << std::endl;
 }
 ISHCTimeSliceEnumeratorPtr pTimeSlilceEnum;
 hr = pShcShiftTemplate->GetTimeSlices(&pTimeSlilceEnum);
 if (CF_SUCCEEDED(hr) && pTimeSlilceEnum != nullptr)
 {
 uint32_t nlength = 0;
 pTimeSlilceEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 if (CF_SUCCEEDED(pTimeSlilceEnum->MoveNext()))
 {
 ISHCTimeSlicePtr pShcTimeSlice;
 hr = pTimeSlilceEnum->Current(&pShcTimeSlice);
 if (CF_SUCCEEDED(hr) && pShcTimeSlice != nullptr)
 {
 pShcTimeSlice->SetDuration(Get1Hour() * 4);
 pShcTimeSlice->SetCategory(CCfString(L"Break"));
 }
 }
 }
 }
 ArrayShiftTemplate.Append(pShcShiftTemplate);
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1456 System Manual, 11/2019, Online help printout

Copy code
 }
 ArrayShiftTemplate.DetachEnumerator(&pArrayShiftTemplate);
 }
 hr = pShcShiftTemplateProvider->Update(pArrayShiftTemplate);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Update" << std::endl;
 }
 }
}

"Delete" method
Deletes an "ISHCShiftTemplate" instance of the calendar from the enumeration.

CRFESULT Delete(ICfArrayIUnknown* pShiftTemplates)
● pShiftTemplates

[in]: An array with the shift templates to be deleted.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1457

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1458 System Manual, 11/2019, Online help printout

Copy code
void DeleteShiftTemplateWithTimeSlice()
{
 if (pShcShiftTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplates;
 hr = pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplates);
 CCfArrayIUnknown ArrayShiftTemplate;
 ICfArrayIUnknownPtr pArrayShiftTemplate;
 if (CF_SUCCEEDED(hr) && pShcShiftTemplates != nullptr)
 {
 uint32_t nCount = 0;
 pShcShiftTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 if (CF_SUCCEEDED(pShcShiftTemplates->MoveNext()))
 {
 ISHCShiftTemplatePtr pShcShiftTemplate;
 hr = pShcShiftTemplates->Current(&pShcShiftTemplate);
 if (CF_SUCCEEDED(hr) && pShcShiftTemplate != nullptr)
 {
 ISHCTimeSliceEnumeratorPtr pTimeSlilceEnum;
 hr = pShcShiftTemplate->GetTimeSlices(&pTimeSlilceEnum);
 if (CF_SUCCEEDED(hr) && pTimeSlilceEnum != nullptr)
 {
 uint32_t nlength = 0;
 pTimeSlilceEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 if (CF_SUCCEEDED(pTimeSlilceEnum->MoveNext()))
 {
 ISHCTimeSlicePtr pShcTimeSlice;
 hr = pTimeSlilceEnum->Current(&pShcTimeSlice);
 if (pShcTimeSlice != nullptr)
 {
 hr = pShcShiftTemplate->DeleteTimeSlice(pShcTimeSlice);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to DeleteTimeSlice" <<
std::endl;
 }
 }
 }
 }
 }
 ArrayShiftTemplate.Append(pShcShiftTemplate);
 }
 }
 }
 ArrayShiftTemplate.DetachEnumerator(&pArrayShiftTemplate);
 }
 hr = pShcShiftTemplateProvider->Delete(pArrayShiftTemplate);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Delete" << std::endl;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1459

Copy code
 }
 }
}

19.10.7.17 ISHCShift (RT Uni)

Description
The C++ interface "ISHCShift" specifies the methods of a shift.

The interface inherits from the "ICfUnknown" interface.

Members

"GetTimeSlices" method
Supplies an "ISHCTimeSliceEnumerator" instance. The enumerator provides you with access
to the "ISHCTimeSlice" instances of the "ISHCShift" instance.

CRFESULT GetTimeSlices(ISHCTimeSliceEnumerator**
ppSHCTimeSliceEnumerator)
● ppSHCTimeSliceEnumerator

[out]: The enumerator

"CreateTimeSlice" method
Adds an "ISHCTimeSlice" instance to the "ISHCShiftTemplate" instance.

CRFESULT CreateTimeSlice(ISHCTimeSlice* pSlice)
● pSlice

[in]: Reference to the new time slice

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1460 System Manual, 11/2019, Online help printout

Example

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1461

Copy code
void CreateTimeSliceUsingShift()
{
 if (nullptr != pShcDayTemplateProvider && nullptr != pCalendar)
 {
 CFRESULT hr = CF_ERROR;
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 hr = pShcDayTemplateProvider->Read(CF_FALSE, &pShcDayTemplates);
 if (CF_SUCCEEDED(hr) && pShcDayTemplates != nullptr)
 {
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 if (nCount > 0)
 {
 if (CF_SUCCEEDED(pShcDayTemplates->MoveNext()))
 {
 ISHCDayTemplatePtr pShcDayTemplate;
 hr = pShcDayTemplates->Current(&pShcDayTemplate);
 if (CF_SUCCEEDED(hr))
 {
 ISHCShiftEnumeratorPtr pShiftEnum;
 hr = pShcDayTemplate->GetShifts(&pShiftEnum);
 if (CF_SUCCEEDED(hr) && pShiftEnum != nullptr)
 {
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 if (nlength > 0)
 {
 if (CF_SUCCEEDED(pShiftEnum->MoveNext()))
 {
 ISHCShiftPtr pShcShift;
 hr = pShiftEnum->Current(&pShcShift);
 if (CF_SUCCEEDED(hr) && pShcShift != nullptr)
 {
 ISHCTimeSlicePtr pShcTimeSlice;
 ICfUnknownPtr pUnk;
 hr = pCalendar->GetObject(ODK_SHC_TIME_SLICE, &pUnk);
 pShcTimeSlice = (ISHCTimeSlicePtr)pUnk;
 if (pShcTimeSlice != nullptr)
 {
 pShcTimeSlice->SetCategory(CCfString(L"Break"));
 pShcTimeSlice->SetDuration(Get1Hour() * 1);
 CCfDateTime64 dt = GetStartoftheDay();
 dt.AddTimeSpan(Get1Hour() * 3);
 pShcTimeSlice->SetStartTime(dt);
 }
 hr = pShcShift->CreateTimeSlice(pShcTimeSlice);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to CreateTimeSlice" <<
std::endl;
 }
 }
 }
 }
 } 　

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1462 System Manual, 11/2019, Online help printout

Copy code
 }
 }
 }
 }
 }
}

"DeleteTimeSlice" method
Deletes an "ISHCTimeSlice" instance of the "ISHCShiftTemplate" instance.

CRFESULT DeleteTimeSlice(ISHCTimeSlice* pSlice)
● pSlice

[in]: Reference to the time slice to be deleted

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1463

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1464 System Manual, 11/2019, Online help printout

Copy code
void DeleteTimeSliceUsingShift()
{
 if (nullptr != pShcDayTemplateProvider && nullptr != pCalendar)
 {
 CFRESULT hr = CF_ERROR;
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 hr = pShcDayTemplateProvider->Read(CF_FALSE, &pShcDayTemplates);
 if (CF_SUCCEEDED(hr) && pShcDayTemplates != nullptr)
 {
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 if (nCount > 0)
 {
 if (CF_SUCCEEDED(pShcDayTemplates->MoveNext()))
 {
 ISHCDayTemplatePtr pShcDayTemplate;
 hr = pShcDayTemplates->Current(&pShcDayTemplate);
 if (CF_SUCCEEDED(hr))
 {
 ISHCShiftEnumeratorPtr pShiftEnum;
 hr = pShcDayTemplate->GetShifts(&pShiftEnum);
 if (CF_SUCCEEDED(hr) && pShiftEnum != nullptr)
 {
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 if (nlength > 0)
 {
 if (CF_SUCCEEDED(pShiftEnum->MoveNext()))
 {
 ISHCShiftPtr pShcShift;
 hr = pShiftEnum->Current(&pShcShift);
 if (CF_SUCCEEDED(hr) && pShcShift != nullptr)
 {
 ISHCTimeSliceEnumeratorPtr pShcTimeSliceEnum;
 hr = pShcShift->GetTimeSlices(&pShcTimeSliceEnum);
 if (CF_SUCCEEDED(hr) && pShcTimeSliceEnum != nullptr)
 {
 uint32_t nCountTimeSlice = 0;
 pShcTimeSliceEnum->Count(&nCountTimeSlice);
 if (nCountTimeSlice > 0)
 {
 if (CF_SUCCEEDED(pShcTimeSliceEnum->MoveNext()))
 {
 ISHCTimeSlicePtr pShcTimeSlice;
 hr = pShcTimeSliceEnum-
>Current(&pShcTimeSlice);
 if (CF_SUCCEEDED(hr) && pShcTimeSlice !
= nullptr)
 {
 hr = pShcShift-
>DeleteTimeSlice(pShcTimeSlice);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to DeleteTimeSlice"
<< std::endl;

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1465

Copy code
 }
 }
 }
 }
 }
 } 　
 }
 }
 } 　
 }
 }
 }
 }
 }
}

"GetComments" method
Supplies a map with the comments of the "ISHCShift" instance and their language code IDs.

CRFESULT GetComments(ICfMapIDToVariant** ppComments)
● ppComments

[out]: A map with int32/string pairs (language code ID for comment).

"SetComments" method
Adds a new entry to a map with the comments of the "ISHCShift" instance and their language
code IDs.

CRFESULT SetComment(CFLCID languageId , CFSTR pComments)
● languageId

[in]: The language code ID

● pComments
[in]: The comment text

"GetDuration" method
Supplies the duration of the "ISHCShift" instance.

CFRESULT GetDuartion(CFTIMESPAN64* pDuration)
● pDuration

[out]: The duration of the shift

"SetDuration" method
Sets the duration of the "ISHCShift" instance.

CFRESULT SetDuration(CFTIMESPAN64 duration)
● duration

[in]: The duration of the shift

"GetShiftTemplate" method
Supplies the "ISHCShiftTemplate" instance on which the "ISHCShift" instance is based.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1466 System Manual, 11/2019, Online help printout

CRFESULT GetShiftTemplate(CFSTR* pSHCShiftTemplate)
● pSHCShiftTemplate

[out]: The shift template

"CreateAction" method
Adds an "ISHCAction" instance to the "ISHCShift" instance.

CRFESULT CreateAction(ISHCActionTemplate* pActionTemplate,
CFTIMESPAN64 offset, ISHCAction** pShcAction)
● pActionTemplate

[in]: The action template on which the new action is to be based.

● offset
[in]: The offset of the action in relation to the start time of the "ISHCShift" instance. Positive
and negative value allowed.

● pShcAction
[out]: The new action

"DeleteAction" method
Deletes an "ISHCAction" instance of the "ISHCShift" instance.

CFRESULT DeleteAction(ISHCAction* pShcAction)
● pShcAction

[in]: Reference to the action to be deleted.

"GetAction" method
Supplies an "ISHCActionEnumerator" instance via which you access the "ISHCAction"
instances of the "ISHCShift" instance.

CRFESULT GetActions(ISHCActionEnumerator** ppSHCActionEnumerator)
● ppSHCActionEnumerator

[out]: The enumerator

"GetIsCustomized" method
Supplies the information on whether the "ISHCShift" instance was edited by users.

CRFESULT GetIsCustomized)(CFBOOL* pIsCustomized)
● pIsCustomized

[out]:

– 0: Was not processed

– 1: Was processed

"GetDeltaKind" method
Supplies the delta type of the "ISHCShift" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1467

CRFESULT GetDeltaKind(CFENUM* pDeltaKind)
● pDeltaKind

[out]: Points to the enumeration "ShcDeltaType", which can contain the following values:

– Added (0)

– Modified (1)

– Deleted (2)

"GetShiftId" method
Supplies the ID of the "ISHCShift" instance.

CFRESULT GetShiftId(uint32_t* pShiftId)
● pShift

[out]: The ID

"SetShiftId" method
Sets the ID of the "ISHCShift" instance.

SetShiftId(uint32_t ShiftId)
● ShiftId

[in]: The new ID

19.10.7.18 ISHCShiftEnumerator (RT Uni)

Description
The C++ interface "ISHCShiftEnumerator" specifies methods for handling the enumeration of
shifts of an "ISHCDay" instance or "ISHCDayTemplate" instance.

The enumeration is returned by the "GetShifts" method of these instances.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCShift** ppItem)
● ppItem

[out]: The current shift

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1468 System Manual, 11/2019, Online help printout

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of shifts

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1469

Example

Copy code
void printShift(const ISHCShiftEnumeratorPtr& p_pShcShiftEnum)
{
 std::cout << endl << "***********Print Shift*********" << std::endl << endl;if
(p_pShcShiftEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCout = 0;
 p_pShcShiftEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 cout << endl;
 if (CF_SUCCEEDED(p_pShcShiftEnum->MoveNext()))
 {
 ISHCShiftPtr pShcshift;
 p_pShcShiftEnum->Current(&pShcshift);
 if (pShcshift != nullptr)
 {
 CCfString strshiftTemplateName;
 hr = pShcshift->GetShiftTemplate(&strshiftTemplateName);
 if (CF_SUCCEEDED(hr) && (!strCategoryName.IsEmpty()))
 {
 std::cout << "ShiftTemplateName= " <<
strshiftTemplateName.ToUTF8().c_str() << std::endl;
 }
 CCfTimeSpan64 tsDuration;
 hr = pShcshift->GetDuration(&tsDuration);
 if (CF_SUCCEEDED(hr))
 {
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() <<
std::endl;
 }
 CFBOOL bIsCustomised;
 hr = pShcshift->GetIsCustomized(&bIsCustomised);
 if (CF_SUCCEEDED(hr))
 {
 std::cout << "Is Customised= " << (uint32_t)bIsCustomised <<
std::endl;
 }
 CFENUM ndeltaKind;
 hr = pShcshift->GetDeltaKind(&ndeltaKind);
 if (CF_SUCCEEDED(hr))
 {
 std::cout << "deltaKind = " << ndeltaKind << std::endl;
 }
 uint32_t nShiftId;
 hr = pShcshift->GetShiftId(&nShiftId);
 if (CF_SUCCEEDED(hr))
 {
 std::cout << "ShiftId = " << nShiftId << std::endl;
 } 　
 ICfMapIDToVariantPtr pComments;
 hr = pShcshift->GetComments(&pComments);
 if (pComments != nullptr && CF_SUCCEEDED(hr))

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1470 System Manual, 11/2019, Online help printout

Copy code
 {
 std::cout << "comments:-" << std::endl << std::endl;
 uint32_t nCount = 0; pComments->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID =" << nLanguageID << " Comments=" <<
CCfSmartString(strComments).ToUTF8().c_str() << std::endl;
 }
 } 　
 ISHCTimeSliceEnumeratorPtr pShiftTimesliceEnum;
 hr = pShcshift->GetTimeSlices(&pShiftTimesliceEnum);
 if (CF_SUCCEEDED(hr)) printTimeSlice(pShiftTimesliceEnum);
 }
 }
 }
 }
}

19.10.7.19 ISHCAction (RT Uni)

Description
The C++ interface "ISHCAction" specifies the methods of an action.

The interface inherits from the "ICfUnknown" interface.

Members

"GetOffset" method
Returns the offset of the "ISHCAction" instance in relation to the starting point of its "ISHCShift"
instance.

CFRESULT GetOffset(CFTIMESPAN64* pOffsetType)
● pOffset

[out]: The offset in 100 nanoseconds. Positive and negative value allowed.

"SetOffset" method
Sets the offset of the "ISHCAction" instance in relation to the starting point of its "ISHCShift"
instance.

CFRESULT GetOffset(CFTIMESPAN64 OffsetType)
● OffsetType

[in]: The offset in 100 nanoseconds. Positive and negative value allowed.

"GetActionTemplate" method
Supplies the "ISHCActionTemplate" instance of the "ISHCAction" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1471

GetActionTemplate(CFSTR* p_strActionTemplate)
● p_strActionTemplate

[out]: The action template

"GetIsCustomized" method
Supplies the information on whether the "ISHCAction" instance was edited by users.

CRFESULT GetIsCustomized(CFBOOL* pIsCustomized)
● pIsCustomized

[out]:

– 0: Was not processed

– 1: Was processed

"GetElements" method
Supplies an "ISHCActionElementEnumerator" instance via which you access the action
elements of the "ISHCAction" instance.

GetElements(ISHCActionElementEnumerator**
ppSHCActionElementEnumerator)
● ppSHCActionElementEnumerator

[out]: The enumerator

19.10.7.20 ISHCActionEnumerator (RT Uni)

Description
The C++ interface "ISHCActionEnumerator" specifies methods for handling the enumeration of
actions of an "ISHCShift" instance or "ISHCShiftTemplate" instance.

The enumeration is returned by the "GetActions" method of these instances.

The interface inherits from the "IcfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCAction** ppItem)
● ppItem

[out]: The current action

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1472 System Manual, 11/2019, Online help printout

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of actions

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1473

Example

Copy code
void PrintAction(const ISHCActionEnumeratorPtr& pShcActionEnum)
{
 cout << endl << "******PrintAction*******" << endl << endl;if (pShcActionEnum !=
nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCount = 0;
 pShcActionEnum->Count(&nCount);
 if (nCount > 0)
 {
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl; if (CF_SUCCEEDED(pShcActionEnum->MoveNext()))
 {
 ISHCActionPtr pShcAction;
 pShcActionEnum->Current(&pShcAction);
 if (pShcAction != nullptr)
 {
 CCfString strActionTemplateName;
 hr = pShcAction->GetActionTemplate(&strActionTemplateName);
 if (CF_SUCCEEDED(hr))
 {
 std::cout << "ActionTemplateName = " <<
strActionTemplateName.ToUTF8().c_str() << std::endl;
 }
 CFBOOL isCustomize;
 hr = pShcAction->GetIsCustomized(&isCustomize);
 if (CF_SUCCEEDED(hr))
 {
 cout << "IsCustomize= " << (uint32_t)isCustomize << endl;
 }
 CCfTimeSpan64 offset;
 hr = pShcAction->GetOffset(&offset);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Offset=" << offset.GetTimeSpanString().ToUTF8().c_str()
<< endl;
 }
 ISHCActionElementEnumeratorPtr pShcActionElementEnum;
 hr = pShcAction->GetElements(&pShcActionElementEnum);
 if (CF_SUCCEEDED(hr))
 {
 PrintActionElement(pShcActionElementEnum);
 }
 }
 }
 }
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1474 System Manual, 11/2019, Online help printout

19.10.7.21 ISHCActionElement (RT Uni)

Description
The C++ interface "ISHCActionElement" specifies the methods of the action elements of an
"ISHCAction" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"GetElementType" method
Supplies the type of the "ISHCActionElement" instance.

CRFESULT GetElementType(CFENUM* pElementType)
● pElementType

[out]: Points to the enumeration "ShcActionElementType", which can contain the following
values:

– Tag (0)
The action element controls a tag.

"GetEnabled" method
Supplies the information on whether the "ISHCActionElement" instance is activated.

CRFESULT GetEnabled(CFBOOL* pEnabled)
● pEnabled

[out]:

– 0: Deactivated

– 1: Activated

"SetEnabled" method
Sets whether the "ISHCActionElement" instance is activated.

CRFESULT SetEnabled(CFBOOL Enabled)
● Enabled

[in]:

– 0: Deactivated

– 1: Activated

"GetOffset" method
Returns the offset of the "ISHCActionElement" instance in relation to the anchor point of its
"ISHCAction" instance.

CFRESULT GetOffset(CFTIMESPAN64* pOffset)
● pOffset

[out]: The offset in 100 nanoseconds. Positive and negative value allowed.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1475

"SetOffset" method
Sets the offset of the "ISHCActionElement" instance in relation to the anchor point of its
"ISHCAction" instance.

CFRESULT SetOffset(CFTIMESPAN64 offset)
● offset

[in]: The offset in 100 nanoseconds. Positive and negative value allowed.

"GetValue" method
Supplies the value of the tag controlled by the "ISHCActionElement" instance.

CFRESULT GetValue(CFVARIANT* pValue)
● pValue

[out]: The tag value

"SetValue" method
Sets the value of the tag controlled by the "ISHCActionElement" instance.

CRFESULT SetValue(CFVARIANT value)
● value

[in]: The new tag value

"GetElementName" method
Supplies the name of the tag controlled by the "ISHCActionElement" instance.

CFRESULT GetElementName(CFSTR* p_strActionElement)
● p_strActionElement

[out]: The tag name

"SetElementName" method
Sets the name of the tag controlled by the "ISHCActionElement" instance.

CFRESULT SetElementName(CFSTR ActionElement)
● ActionElement

[in]: The tag name

19.10.7.22 ISHCActionElementEnumerator (RT Uni)

Description
The C++ interface "ISHCActionElementEnumerator" specifies methods for handling the
enumeration of action elements of an "ISHCAction" instance.

The enumeration is returned by the "GetElements" method of an "ISHCAction" instance.

The interface inherits from the "ICfUnknown" interface.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1476 System Manual, 11/2019, Online help printout

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCActionElement** ppItem)
● ppItem

[out]: The current action element

"Reset" method
Reset the current position in enumeration. The "MoveNext" method moves afterwards to the
first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of action elements

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1477

Example

Copy code
void PrintActionElement(const ISHCActionElementEnumeratorPtr& pActionElementEnum)
{
 cout << endl << "******PrintActionElement*******" << endl << endl;
 if (pActionElementEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCount = 0;
 pActionElementEnum->Count(&nCount);
 if (nCount > 0)
 {
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 if (CF_SUCCEEDED(pActionElementEnum->MoveNext()))
 {
 ISHCActionElementPtr pShcActionElement;
 pActionElementEnum->Current(&pShcActionElement);
 if (pShcActionElement != nullptr)
 {
 CCfString strElementName;
 hr = pShcActionElement->GetElementName(&strElementName);
 if (CF_SUCCEEDED(hr))
 {
 cout << "ActionElementName= " << strElementName.ToUTF8().c_str()
<< endl;
 }
 CFENUM nType;
 hr = pShcActionElement->GetElementType(&nType);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Element Type= " << nType << endl;
 }
 CFBOOL bIsEnable;
 hr = pShcActionElement->GetEnabled(&bIsEnable);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Is Enable = " << (uint32_t)bIsEnable << endl;
 }
 CCfTimeSpan64 offset;
 hr = pShcActionElement->GetOffset(&offset);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Offset = " << offset.GetTimeSpanString().ToUTF8().c_str()
<< endl;
 }
 CCfVariant vtValue;
 hr = pShcActionElement->GetValue(&vtValue);
 if (CF_SUCCEEDED(hr))
 {
 cout << "value = " << vtValue.uint32 << endl;
 }
 }
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1478 System Manual, 11/2019, Online help printout

Copy code
 }
 }
}

19.10.7.23 ISHCActionTemplate (RT Uni)

Description
The C++ interface "ISHCActionTemplate" specifies the methods of an action template.

The interface inherits from the "ICfUnknown" interface.

Members

"GetName" method
Supplies the name of the "ISHCActionTemplate" instance.

CFRESULT GetName(CFSTR * pvarRet)
● pvarRet

[out]: The name of the action template

"SetName" method
Sets the name of the "ISHCActionTemplate" instance

CFRESULT SetName(CFSTR value)
● value

[in]: The name

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCActionTemplate" instance and their
language code IDs.

CFRESULT GetDisplayNames)(ICfMapIDToVariant** ppDisplayNames)
● ppDisplayNames

[out]: The map with String/String pairs (language code ID for display name).

"SetDisplayNames" method
Adds a display name and its language code ID to the map with the display name of the
"ISHCActionTemplate" instance.

CFRESULT SetDisplayNames)(CFLCID languageId, CFSTR pDisplayName)
● languageID

[in]: The language code ID of the display name

● pDisplayName
[in]: The display name

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1479

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCActionTemplate" instance and their language
code IDs.

CFRESULT GetDescriptions(ICfMapIDToVariant** value)
● value

[out]: The map with String/String pairs (language code ID for description).

"SetDescriptions" method
Adds a description and its language code ID to the map with the descriptions of the
"ISHCActionTemplate" instance.

CFRESULT SetDescription(CFLCID languageId, CFSTR pDescriptions)
● languageID

[in]: The language code ID of the description

● pDescriptions
[in]: The description text

"GetIsDeleted" method
Supplies the information on whether the "ISHCActionTemplate" instance was deleted by users.

CFRESULT GetIsDeleted(CFBOOL* pIsDeleted)
● pIsDeleted

[out]:

– 0: Was not deleted

– 1: Was deleted

"GetElements" method
Supplies an "ISHCActionTemplateElementEnumerator" instance. The enumerator provides
you with access to the "ISHCActionTemplateElement" instances of the "ISHCActionTemplate"
instance.

CRFESULT GetElements(ISHCActionTemplateElementEnumerator**
ppISHCActionTemplateElementEnumerator)
● ppISHCActionTemplateElementEnumerator

[out]: The enumerator

"CreateElement" method
Adds an "ISHCActionTemplateElement" instance to the "ISHCActionTemplate" instance.

CRFESULT CreateElement(ISHCActionTemplateElement*
pSHCActionTemplateElement)
● pSHCActionTemplateElement

[in]: Reference to the new action element

"DeleteElement" method
Deletes an action element of the "ISHCActionTemplate" instance.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1480 System Manual, 11/2019, Online help printout

CRFESULT DeleteElement(ISHCActionTemplateElement*
pSHCActionTemplateElement)
● pSHCActionTemplateElement

[in]: Reference to the action element to be deleted

19.10.7.24 ISHCActionTemplateEnumerator (RT Uni)

Description
The C++ interface "ISHCActionTemplateEnumerator" specifies methods for handling the
enumeration of the action templates of an "ISHCCalendar" instance.

The enumeration is returned by the "Read" method of an "ISHCActionTemplatesProvider"
instance.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCActionTemplate** ppItem)
● ppItem

[out]: The current action template

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of elements.

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of action templates

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1481

Example

Copy code
void PrintActionTemplate(const ISHCActionTemplateEnumeratorPtr& p_pShcActionTemplateEnum)
{
 cout << endl << "******PrintActionTemplate*******" << endl << endl;
 if (p_pShcActionTemplateEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCount = 0;
 p_pShcActionTemplateEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 if (CF_SUCCEEDED(p_pShcActionTemplateEnum->MoveNext()))
 {
 ISHCActionTemplatePtr pShcActionTemplate;
 p_pShcActionTemplateEnum->Current(&pShcActionTemplate);
 if (pShcActionTemplate != nullptr)
 {
 CCfString strActionTemplateName;
 hr = pShcActionTemplate->GetName(&strActionTemplateName);
 if (CF_SUCCEEDED(hr))
 {
 cout << "ActionTemplateName=" <<
strActionTemplateName.ToUTF8().c_str() << endl;
 }
 CFBOOL bIsDeleted;
 hr = pShcActionTemplate->GetIsDeleted(&bIsDeleted);
 if (CF_SUCCEEDED(hr))
 {
 cout << "IsDeleted=" << (uint32_t)bIsDeleted << endl;
 }
 ICfMapIDToVariantPtr pDescriptions;
 hr = pShcActionTemplate->GetDescriptions(&pDescriptions);
 if (pDescriptions != nullptr && CF_SUCCEEDED(hr))
 {
 std::cout << "Descriptions=" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pDescriptions->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pDescriptions->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << " Description="
<< CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
 }
 }
 ICfMapIDToVariantPtr pDisplayNames;
 hr = pShcActionTemplate->GetDisplayNames(&pDisplayNames);
 if (pDisplayNames != nullptr && CF_SUCCEEDED(hr))
 {
 std::cout << "DisplayNames::" << std::endl << std::endl; uint32_t
nCount1 = 0; pDisplayNames->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1482 System Manual, 11/2019, Online help printout

Copy code
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName="
<< CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
 }
 }
 ISHCActionTemplateElementEnumeratorPtr pShcActionTemplateElementEnum;
 hr = pShcActionTemplate->GetElements(&pShcActionTemplateElementEnum);
 if (CF_SUCCEEDED(hr))
PrintActionTemplateElement(pShcActionTemplateElementEnum);
 }
 }
 }
 }
}

19.10.7.25 ISHCActionTemplatesProvider (RT Uni)

Description
The C++ interface "ISHCActionTemplatesProvider" provides you with access to an
"ISHCActionTemplateEnumerator" instance which contains an enumeration with the action
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create,
read, update and delete action templates. The provider is returned by the
"GetActionTemplatesProvider" method of an "ISHCCalendar" instance.

The interface inherits from the "ICfUnknown" interface.

Members

"Browse" method
Supplies an "ISHCActionTemplateEnumerator" instance which has access to an enumeration
with the "ISHCActionTemplate" instances of the calendar.

CRFESULT Browse(CFBOOL includeDeleted,OUT
ISHCActionTemplateEnumerator** ppISHCActionTemplateEnumerator)
● includeDeleted

Saves whether the enumerator also has access to the deleted action templates.

● ppISHCActionTemplateEnumerator
[out]: The enumerator

Example:
ISHCActionTemplateEnumeratorPtr pShcActionTemplateEnum;
CFRESULT hr = pShcActionTemplateProvider->Browse(CF_FALSE,
&pShcActionTemplateEnum);

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1483

"Create" method
Adds new action templates to the enumeration with the "ISHCActionTemplate" instances of the
calendar.

CFRESULT Create(ICfArrayIUnknown* pActionTemplates)
● pActionTemplates

[in]: An array with the action templates to be added.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1484 System Manual, 11/2019, Online help printout

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1485

Copy code
void CreateActionTemplateWithActionTemplateElement()
{
 if (nullptr != pCalendar && nullptr != pShcActionTemplateProvider)
 {
 CFRESULT hr = CF_ERROR;
 ICfUnknownPtr pUnk;
 hr = pCalendar->GetObject(ODK_SHC_ACTION_TEMPLATE, &pUnk);
 CCfArrayIUnknown ArrayTemplate;
 ICfArrayIUnknownPtr pArrayTemplate;
 ISHCActionTemplatePtr pShcActionTemplate = (ISHCActionTemplatePtr)pUnk;
 if (pShcActionTemplate != nullptr)
 {
 hr = pShcActionTemplate->SetName(CCfString(L"ActionTemplateName"));
 if (CF_FAILED(hr))
 {
 cout << "set name failed" << endl;
 }
 hr = pShcActionTemplate->SetDisplayName(1033,
CCfString(L"ActionTemplateDisplayName"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDisplayName" << std::endl;
 }
 hr = pShcActionTemplate->SetDescription(1033,
CCfString(L"ActionTemplateDescription"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDescription" << std::endl;
 }
 ArrayTemplate.Append(pShcActionTemplate);
 }
 ArrayTemplate.DetachEnumerator(&pArrayTemplate);
 hr = pShcActionTemplateProvider->Create(pArrayTemplate);
 if (CF_SUCCEEDED(hr))
 {
 hr = pCalendar->GetObject(ODK_SHC_ACTION_TEMPLATE_ELEMENT, &pUnk);
 ISHCActionTemplateElementPtr pShcActionTemplateElement =
(ISHCActionTemplateElementPtr)pUnk;
 if (nullptr != pShcActionTemplateElement)
 {
 hr = pShcActionTemplateElement-
>SetElementName(CCfString(L"HMI_RT_1::Unit1.Member_1"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetElementName" << std::endl;
 }
 CFTIMESPAN64 Offset = Get1Hour();
 hr = pShcActionTemplateElement->SetOffset(Offset);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetOffset" << std::endl;
 }
 uint32_t value = 1;
 hr = pShcActionTemplateElement->SetValue(CCfVariant(value));
 if (CF_FAILED(hr))

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1486 System Manual, 11/2019, Online help printout

Copy code
 {
 std::cout << "failed to SetValue" << std::endl;
 }
 }
 hr = pShcActionTemplate->CreateElement(pShcActionTemplateElement);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to CreateElement" << std::endl;
 }
 } 　 　 　
 }
}

"Update" method
Updates "ISHCActionTemplate" instances of the enumeration.

CRFESULTUpdate(ICfArrayIUnknown* pActionTemplates)
● pActionTemplates

[in]: An array with the action templates to be updated.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1487

Example:

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1488 System Manual, 11/2019, Online help printout

Copy code
void UpdateActionTemplateWithActionTemplateElement()
{
 if (pShcActionTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCActionTemplateEnumeratorPtr pShcActionTemplateEnum;
 hr = pShcActionTemplateProvider->Browse(CF_FALSE, &pShcActionTemplateEnum);
 if (CF_SUCCEEDED(hr) && pShcActionTemplateEnum != nullptr)
 {
 hr = pShcActionTemplateEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 CCfArrayIUnknown ArrayActionTemplate;
 ICfArrayIUnknownPtr pArrayActionTemplate;
 ISHCActionTemplatePtr pShcActionTemplate;
 pShcActionTemplateEnum->Current(&pShcActionTemplate);
 if (pShcActionTemplate != nullptr)
 {
 hr = pShcActionTemplate->SetName(CCfString(L"UpdatedActionTemplate"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetName" << std::endl;
 }
 hr = pShcActionTemplate->SetDisplayName(1033,
CCfString(L"UpdatedActionTemplateDisplayName"));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetDisplayName" << std::endl;
 }
 ISHCActionTemplateElementEnumeratorPtr pShcActionTemplateElementEnum;
 pShcActionTemplate->GetElements(&pShcActionTemplateElementEnum);
 if (pShcActionTemplateElementEnum != nullptr)
 {
 hr = pShcActionTemplateElementEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 pShcActionTemplateElementEnum-
>Current(&pShcActionTemplateElement);
 if (pShcActionTemplateElement != nullptr)
 {
 CCfTimeSpan64 offset = Get1Hour() * 2;
 hr = pShcActionTemplateElement->SetOffset(offset);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetOffset" << std::endl;
 }
 uint32_t nValue = 2;
 hr = pShcActionTemplateElement->SetValue(CCfVariant(nValue));
 if (CF_FAILED(hr))
 {
 std::cout << "failed to SetValue" << std::endl;
 }
 }
 }

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1489

Copy code
 }
 ArrayActionTemplate.Append(pShcActionTemplate);
 ArrayActionTemplate.DetachEnumerator(&pArrayActionTemplate);
 hr = pShcActionTemplateProvider->Update(pArrayActionTemplate);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Update" << std::endl;
 }
 }
 }
 }
 }
}

"Delete" method
Deletes "ISHCActionTemplate" instances of the calendar from the enumeration.

CRFESULT Delete(ICfArrayIUnknown* pActionTemplates)
● pActionTemplates

[in]: An array with the action templates to be deleted.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1490 System Manual, 11/2019, Online help printout

Example:

Copy code
void DeleteActionTemplateWithActionTemplateElement()
{
 if (pShcActionTemplateProvider != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 ISHCActionTemplateEnumeratorPtr pShcActionTemplateEnum;
 hr = pShcActionTemplateProvider->Browse(CF_FALSE, &pShcActionTemplateEnum);
 if (CF_SUCCEEDED(hr) && pShcActionTemplateEnum != nullptr)
 {
 hr = pShcActionTemplateEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 CCfArrayIUnknown ArrayActionTemplate;
 ICfArrayIUnknownPtr pArrayActionTemplate;
 ISHCActionTemplatePtr pShcActionTemplate;
 pShcActionTemplateEnum->Current(&pShcActionTemplate);
 if (pShcActionTemplate != nullptr)
 {
 ISHCActionTemplateElementEnumeratorPtr pShcActionTemplateElementEnum;
 pShcActionTemplate->GetElements(&pShcActionTemplateElementEnum);
 if (pShcActionTemplateElementEnum != nullptr)
 {
 hr = pShcActionTemplateElementEnum->MoveNext();
 if (CF_SUCCEEDED(hr))
 {
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 pShcActionTemplateElementEnum-
>Current(&pShcActionTemplateElement);
 if (pShcActionTemplateElement != nullptr)
 {
 hr = pShcActionTemplate-
>DeleteElement(pShcActionTemplateElement);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to DeleteElement" << std::endl;
 }
 }
 }
 }
 ArrayActionTemplate.Append(pShcActionTemplate);
 ArrayActionTemplate.DetachEnumerator(&pArrayActionTemplate);
 hr = pShcActionTemplateProvider->Delete(pArrayActionTemplate);
 if (CF_FAILED(hr))
 {
 std::cout << "failed to Delete" << std::endl;
 }
 }
 }
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1491

19.10.7.26 ISHCActionTemplateElement (RT Uni)

Description
The C++ interface "ISHCActionTemplateElement" specifies the methods of an action template.

The interface inherits from the "ICfUnknown" interface.

Members

"GetElementType" method
Supplies the type of the "ISHCActionTemplateElement" instance.

CRFESULT GetElementType(CFENUM* pElementType)
● pElementType

[out]: Points to the enumeration "ShcActionElementType", which can contain the following
values:

– Tag (0)
The action element controls a tag.

"GetOffset" method
Returns the offset of the "ISHCActionTemplateElement" instance in relation to the anchor point
of its "ISHCActionTemplate" instance.

CFRESULT GetOffset(CFTIMESPAN64* pOffset)
● pOffset

[out]: The offset in 100 nanoseconds. Positive and negative value allowed.

"SetOffset" method
Sets the offset of the "ISHCActionTemplateElement" instance in relation to the anchor point of
its "ISHCActionTemplate" instance.

CFRESULT SetOffset(CFTIMESPAN64 offset)
● offset

[in]: The offset in 100 nanoseconds. Positive and negative value allowed.

"GetElementName" method
Supplies the name of the tag controlled by the "ISHCActionTemplateElement" instance.

CFRESULT GetElementName(CFSTR* pElementName)
● pElementName

[out]: The tag name

"SetElementName" method
Sets the name of the tag controlled by the "ISHCActionTemplateElement" instance.

CFRESULT SetElementName(CFSTR pElementName)
● pElementName

[in]: The tag name

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1492 System Manual, 11/2019, Online help printout

"GetValue" method
Supplies the value of the tag controlled by the "ISHCActionTemplateElement" instance.

CFRESULT GetValue(CFVARIANT* pValue)
● pValue

[out]: The tag value

"SetValue" method
Sets the value of the tag controlled by the "ISHCActionTemplateElement" instance.

CRFESULT SetValue(CFVARIANT pValue)
● pValue

[in]: The new tag value

19.10.7.27 ISHCActionTemplateElementEnumerator (RT Uni)

Description
The C++ interface "ISHCActionTemplateElementEnumerator" specifies methods for handling
the enumeration of "ISHCActionTemplateElement" instances of an "ISHCActionTemplate"
instance.

The enumeration is returned by the "GetElements" method of an "ISHCActionTemplate"
instance.

The interface inherits from the "ICfUnknown" interface.

Members

"MoveNext" method
Go to the next element of the enumeration.

CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

CFRESULT Current(ISHCActionTemplateElement** ppItem)
● ppItem

[out]: The current action element of the action template

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of elements.

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1493

CRFESULT Count(uint32_t* pCount)
● pCount

[out]: Number of "ISHCActionTemplateElement" instances

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1494 System Manual, 11/2019, Online help printout

Example

Copy code
void PrintActionTemplateElement(const ISHCActionTemplateElementEnumeratorPtr&
p_pShcActionTemplateElementEnum)
{
 cout << endl << "****PrintActionTemplateElement************" << endl << endl;
 if (p_pShcActionTemplateElementEnum != nullptr)
 {
 CFRESULT hr = CF_ERROR;
 uint32_t nCount = 0;
 p_pShcActionTemplateElementEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl; if (CF_SUCCEEDED(p_pShcActionTemplateElementEnum->MoveNext()))
 {
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 p_pShcActionTemplateElementEnum->Current(&pShcActionTemplateElement);
 if (pShcActionTemplateElement != nullptr)
 {
 CCfString strElementName;
 hr = pShcActionTemplateElement->GetElementName(&strElementName);
 if (CF_SUCCEEDED(hr))
 {
 cout << "TemplateElementName= " << strElementName.ToUTF8().c_str()
<< endl;
 }
 CFENUM type;
 hr = pShcActionTemplateElement->GetElementType(&Type);
 if (CF_SUCCEEDED(hr))
 {
 cout << "ElementType=" << Type << endl;
 }
 CCfTimeSpan64 tsOffset;
 hr = pShcActionTemplateElement->GetOffset(&tsOffset);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Element Offset=" <<
tsOffset.GetTimeSpanString().ToUTF8().c_str() << endl;
 }
 CCfVariant vtValue;
 hr = pShcActionTemplateElement->GetValue(&vtValue);
 if (CF_SUCCEEDED(hr))
 {
 cout << "Value=" << vtValue.uint32 << endl;
 }
 }
 }
 }
 }
}

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1495

Runtime API (RT Uni)
19.10 Description of the C++ interfaces (RT Uni)

WinCC Engineering V16 - Runtime Unified
1496 System Manual, 11/2019, Online help printout

Working with plant objects and plant views 20
20.1 Basics

20.1.1 Introduction

Object-oriented configuration
The option of object-oriented configuration is available to you in WinCC Unified Scada RT.
Define reusable plant object types and assign the associated plant object instances in
hierarchical plant views.

In this way, you can model the plant view of your machine or unit/plant, for example, based on
user-defined or standardized technological objects.

The plant structure is created from individual objects, each of which represents a specific
component or unit. You configure each object in the context of the operator control and
monitoring solution.

In plant object types, you combine all required configuration elements for visualization, such as
faceplates, tags, alarms, scripts, etc. Changes to the plant object type automatically affect all
instances. This translates into real time savings, especially for plants with a high degree of
standardization.

You can start object-oriented plant modeling based on the engineering data, if necessary, and
can derive the configuration of the HMI devices and automation systems from this.

Break the machine or unit/plant up into reusable technological units and arrange them
hierarchically in a technological plant view according to the plant structure.

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1497

The following options are available to you in technology-oriented and object-oriented
configuration:

● Creating various hierarchical plant views: technological view, building view, independent of
the HMI device that is used.

● Configuration of plant objects and plant object types with data elements for mapping the
actual plant configuration

● Access to plant objects (data elements, HMI alarms, logs, screens, etc.)

● Generation of the screen hierarchy

● Expansion of configured plant objects and types using Plant Intelligence options, e.g.
WinCC Unified Performance Insight or WinCC Unified Sequence Execution

See also
Applications (Page 1499)

Overview (Page 1509)

Type/instance concept in object-oriented configuration (Page 1501)

Requirements (Page 1501)

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
1498 System Manual, 11/2019, Online help printout

20.1.2 Applications

Overview
You use technology-oriented and object-oriented configuration for automation solutions to
increase overall effectiveness.

In particular, in plants with high level of standardization, the object-oriented approach increases
the configuration efficiency through the reuse of objects, the capability of changing objects
centrally, and the integration of manufacturing execution system functionalities such as the
calculation of individual key indicators for separate machines.

Technology-oriented and object-oriented configuration supports you in the following operating
phases:

● Planning phase: Efficient plant configuration and simple plant expansion through integration
of part models from other projects

● Plant maintenance: Transparency through mapping of the exact plant structure

● Quality management: Continuous optimization of your projects

Advantages
● Creation and generation of modular projects based on standardized plant objects

● Reduced engineering workloads and fewer inconsistencies with a shared model in
Engineering and Runtime

● Simple plant expansion through integration of part models from other projects

● Creating the screen hierarchy

● Transparent access to all objects and their properties and methods, independent of device
assignment

● Targeted corrective measures through transparent relationships of individual plant objects

● Intelligent use of information from the entire manufacturing environment in combination with
Plant Intelligence options

Operation in runtime
Depending on your configuration, the following possibilities are available to you in runtime:

● Display hierarchy path of alarm source

● Filter alarm control by plant objects

● Display alarm status of a line and navigation to the alarm source

● Display the most frequently occurring alarms, filtered by plant object or plant object type

● Area-based access protection

● Screen navigation via the plant model

● Determine the energy consumption of a line and compare with another line

● Analysis based on plant objects

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1499

The plant hierarchy is also available for scripting in runtime.

Requirements on the configuration engineer
The following prior knowledge is required for using technology-oriented and object-oriented
configuration:

● You have experience performing configuration in STEP 7 and WinCC.

See also
Introduction (Page 1497)

Type/instance concept in object-oriented configuration (Page 1501)

Configuration concept (Page 1504)

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
1500 System Manual, 11/2019, Online help printout

20.1.3 Requirements

Software requirements
You acquire the following products to use technology- and object-oriented configuration:

● TIA Portal version V15.1 and higher

● WinCC Unified Scada RT

The "Plant objects" area is visible under Project tree after the installation of WinCC Unified
Scada RT.

Supported devices
The following SIMATIC S7 controllers are supported:

● SIMATIC S7-1500

See also
Creating plant objects (Page 1517)

Creating plant object types (Page 1516)

Introduction (Page 1497)

20.1.4 Type/instance concept in object-oriented configuration

Introduction
The object-oriented approach of WinCC based on the type-instance concept. In types, you
create central properties for an object. The instances represent local places of use for the types.

Plant objects are instances of a plant object type.

The plant object type is the central, object-oriented definition of a reusable plant component
(such as conveyor robot). As instances of the plant object type, the plant objects generally map
concrete, physically existing plant components (e.g. conveyor robot_A and conveyor robot_B).

If you change a property of a plant object type, the property is saved centrally and also changed
in all instances.

Effect of the type instance concept on object-oriented configuration
The use of a type is called an instance. The common plant model is generated from instances.
Each instance inherits all the properties of the type. The Common Plant Model with high level
of standardization is characterized by the use of many instances of few types in the model.

The general types of the plant units are configured and these are reused when required in the
configuration and adapted to the specific plant objects. The plant structure hereby specifies the
addressing of the plant objects.

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1501

In the object-oriented approach of WinCC the following correspondences apply:

● Type = Plant object type

● Instance = Plant object

The following figure shows the basic structure of a plant model:

Plant objects and plant object types
A plant object is a technological unit. In a plant object, the components are stored in a typical
form which is required for modeling a plant.

A valid plant object must be created from a plant object type. The plant structure is created from
plant objects.

The definition of a plant object type consists of the data structure and context information:

● Alarms

● Logging

● Visualization

● Data member (internal and external)

● Facets (e.g. performance indicators)

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
1502 System Manual, 11/2019, Online help printout

Type definition in terms of high reuse
A plant object type is used to describe a plant object independently of its use in the Common
Plant Model. Define a plant object type as generally as possible and as specifically as required.
Take into account the following aspects:

● Identical data structure in PLC (function block or PLC UDT)
Example: Pumps that have different performance ranges are installed in a plant. The data
structure in the PLC is identical for each pump. Map these pumps with a common plant
object type. At each instance you configure the specific value ranges for the respective
performance ranges.
A pump function block (standard FB for a pump) is available on the control side. The
customer defines the plant object type "Pump" based on this function block. The data
structure of the plant object type is taken over directly from the block. Only the HMI relevant
properties from the function block are hereby transferred. They are automatically updated
when the block changes. Simply parameterize an instance of the function block as process
connection of the plant objects.

● Similarity
When you have similar plant object types, check if it possible to map these with a common
plant object type:

① Example: A pump is installed in a plant in two different variants:
● Variant 1 only measures the flow rate.
● Variant 2 measures the temperature in addition to the flow rate.
Effects on the definition of the plant object types:
● You map each of the two pumps with a single plant object type. The representation in the

Common Plant Model hereby corresponds to reality.
● There is more configuration work.

② The common intersection of the two pumps is measuring the flow.
③ If, for example, you can do without measuring the temperature for operation, define only one

plant object type:
● There is less configuration work.
● The two variants of the pumps are not fully represented in the Common Plant Model.

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1503

Effects of changes on plant object types
The following figure shows how changes to the plant object type affect its instances, i.e. plant
objects:

See also
Overview (Page 1509)

Options for creating plant objects (Page 1513)

Introduction (Page 1497)

Applications (Page 1499)

Configuration concept (Page 1504)

Plant model and target systems (Page 1506)

20.1.5 Configuration concept

Requirements
● You have experience in configuring with WinCC and STEP 7.

● The TIA Portal project has been created.

● The HMI device WinCC Unified Scada RT has been created.

● A SIMATIC S7-1500 PLC has been created.

● Data blocks are configured in the PLC.

Workflow for configuration
The starting point for the definition of a standardized object-oriented plant model in object
oriented configuration is the existing plant structure.

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
1504 System Manual, 11/2019, Online help printout

If you want to create a plant structure, use the following sequence of steps as a guide:

● Analyze the plant structure and break it down into units and components (plant objects)

● Identify required plant object types

● Define data of the plant object types based on FBs and PLC UDTs

● Define hierarchical plant view using instances

● Create a target system

● Map the plant structure

● Position plant objects in the plant structure

● Add functional facets to object types, e.g. assign shift calendars for all machines of a line or
plant

Tips for effective procedure

If you are using pre-planning and automation engineering tools, you can have your plant structure automatically created via TIA Portal
Openness. Next, set up the process connection of the plant objects via TIA Portal Openess.

Differences between device-oriented and object-oriented configuration
In technology- and object-oriented configuration, you work with objects with relevant names
instead of individual tags or faceplates, for example.

You have access to all objects and their properties, methods, etc. in the hierarchy, independent
of HMI device assignment.

The equipment from different products and versions is integrated in the object-oriented
configuration.

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1505

Using multiuser engineering
If you use multiuser engineering in object oriented configuration, you can save your changes
only in the server project view. You cannot check the changes you make in the local session
into the server project.

You can find more information on Multiuser Engineering in "Using Multiuser Engineering".

See also
Creating plant objects (Page 1517)

Structure of a plant model (Page 1507)

Creating plant object types (Page 1516)

Configure plant object types (Page 1520)

Creating a plant hierarchy (Page 1514)

Type/instance concept in object-oriented configuration (Page 1501)

Plant model and target systems (Page 1506)

Applications (Page 1499)

20.1.6 Plant model and target systems

Configuration of the plant model
When the configuration of a visualization solution begins, the development of the automation
solution often takes place in the final phase. Initially, only the actual plant structure is relevant
for mapping the plant model. Whether this involves one or multiple target systems is initially
irrelevant.

There are always two views in a WinCC project:

● Device view with configured target systems

● Object-oriented view (common plant model)

You can perform configuration independently in both views.

Process connection of the plant model
The target systems are the interface between the common plant model and the process. One
or more connections to PLCs are configured on each target system. The plant objects
communicate with the PLCs over the target systems.

Your project must meet the following conditions for productive use:

● Each plant view is assigned to a HMI device.

● Each plant object with a process connection is also connected to a PLC.

The following figure shows a schematic representation of the mapping of plant objects to the
configured target systems and PLCs:

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
1506 System Manual, 11/2019, Online help printout

Plant objects without a process connection as representation of a unit

Plant objects with process connection

Runtime server (target system)

PLC

See also
Type/instance concept in object-oriented configuration (Page 1501)

Configuration concept (Page 1504)

20.1.7 Structure of a plant model

Basic principles
With object oriented configuration, a configured plant object corresponds to a real plant object.
Basically, the number of plant objects is determined by the plant hierarchy.

Whether you need to map each plant object with a plant object type is determined by the
following factors:

● Relevance of the plant object type for the process visualization

● Depth of the plant hierarchy that is to be mapped

● Degree of reuse

The specific function of a plant object is clear from its position in the plant hierarchy.

For example, the function of a "Drive" plant object is only revealed in the plant hierarchy:

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1507

① Process for filling beer into bottles
② Drive for conveyor belt
③ Drive for robot

Depth of the plant hierarchy
Define any depth of the plant hierarchy The depth of the plant hierarchy depends essentially on
the number of plant objects. A deep plant hierarchy leads to a precise fault localization. You can
then, for example, formulate the concise alarm text.

The context of the plant object is also taken into account in runtime, for example, in the
localization of faults. The following figure uses the example of the "Temperature exceeded"
alarm to show the advantage a deep hierarchy offers in runtime:

① Representation of the message in an alarm control:
"Brewery.Filling.Paletting.Robots.Drive.Temperature exceeded"
The Common Plant Model with deeper hierarchy leads to a precise fault localization. You can
therefore formulate the alarm text concisely.

② Since the drive for the robot is based on the same plant object type, the context of the alarm is
automatically correct when a fault occurs:
"Brewery.Filling.Paletting.Robots.Drive.Temperature exceeded"

Working with plant objects and plant views
20.1 Basics

WinCC Engineering V16 - Runtime Unified
1508 System Manual, 11/2019, Online help printout

Configuration data at the plant object type
The following configuration data are created during the definition of a plant object type:

● Properties through which data is exchanged inside and outside of WinCC Unified Scada RT.

● HMI visualization: Alarms, logs

● KPIs

See also
Configure plant object types (Page 1520)

Configuration concept (Page 1504)

20.2 Elements and basic settings

20.2.1 Overview

"Plant objects" area
To access object-oriented configuration, click on "Plant objects" in "Project tree".

Working with plant objects and plant views
20.2 Elements and basic settings

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1509

① "Plant objects" area for object-oriented configuration

② Plant object specific tabs, e.g. "Interface", "Visualization", etc.

③ "Plant object types" task card

④ Tabs for the configuration of alarms and logs for plant objects

Create the plant view under "Project tree > Plant objects". You can create a plant view in a
project. The plant view is filled with plant nodes and thus maps your plant. Plant nodes act as
structural elements. Create plant objects based on the plant object types created in the project.

In the "Plant objects" area you assign an HMI device to the plant view.

"Plant object types" task card
Under "Plant object types", create the plant object types from which you create plant objects.

Working with plant objects and plant views
20.2 Elements and basic settings

WinCC Engineering V16 - Runtime Unified
1510 System Manual, 11/2019, Online help printout

"Interface" tab
Plant object types are edited in "Interface" create tags for the communication between a PLC
and an HMI device, create members for plant object types, and create alarms and logging tags.

"Visualization" tab of the plant object types
In the "Visualization" tab of a plant object type, you link a faceplate type with the plant object
type.

"Visualization" tab of the plant objects
Under "Visualization", you configure a screen for each plant object. In the Inspector window you
edit the properties and events of the screen.

The faceplate type associated with the plant type is displayed. The configured tags of the
interface are displayed, but cannot be edited.

Working with plant objects and plant views
20.2 Elements and basic settings

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1511

If you open a screen under "Visualization" by double-clicking, the view is identical to the view
on an HMI device. The "Toolbox" and "Layout" task cards are also identical.

Use the "Toolbox" task card to configure in predefined objects in your screens, with which you
map your plant, display process sequences and define process values.

See also
Introduction (Page 1497)

Options for creating plant objects (Page 1513)

Type/instance concept in object-oriented configuration (Page 1501)

Working with plant objects and plant views
20.2 Elements and basic settings

WinCC Engineering V16 - Runtime Unified
1512 System Manual, 11/2019, Online help printout

20.2.2 Options for creating plant objects

Basics
You have several options for creating plant objects on the basis of plant object types:

● Creation of plant object types from the function blocks or UDTs of an S7-1500 and creation
of plant objects from the IDBs.

● Creation of plant object types within WinCC without an S7-1500

See also
Overview (Page 1509)

Type/instance concept in object-oriented configuration (Page 1501)

Working with plant objects and plant views
20.2 Elements and basic settings

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1513

20.3 Object- and technology-oriented configuration

20.3.1 Creating a plant hierarchy

Introduction
Create a plant view to map the structure of your plant. You fill the plant view with plant objects
and plant nodes and thus map your plant. Plant nodes act as structural elements.

Assign the plant view to a HMI device.

Requirement
● The TIA Portal project has been created.

Procedure
1. Under "Project tree > Plant objects", click on "Add new plant view".

An empty plant view is created.

Note

A plant view is supported in each project.

2. Rename the plant view accordingly.

Note

The following options are not available for the "Plant view" object:
● Paste
● Cut
● Drag-and-drop

See also
Assigning a plant hierarchy to a HMI device (Page 1515)

Creating plant objects (Page 1517)

Configure plant object types (Page 1520)

Configuration concept (Page 1504)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1514 System Manual, 11/2019, Online help printout

20.3.2 Assigning a plant hierarchy to a HMI device

Introduction
To operate the plant in runtime, always assign a plant view to an HMI device.

A plant view can only be assigned to a HMI device.

Requirement
● A plant view has been created.

● The HMI device WinCC Unified Scada RT has been created.

Procedure
1. Select the "Plant view" node.

2. Select the "Assign HMI device" entry from the shortcut menu.
A "Select an HMI device for assignment" dialog appears.

3. Select the HMI device.
The plant view and all lower-level plant objects are assigned to the HMI device.
If a plant view was assigned to a HMI device, the assignment is visible under "Project tree
> Plant objects".

See also
Creating plant objects (Page 1517)

Creating plant object types (Page 1516)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1515

Configure plant object types (Page 1520)

Creating a plant hierarchy (Page 1514)

20.3.3 Creating plant object types

Introduction
You create plant object types.

Then define the "Communications driver" property of the interface:

● "<Internal communication>": Create data members for internal communication.

● "SIMATIC S7 1200/1500": Use either function blocks or UDTs of a S7-1500
You can add further data members to the linked structure.

Requirement
● A project is open.

● A SIMATIC S7-1500 PLC has been created.

Procedure
Create plant object types in the "Plant object types" task card.

1. To display the "Plant object types" task card, click the "Show plant object types" button
under "Project tree > Plant objects".

2. To create a plant object type, click "Add new plant object type".
An empty plant object type is created.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1516 System Manual, 11/2019, Online help printout

3. Rename the created plant object type accordingly.

4. To edit the plant object type or create lower-level objects and members for the plant object
type, double-click the plant object type in the "Plant object types" tab.
The plant object type appears under "Interface".

Note

The "Communications driver" property is editable for the plant object types. The property
"PLC tag" can only be edited with the communications driver "SIMATIC S7 1200/1500".

See also
Configure plant object types (Page 1520)

Example: Determine plant object type (Page 1518)

Assigning a plant hierarchy to a HMI device (Page 1515)

Requirements (Page 1501)

Configuration concept (Page 1504)

20.3.4 Creating plant objects

Introduction
You create plant objects from a plant object type using drag-and-drop operation.

Plant objects are specific versions or instances of a plant object type.

Requirement
● A project is open.

● A plant object type has been created.

Procedure
1. Open the "Plant objects" tab in the "Project tree" area.

2. Open the "Plant object types" task card.

3. Drag the plant object type from the task card to the plant view.
An empty plant object is created.

4. Rename the plant object accordingly.

Note

The name of a plant object must only be assigned once within a project.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1517

See also
Configuration concept (Page 1504)

Configure plant object types (Page 1520)

Assigning a plant hierarchy to a HMI device (Page 1515)

Requirements (Page 1501)

Creating a plant hierarchy (Page 1514)

20.3.5 Example: Determine plant object type

Scenario
For a new location of a brewery, two employees of an engineering office configure the process
visualization and plant-specific parameters. The employees develop a configuration concept
for this.

The following examples shows how process visualization and object-oriented configured mesh
with each other.

Determining plant object types
How you determine plant object types by analyzing the plant structure depends on the context:

● In the WinCC Runtime Unified context, you view the plant "from the bottom" in the process
view. Functional units are in the background compared to plant objects of the field and
process levels. The functional units are still necessary for a complete mapping of the plant.

● In the context of plant-specific KPIs, look at the plant "from the top" in the plant view. Plant
objects of the field and process levels may no longer be relevant.

The following figure is a schematic representation of the analysis sequence of the plant
structure for defining the plant object types:

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1518 System Manual, 11/2019, Online help printout

① Analyze the plant structure: The brewery consists of the three plant units, "Delivery/Storage",
"Processing" and "Bottling". Various processes run in the plant sections.

② Determining relevant plant objects for monitoring process and productivity: These plant objects
are the basis for mapping the plant hierarchy.

③ Defining plant object types: Plant objects used multiple times are mapped using a common plant
object type. The data structure and context information is configured for each plant object type.

 Brewery
● Plant-specific parameters: Cumulative characteristics of productivity

 Unit for delivery and storage of ingredients
● Plant-specific parameters: Characteristics for duration of delivery

 Tank for storage of ingredients
● Process visualization: Monitoring temperature and fill level

 Unit for processing
● Plant-specific parameters: Characteristics of productivity

 "Mashing"
● "Batches taken out of mash" Process visualization: Monitoring temperature and

pressure
● "Pump back batches taken out of mash", check: "Iodine test": Process visualiza‐

tion: Monitoring temperature and pressure
 "Purifying" Process visualization: Monitoring temperature and pressure

 "Wort boiling" Process visualization: Monitoring temperature and pressure
● Whirlpooling
● Addition of yeast and fermenting
● Storage

 Unit for bottling and packaging
● Plant-specific parameters: Characteristics for period of change in production,

unplanned downtime and produced quantities

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1519

 Bottling process
● Process visualization: Monitoring temperature / control of filling

 Process for packaging the beer bottles on pallets
● Process visualization: Monitoring packaging

Note

The data structure of a plant object type is often reflected in the function blocks of the user
program. In such a case you can create plant object types automatically. Consultation with the
programmer is recommended especially for plant object types with strong links to the PLC.

See also
Creating plant object types (Page 1516)

20.3.6 Configure plant object types

Introduction
Configure the plant object types either from the function blocks and UDTs of an S7-1500 or
create the properties and the external and internal data members for the plant object types.

In both cases you can extend the structure the created plant object types with additional internal
or external data members.

Configuration without using function blocks is described below.

Requirement
● The HMI device WinCC Unified Scada RT has been created.

● A plant view has been created and assigned to the HMI device.

● A plant object type named "Line" has been created.

● A SIMATIC S7-1500 PLC has been created.

● Tags have been configured in the S7-1500.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1520 System Manual, 11/2019, Online help printout

Procedure
1. Double-click the "Line" plant object type in the "Plant object types" editor.

An empty plant object type with the "Struct" data type appears under "Interface".

2. To add data members to the plant object type, select the plant object type and click "Insert
object".

The created data member inherits all properties from the higher level plant object type.
"Internal communication" is selected by default in the column "Communications driver" for
the newly created data members of the plant object types.

3. If you want to configure an external data member, select "SIMATIC S7-1500" in the
"Communication driver" column.

4. Assign a PLC tag to the external data member in the "Tag" column.

Note

If an HMI device is assigned to the plant view, it is possible to view the data members in the
"HMI tags" editor in the "Plant object tags" tab. You also have write rights for the "Comment"
column.

You can also use the configured data members in screens of an assigned HMI device, e.g., for
dynamization instead of tags.

Tips for effective procedure

● Differentiate between identically named plant objects and plant object types using the "Insert object" button in the "Interface" tab. If the
"Insert object" button is enabled, you have selected a plant object type. If you have selected a plant object, the "Insert object" button is
disabled.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1521

See also
Creating plant object types (Page 1516)

Structure of a plant model (Page 1507)

Creating plant objects (Page 1517)

Assigning a plant hierarchy to a HMI device (Page 1515)

Configuration concept (Page 1504)

Creating a plant hierarchy (Page 1514)

Configuring plant object types from the data blocks of an S7-1500 (Page 1522)

Assigning process data to plant objects (Page 1524)

20.3.7 Configuring plant object types from the data blocks of an S7-1500

Introduction
Configure the plant object types either from the data blocks of an S7-1500 or define the
properties and the external and internal data members for the plant object types without
connection to a PLC.

In both cases you can extend the structure the created plant object types with additional internal
or external data members.

Configuration from the data blocks of an S7-1500 PLC is described below.

Configure plant object types from the configured program blocks of an S7-1500 PLC using drag-
and-drop operation.

Requirement
● The HMI device WinCC Unified Scada RT has been created.

● A plant view has been created and assigned to the WinCC Unified Scada RT.

● A plant object type named "Line" has been created.

● A SIMATIC S7-1500 PLC has been created.

● A function block "Line [FB1]" is configured in the SIMATIC S7-1500 PLC.

Procedure
1. Open the plant object type "Line" in the "Interface" tab.

2. Set the "Communications driver" parameter to the SIMATIC S7-1500 PLC that contains the
function block "Line [FB1]".

3. Navigate to the function block "Line [FB1]" in the PLC.

4. Select the function block.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1522 System Manual, 11/2019, Online help printout

5. Drag the function block to the "PLC tags" field in the "Interface" tab.
The corresponding structure with data members based on the function block "Line [FB1]" is
created in the "Interface" tab.
When you edit the blocks of the PLC, these changes are automatically transferred to the
plant object types.

6. To add additional data members to the plant object type, select the plant object type and
click "Insert object".

Note

You can create additional data member for each plant object type.

Function blocks (FBs) or PLC UDTs act as basis for the configuration of the plant object
types and their data members.

A member structure can also be connected with a PLC type, for example, function block
(FB) or PLC UDT.

"Raw" data types and arrays are also supported.

An assignment of the controller blocks to the external data members of the plant object
types is only possible if names and data types are identical in the PLC and in the plant object
type.

7. If necessary, adjust the data type of the data member.

8. To clear the connection between of a controller and the data members object, delete the
block in the "PLC tag" column or select "None".

Tips for effective procedure

● Differentiate between identically named plant objects and plant object types using the "Insert object" button in the "Interface" tab. If the
"Insert object" button is enabled, you have selected a plant object type. If you have selected a plant object, the "Insert object" button is
disabled.

Note

If an HMI device is assigned to the plant view, it is possible to view the data members in the
"HMI tags" editor in the "Plant object tags" tab. You also have write rights for the "Comment"
column.

You can also use the configured data members in screens of an assigned HMI device, e.g., for
dynamization instead of tags.

See also
Configure plant object types (Page 1520)

Assigning process data to plant objects (Page 1524)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1523

20.3.8 Assigning process data to plant objects

Introduction
To establish the communication between a S7-1500 controller and a WinCC Unified Scada RT
device, connect a plant object with a PLC tag or a data block of the PLC.

Requirement
● An S7-1500 PLC and a WinCC Unified Scada RT HMI device are projected and connected.

● At least one plant object type in the project contains PLC UDTs or function blocks (FBs).

Procedure
1. Drag a plant object type to the plant view.

The plant object is created based on the plant object type.

2. Double-click the plant object.

3. In the "Interface" tab, in the "Connection" column, select the configured HMI connection for
all external data members of the plant object type.
Select only between the HMI connections that are created for the S7-1500 controllers
available in the project.

4. In the "PLC tag" column, select a PLC tag or an IDB.

Note

In the "Interface" tab, similar to in the "HMI tags" editor, you can view or edit the properties in
the following areas:
● "General"
● "Settings"
● "Range"
● "Linear scaling"
● "Values"
● "Comment"

See also
Configure plant object types (Page 1520)

Configuring plant object types from the data blocks of an S7-1500 (Page 1522)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1524 System Manual, 11/2019, Online help printout

20.3.9 Basic information on configuring screens

Overview
The configuration of screens for operating and monitoring is also available to you in object-
oriented configuration. This means that you are working in two areas, under "Project tree>
Devices" and "Project tree > Plant objects > Visualization". Here you work with both screens
and faceplates that also support the type-instance concept. You can find additional information
on working with faceplates in the section Configuring faceplates (Page 103).

In the area "Project tree > Devices", configure screens for HMI devices as usual. In the screens,
also configure companion controls that are relevant for the display of screens of the plant
objects.

In the "Project tree > Plant objects > Visualization" area, you configure screens for plant objects.

In the "Plant object types > Visualization" area, configure faceplates for plant object types.

In the areas under "Project tree > Devices" and "Project tree > Plant Objects > Visualization",
the same predefined screen objects are available in the "Toolbox" task card.

When configuring faceplates, a minimized tool area is available under "Toolbox".

Configuration options
Under "Project tree > Devices", you configure a screen for the created HMI device with the
"Plant overview" control and one of the companion controls, such as a screen window. In
runtime, navigate the plant structure to the plant objects via the "Plant overview" control. The
screen windows in the plant overview display the screens that you have previously configured
for the plant project.

The companion controls are connected to one another and supplement one another in
displaying the data values.

The following controls can act as companion control for the plant overview:

● Alarm control

● Screen window

● Calendar view (with use of the WinCC Unified Calendar option)

When required, configure controls as usual, e.g. screen windows, alarm view, or trend view.
Select the specific plant object in the plant view as data source for the alarm control and trend
control. Configure the alarm control and trend control for plant objects on the basis of the data
members of the plant object types. The procedure for configuring these controls does not differ
from the procedure for the device-specific configuration.

The following options are available in runtime:

● Display the hierarchy path of the alarm source

● Display the hierarchy path of the trend values

● Filter the alarm view by plant objects

● Display process values for the selected plant object

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1525

Use the "Visualization" tab for the direct visualization of plant objects and plant object types.
You can create one screen for each plant object, and you can link one faceplate type for each
plant object type. The type-instance concept is used for configuring the screens for plant
objects and plant object types. All relevant elements are contained in the faceplate type of a
plant object type. Drag a plant object to your screen using drag & drop. A faceplate container
is created. For example, several faceplates can be integrated in a visualization of a higher-level
plant object.

Figure 20-1 Screen of a plant object with several faceplate containers

Configuration steps
In general, proceed in the following order when configuring the screens for your plant:

1. Configure plant object types.

2. Configure faceplates for plant object types.

3. Create plant objects from plant object types.

4. Create screens for plant objects.

5. For the display in runtime, configure the "Plant view" and "Screen window" controls in a
screen of the HMI device.

Displaying plant objects and plant object types
In general, you do not have to create a screen for each plant object. Create an overview for the
higher-level plant object. Then create faceplates for the plant object types and drag them to the
overview screen of the higher-level plant object using drag-and-drop.

If the screens of the plant objects need to differ from the screens used for the plant object types,
you can use the faceplates of the plant object types as a basis and configure additional
elements.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1526 System Manual, 11/2019, Online help printout

In runtime, select a plant object in the "Plant overview" control to display its screen.

See also
Configuring screens for plant objects (Page 1527)

Example: Configuring screens for brewery production lines (Page 1529)

20.3.10 Configuring screens for plant objects

Introduction
You configure an overview screen for the higher-level plant object with multiple faceplate
containers for lower-level plant objects, for example, for a station that has lower-level objects
motor and conveyor belt.

For each plant object you can configure a screen in which all lower-level plant objects are
visible. To do this, use the faceplate containers of the plant object types.

If necessary, you also configure basic objects, elements and controls in the screen. For
example, you use I/O fields to display process values such as status, temperature and rate.

In the following, you will obtain the data to be processed, such as temperature measurements
or speed values from the data blocks of a controller.

You represent lower-level plant objects using faceplates in the overview screen of the higher-
level plant hierarchy.

In runtime, the screen window technology assists you in switching between plant objects and
representing multiple plant objects in a screen.

You can also use the "Plant overview" control to set up screen navigation via the plant. In
runtime, you monitor the plant in this manner and see the overall progress at a glance.

Requirement
● A SIMATIC S7-1500 has been configured in the project.

● WinCC Unified Scada RT is configured in the project.

● A plant object type named "Station" has been created.

● A plant object type named "Conveyor" has been created.

● A plant object type named "Robot" has been created.

● The plant view with the "Station_1" and "Conveyor_1" plant objects has been created and
assigned to the WinCC Unified Scada RT.

● The interface tags of the plant object types "Robot" and "Conveyor" are linked to the
S7-1500.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1527

Procedure
1. Open the editor of the higher-level "Station_1" plant object.

2. In the "Visualization" tab, click "Add screen".
A screen named "Station" is created.

3. If necessary, edit the width and height of the screen under "Properties" in the inspector
window.

4. If necessary, configure the required elements and controls for the plant object "Station_1",
such as I/O fields and text fields.

5. In the device view, switch to "Project > Shared Data > Unified Faceplate Types".

6. Create a "Robot" faceplate type.

7. Configure the required basic objects, elements and controls in the faceplate type.

8. Open the editor of the "Robot" plant object type.

9. In the "Visualization" tab, drag the "Robot" faceplate from "Devices > Project > Common
data > Unified faceplate types" to the "Store faceplates here" button.

10.Connect the faceplate tags to the interface tags of the plant object type.

11.Create the plant object "Robot_1" from the plant object type "Robot" using drag-and-drop.

12.Open the editor of the "Robot_1" plant object type.

13.Assign the respective data block to the plant object under "Interface" in the "PLC tag"
column.

14.To display the faceplate container of the "Robot" plant object type in the screen of the higher-
level plant object "Station", drag the plant object "Robot" from the plant view to the
configured screen "Station".

15.To create the faceplate container for the plant object "Conveyor_1", repeat steps 5 to 11 for
the plant object type "Conveyor".

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1528 System Manual, 11/2019, Online help printout

Tips for effective procedure

● Adjust the position of the faceplate container in the overview screen using the mouse or the corresponding icons on the toolbar.
● You can zoom in and out of the faceplate container in the overview screen.
● You can at any time delete and reconfigure the overview screen which contains the faceplate container for lower-level plant objects. You

can reuse the faceplate types at any time.

Note

If the screen area is not sufficient for all faceplate containers, the faceplate containers are
superimposed on each other in runtime.

Note

If additional basic objects, elements and controls are required specifically for a plant object, you
can use the faceplates of the plant object types as a basis and configure additional objects.

Result
Using the faceplate containers of the "Robot" and "Conveyor" plant object types, you have
created visualizations for the "Robot_1" and "Conveyor_1" plant objects.

See also
Operating "Plant overview" in runtime (Page 1548)

Basic information on configuring screens (Page 1525)

Example: Configuring screens for brewery production lines (Page 1529)

Configuring an alarm control for plant objects (Page 1534)

20.3.11 Example: Configuring screens for brewery production lines

Example scenario: Brewery
The production lines "Bottling" and "Packaging" exist alongside other lines in a brewery and are
connected to one another in the production chain. The production lines consist of multiple units.

In the plant view, the plant objects are already configured from the plant object types based on
the data blocks.

Screens must be configured for all plant objects relevant for the monitoring. In addition, a
screen navigation should be set up so that the user can navigate from one plant object screen
to another in runtime using the "Plant overview" control. The production value should also be
monitored, for example the temperature in the filling tank or the weight of the product after the
filling. Make sure to notify the operator in case of deviations.

The relevant production values must be logged for quality assurance purposes and for Food
Authority audits.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1529

The "Bottling" production line consists of the following units:

● Conveyor belt 1

● Robot 1: Places the bottles on the conveyor

● Filling tank: Fills the bottles, the temperature in the filling tank is monitored.

● Robot 2: Closes the bottles

● Robot 3: Performs quality checks (weight and light barrier)

The bottles are sorted from the conveyor belt into beverage crates on the "Packaging"
production line.

The "Packaging" production line consists of the following units:

● Conveyor belt 2: Makes the filled bottles available

● Conveyor belt 3: Conveys filled crates

● Robot 4: Places the crates on the conveyor belt

● Robot 5: Puts bottles in the crates

● Robot 6: Places the crates on the pallet

● Robot 7: Performs quality checks (weight and light barrier)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1530 System Manual, 11/2019, Online help printout

Implementation concept
You create faceplate types for the "Conveyor" and "Robot" plant object types.

The faceplate types of the plant object types are instantiated in the screens of the plant objects.
The "Robot" faceplate is reused three times in the production line "Bottling" according to the
structure of the production line, and four times in the production line "Packaging".

You want to monitor the temperature the filling container and to notify the operator changes
occur. To monitor the temperature, configure a trend control for the filling tank. Since a specific
temperature must not be exceeded during the bottling of beverages, you have configured
analog alarms for the filling containers. To display the alarms in runtime, configure the alarm
control.

You want to notify the operator when the empty containers are running out or the liquid level in
the bottling containers falls below a specific limit. You have configured analog alarms for the
plant objects "Robot 2" and "Filling container" for these purposes.

The production values are logged for the Food Authority inspections. It must be verified that the
temperature was complied with and that quality checks were regularly performed. You have
configured logging tags for the relevant plant objects for this purpose.

Procedure
1. Under "Project tree > Plant objects", configure the overview screens "Bottling" and

"Packaging" lines.

2. Under "Project tree > Devices > Project > Common data > Unified faceplate types", create
a faceplate type for the "Robot" plant object type.

3. Under "Project tree > Plant objects", open the plant object type "Robot" and drag the created
faceplate type to the "Save faceplates here" button in the "Visualization" tab.

4. Create faceplate instances for all the robots you need for the two production lines:

– Open the "Bottling" overview screen.

– then drag the plant object onto the screen.

– Repeat this procedure for all plant objects that are based on the "Robot" plant object type.

– Repeat the procedure for the "Packaging" overview screen.

5. Under "Project tree > Devices > Project > Common data > Unified faceplate types", create
a faceplate type for the "Conveyor" plant object type.

6. Create faceplate instances for all the conveyors you need for the two production lines:

– Open the "Bottling" overview screen.

– then drag the plant object onto the screen.

– Repeat this procedure for all plant objects that are based on the "Conveyor" plant object
type.

– Repeat the procedure for the "Packaging" overview screen.

7. Under "Project tree > Devices > Project > Common data > Unified faceplate types", create
a faceplate for the "Filling tank" plant object type and drag the created faceplate type to the
"Place faceplates here" button in the "Visualization" tab.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1531

8. From the "Filling tank" plant object, create a faceplate instance for the filling container:

– Open the "Bottling" overview screen.

– Then drag the plant object onto the screen.

9. Create an "Overview" screen.

10.Under "Project tree > Devices", configure the controls "Trend control", "Alarm control",
"Screen window" and "Plant overview" in the "Overview" screen..
Configure the "Alarm view" and "Screen window" controls as companion controls of the
"System overview" control.

Result
You have successfully configured screens and faceplates for the plant objects of the brewery
and can display the plant objects in the runtime.

See also
Configuring screens for plant objects (Page 1527)

Basic information on configuring screens (Page 1525)

20.3.12 Configuring "Plant overview" control and companion controls

Introduction
You require the control "Plant overview" when you want to navigate through the plant.

The companion controls are connected to one another and supplement one another in
displaying the data values.

You require the companion controls for the following displays:

● Display plant object screens and screen windows using the navigation option throughout the
entire plant (plant overview and screen windows)

● Display alarms for plant objects using the navigation option throughout the entire plant (plant
overview and alarm view)

The following controls can act as companion control for the plant overview:

● Alarm control

● Screen window

● Calendar view (when using the WinCC Unified Calendaroption)

Requirement
● A screen is open.

● The "Toolbox" task card is open.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1532 System Manual, 11/2019, Online help printout

Procedure
1. Insert the "Plant overview" control from the "Toolbox > My controls" task card into the screen.

2. Add a companion control.
Select from the following controls:

– Alarm control

– Screen window

– Calendar control

Note

As companion controls, you can only select controls already configured in the screen.

3. Select the "Plant overview" control.

4. Open the Inspector window under "Properties > Properties > General > Interface >
Companion controls".

5. Click on the selection button in the "Static value" column.
The dialog for selecting companion controls opens.

6. Click "Add".
A new index entry (beginning with 0) is created.

7. Create index entries according to the number of ancillary controls to be linked with the "Plant
overview" control.

8. Close the dialog.
The "Companion control" editor opens on the right-hand side of the Inspector window.
The configured elements are displayed in the "Companion control" editor.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1533

9. Specify the control type for each element:

– Alarm control

– Display window (for screen windows)

– Calendar control (for calendar control)

10.Define the respective companion control as control reference for each element.

Result
In runtime you see the screen with the "Plant overview" control and the companion controls.
When you navigate to the respective plant object in the "Plant overview" control, the content of
this plant object is displayed in the companion controls.

If you have configured the screen window as companion control, navigate in runtime in the
"Plant overview" control through the plant and display the screens you have configured for the
respective plant object.

If you have configured the alarm control as companion control, navigate in runtime in the "Alarm
overview" control through the plant and have the alarms for the plant objects displayed in the
alarm view.

20.3.13 Configuring an alarm control for plant objects

Overview
Configure an alarm control, as in the device-specific configuration in a HMI device screen. In
order that the alarm control can display the alarms of the plant objects, assign the plant
hierarchy to your HMI device.

To directly jump to the alarms of the plant objects in runtime, configure the alarm control is
companion control to the "Plant overview" control.

To filter by plant object alarms in the alarm control, configure a filter with the criterion "Area" with
one of the following two conditions:

● "Equal" - only shows the alarms of the selected plant object in runtime.

● "Begins with" - shows the alarms of the underlying objects of the selected plant object in
runtime.

Configuring a filter for plant objects
To filter by plant object alarms in the alarm control, configure a filter as follows:

1. In the Inspector window under "Properties > Filter", click in the "Static value" column.
The "Alarm filter configuration" dialog opens.

2. Select the "Area" criteria.

3. Select the condition "Equal"

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1534 System Manual, 11/2019, Online help printout

4. Click on the selection list in the "Operand" column.

5. Select the plant object whose alarms you want to display in runtime.

Note

You can also create filter criteria directly in runtime and use them as filters.

Result
Alarms for the selected plant object are displayed in runtime.

See also
Configuring screens for plant objects (Page 1527)

Configuring an alarm control (Page 253)

Displaying alarms for plant objects in runtime (Page 1555)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1535

20.3.14 Configuring trend control for plant objects

Overview
A trend control, as in the device specific configuration in a HMI device screen. Assign the plant
view to your HMI device in order that the trend control can graphically represent the values of
the data members of the individual plant objects in runtime.

The trend control allows you to display current and logged values for a specific time window, for
example.

As with device-specific configuration, when you configure the trend control for the display of the
data values you define the sources from which the values are obtained on the HMI device in
runtime. The following sources are available:

● Current process values from data members of the plant object types

● Archived values from logging tags

The path of the plant object is shown in the trend control when displayed in runtime.

See also
Configuring the logging of plant object types (Page 1545)

Configuring a trend control (Page 193)

Display process data of the plant objects in a trend control (Page 1550)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1536 System Manual, 11/2019, Online help printout

20.3.15 Basic information on configuring alarms

Overview
In object-oriented configuration, as in device-specific configuration via the alarming, events
from the monitoring function in WinCC are displayed in form of alarms. The alarms can be
acknowledged by the operator and, if necessary, logged. To do this, configure alarms that are
separated into alarm classes.

For plant objects you can configure the following alarms that are used to monitor the plant:

● Discrete alarms: Display status changes

● Analog alarms: Display limit value violations (value changes),

Configure bit or analog alarms for plant object types on the basis of internal or external data
members. From these plant object types you create plant objects.

If you have configured an alarm system for plant objects you can display the hierarchy path of
the alarm source and the alarm status of a line or a machine in runtime, filter the alarm control
by plant objects and navigate to the alarm source.

You can also filter the most frequently occurring alarms by plant object and only permit the
alarm of the respective object and all lower-level objects to be displayed.

Configuration steps
In general, proceed in the following order when configuring the alarms for the plant objects:

● Configure plant object types

● Configuring bit or analog alarms for plant object types on the basis of data members.

● Creating plant objects from plant object types

● Configuring alarm control in a screen

● Configuring "Plant view" control as companion control for the alarm control.

Note

An alarm is linked to the respective plant object type. If you delete the plant object type the
alarm will also be deleted.

Configuring an alarm view
The alarm view is configured for a screen. Current or logged alarms are displayed in the alarm
view in runtime. More than one alarm can be displayed simultaneously, depending on the
configured size. Configure the criteria for alarm filtering.

You can also configure multiple alarm views with different contents and in different screens.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1537

See also
Configure discrete alarms for plant objects (Page 1538)

Configuring analog alarms for plant objects (Page 1541)

20.3.16 Configure discrete alarms for plant objects

Introduction
If you have configured an alarm system for plant objects you can display the hierarchy path of
the alarm source and the alarm status of a line or a machine in runtime, filter the alarm control
by plant objects and navigate to the alarm source.

You can also filter the most frequently occurring alarms by plant object and only permit the
alarm of the respective object and all lower-level objects to be displayed.

An alarm is linked to the respective plant object type. If you delete the plant object type the
alarm will also be deleted.

Requirement
● A plant object type with associated external or internal data members (with elementary data

types) has been created.

● The plant structure has been assigned to a device.

Procedure
1. Select the respective data member of the plant object type on the basis of which you want

to configure an alarm.

2. To create a new discrete alarm, double-click on "<Add>" under "Discrete alarms" in the
table.
A new discrete alarm is created.

3. Assign a name for the alarm.

Note

The name of a discrete alarm can contain up to 128 characters.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1538 System Manual, 11/2019, Online help printout

4. To configure the alarm, select "Properties > General" in the Inspector window:

– Enter the alarm text.

– Change the name of the alarm as required.

– Select the alarm class.

– Configure the priority of the alarm (a value of between "0" and "16").

Note

The alarm text must be unique in the context of the plant object type. Hierarchical
information is not permitted in the alarm text.

Note

You can use the priority to sort or filter the alarms in the alarm control. With sorting by
priority, you can ensure that the most important alarm (high priority) is shown in the display
area in a single-line alarm control.

If you filter the alarm control by priority "16", only the alarms with priority "16" will appear.

5. Select "Properties > Trigger" in the Inspector window to select the tag and the bit that
triggers the alarm.

Note

Only the data member of the plant object type is permitted as trigger tag.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1539

6. Select "Trigger mode" to specify whether to trigger the alarm at a rising or falling edge.

7. To configure the alarm text, select "Properties > General > Alarm text".

– Enter the text for the alarm under "Alarm text".

See also
Configuring analog alarms for plant objects (Page 1541)

Basic information on configuring alarms (Page 1537)

Displaying alarms for plant objects in runtime (Page 1555)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1540 System Manual, 11/2019, Online help printout

20.3.17 Configuring analog alarms for plant objects

Introduction
If you have configured an alarm system for plant objects you can display the hierarchy path of
the alarm source and the alarm status of a line or a machine in runtime, filter the alarm control
by plant objects and navigate to the alarm source.

You can also filter the most frequently occurring alarms by plant object and only permit the
alarm of the respective object and all lower-level objects to be displayed.

An alarm is linked to the respective plant object type. If you delete the plant object type the
alarm will also be deleted.

Requirement
● A plant object type with associated external or internal data members (with elementary data

types) has been created.

● The plant structure has been assigned to a device.

Procedure
1. Select the respective data member of the plant object type on the basis of which you want

to configure an alarm.

2. Enter the alarm text under "Properties > General".

3. To create a new analog alarm, double-click in the table on "<Add>" under "Analog alarms"
in the table.
A new alarm is displayed.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1541

4. To configure the alarm, select "Properties > General" in the Inspector window:

– Enter the alarm text.

– Change the name of the alarm as required.

– Select the alarm class.

– Configure the priority of the alarm (a value of between "0" and "16").

Note

The alarm text must be unique in the context of the plant object type. Hierarchical
information is not permitted in the alarm text.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1542 System Manual, 11/2019, Online help printout

Note

You can use the priority to sort or filter the alarms in the alarm control. With sorting by
priority, you can ensure that the most important alarm (high priority) is shown in the display
area in a single-line alarm control.

If you filter the alarm control by priority "16", only the alarms with priority "16" will appear.

5. In the Inspector window, select the tag that triggers the alarm, e.g. a data member, under
"Properties > Trigger".

Note

Only the data member of the plant object type is permitted as trigger tag.

6. Enter a limit value in the "Value" field under "Properties > Trigger" in the Inspector window.

7. Select the trigger mode in the "Mode" field:

– "Lower": The alarm is triggered if the limit is undershot.

– "Upper": The alarm is triggered if the limit is exceeded.

– "Equal": The alarm is triggered when the limit is reached.

– "Not equal": The alarm is triggered if the limit is not reached.

– "Lower or equal": The alarm is triggered if the limit is undershot or reached.

– "Greater or equal": The alarm is triggered if the limit is exceeded or reached.

8. You can create additional limits for the alarm, if necessary. Note the following:

– A tag is monitored using only one alarm type. You should therefore create either analog
alarms or discrete alarms for a tag.

– If the object included in the selection does not yet exist, create it in the object list and
change its properties later.

9. Select the analog alarm to which you want to assign the limits.

See also
Configure discrete alarms for plant objects (Page 1538)

Temperature monitoring example Configuring analog alarms for a plant object type
(Page 1544)

Basic information on configuring alarms (Page 1537)

Displaying alarms for plant objects in runtime (Page 1555)

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1543

20.3.18 Temperature monitoring example Configuring analog alarms for a plant object
type

Sample scenario
The temperature of the beer brewing ingredients in a brewery must be strictly maintained. One
of your tasks consists in configuring the temperature monitoring of the beer ingredient cooling.

The following requirements apply to temperature monitoring for the beer ingredients:

● The setpoint for the temperature of ingredients is 5 °C and is permitted to fluctuate by ±1 °C.

● If the temperature rises above 6 °C for longer than five minutes, the operator of the plant is
notified.

● If the temperature reaches 7 °C, the operator is notified immediately. The operator has to
confirm the notification.

Objective
Temperature deviations of ingredients cooling should be output on the HMI device. You plan
several escalation levels for the alarms to be output according to the requirements:

● Temperature is between 4 °C and 6 °C: To prevent alarms from being triggered too
frequently, no alarm is output for permitted fluctuations in temperature.

● Temperature is above 6 °C: An alarm that does not require acknowledgment is output.

● Temperature exceeds the critical temperature of 7 °C: An alarm that requires
acknowledgment is output.

The temperature sensor of the beer ingredients cooling delivers analog values. Use these
values to specify the triggers. The triggers determine when an alarm is triggered.

Requirement
● A trigger tag is configured for temperature monitoring, for example

"TemperatureCoolingUnit".

● "Alarms" editor is open.

Create alarm for exiting the tolerance range
1. Create the alarm "Temperature is approaching the critical range".

2. Select the trigger tag.

3. Select the alarm class "Notification".
Alarms of this alarm class do not require acknowledgment.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1544 System Manual, 11/2019, Online help printout

4. Define the trigger with a limit "5".
This corresponds to the setpoint of 5 °C. Limits are always without units. The physical unit
depends on the plant component which delivers the values.

5. Configure an absolute deadband of "1".
This corresponds to the permitted fluctuation of ±1 °C. If the value of the trigger tag is
between "4" and "6", no alarm is output.

Create alarm for when critical temperature is exceeded
1. Create the alarm "Temperature has reached the critical range".

2. Select "Alarm" as the alarm class.
Alarms of this alarm class are displayed flashing in red on the HMI device and require
acknowledgment.

3. Define the trigger with limit "7".
This corresponds to a critical temperature of 7 °C.

4. Make sure that the value for the deadband is equal to "0".

See also
Configuring analog alarms for plant objects (Page 1541)

20.3.19 Configuring the logging of plant object types

Introduction
Save the values of the data members of the plant object types in logs for later evaluation. Alarm
logging can be used to analyze error states, to optimize maintenance cycles, and to document
the process.

Create a logging tag for each data member of the plant object type. These logging tags are
saved in the data log of the assigned device.

You can analyze the logged tag values directly in your project, such as in a trend view, or in
another user program, such as Excel.

The logging tags are created for the plant object types. This means that the plant objects are
automatically supplied with the logging tags of the plant object types.

Requirement
● The plant hierarchy has been created and assigned to a device.

● A plant object type with associated external or internal data members (with elementary data
types) has been created.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1545

Procedure
1. Under "Interface", jump to the "Logging tags" tab in the middle part of the work area.

2. Under "Interface", select a data member of a plant object type that you want to log.

3. Click on "Add" under "Logging tags".

A logging tag is created.

Note

A logging tag is automatically assigned to a data log. This assignment cannot be changed.

The assignment is only possible if the plant hierarchy is assigned to a HMI device.

Working with plant objects and plant views
20.3 Object- and technology-oriented configuration

WinCC Engineering V16 - Runtime Unified
1546 System Manual, 11/2019, Online help printout

4. If you want to reduce the number of logged values using smoothing, select the desired
smoothing mode.

5. Set the limit scope and the required limits.

Note

Process values that are outside the set limit range will not be logged.

Additional information on logging tags and logging is available under "Visualizing processes
with Runtime Unified".

See also
Configuring trend control for plant objects (Page 1536)

20.4 Visualizing plant objects in runtime

20.4.1 Displaying plant objects in runtime

Overview
Depending on your configuration, the following possibilities are available to you in runtime:

● Screen navigation via the plant model

● Analysis based on plant objects

● Filter alarm control by plant objects

● Display alarm status of a line and navigation to the alarm source

● Display the most frequently occurring alarms, filtered by plant object or plant object type

● Area-based access protection

● Determine the energy consumption of a line and compare with another line

You can display the configured plant hierarchy in runtime using the "Plant overview" control. If
a screen window was configured as companion control for the "Plant overview", you can
navigate between the screens of the plant objects and show them alternately in the screen
window.

Display process data of the plant objects in a trend control. Switch between the following
display modes directly in runtime:

● Device view and plant hierarchy

● Online values and log values

You can view alarms on plant objects in an alarm control.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1547

See also
Operating "Plant overview" in runtime (Page 1548)

Display process data of the plant objects in a trend control (Page 1550)

Displaying alarms for plant objects in runtime (Page 1555)

20.4.2 Operating "Plant overview" in runtime

Introduction
Display the configured plant view in runtime using the "Plant overview" controls.

You use it to navigate to the plant objects within the plant structure and get an overview of your
plant at one glance.

If you have configured screens or alarms for the lower-level plant objects and have linked them
to the "Plant overview" control, display these screens and alarms in runtime.

If you have configured events for the "Plant overview" control and linked these to scripts, the
scripts are called when the events occur.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
1548 System Manual, 11/2019, Online help printout

An event can, for example, be linked to the operation of the buttons in the control.

Requirement
● The plant view has been created and assigned to a device.

● The "Plant overview" control and the corresponding accompanying controls are configured
in the screen by the assigned device.

● Runtime is active.

Procedure
The plant view is displayed in the "Plant overview" control.

1. To display all lower-level plant objects, click [[ICON]] "Expand all".

2. To collapse all plant objects, click "Collapse all".

Note

The plant object that has just been selected appears in the menu bar of the "Plant overview"
control: Click on the plant object to jump to the lower-level plant objects of this plant object.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1549

3. The display the alarm control with the associated alarms for a specific plant object, double-
click the alarm icon.
The connected alarm control with the alarms for the corresponding unit opens. The plant
path of the alarm source is displayed in the "Range" column.

Note

The alarm icon only appears an alarm has actually occurred at the respective plant object.
The alarm icon disappears again when the alarm is no longer present.

4. To display the configured screen or screen window for a selected plant object, click on the
respective plant object in the "Plant overview" control.

See also
Configuring screens for plant objects (Page 1527)

Displaying alarms for plant objects in runtime (Page 1555)

Display process data of the plant objects in a trend control (Page 1550)

Displaying plant objects in runtime (Page 1547)

20.4.3 Display process data of the plant objects in a trend control

Introduction
The process data or the logging data of the plant objects are displayed graphically in a trend
control in runtime.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
1550 System Manual, 11/2019, Online help printout

Switch directly between the following display modes in runtime.

● Device view and plant hierarchy

● Online values and log values

Requirement
● The plant hierarchy has been created and assigned to a device.

● A trend control is configured in the screen by the assigned device.

● Runtime is active.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1551

Display process data of the plant objects
1. Click "Select tags" in the trend control.

The "Select Log/tags" dialog opens.

2. To open the list of available tags, click "Tag".
The "Browsing view" dialog box opens.

3. To jump to the plant hierarchy dialog, click on the "Plant hierarchy" icon in the toolbar.
The plant objects and the available data members for the plant objects are displayed.

Note

If you have assigned a descriptive display name for the trend when you configured the trend
control, only the display name is shown in runtime. All plant objects are visible at a glance
in the selection list.

4. Select the respective plant object whose process data you want to display in the trend
control.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
1552 System Manual, 11/2019, Online help printout

5. Select the data members that you want to display as trend in the trend control.

6. Confirm with "OK".
The process values for the selected plant object are displayed in the trend control.

Display context data of the plant objects in a trend control
For analysis purposes, display the value range of the resulting data using the context data.

The evaluation is relevant, for example, in connection with the WinCC Unified Performance
Insight to analyze the effectiveness or the fault rate of the plant.

1. In the trend control, click "Select context".
The "Trend context" dialog opens.

2. In the "Plant objects" selection list, select the respective plant object whose data you want
to display in the trend control.

3. In the "Context" selection list, select the data assigned to the plant object.
The list of the data appears under "Logged context values".

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1553

4. Select the value that you want to display.

5. Confirm with "OK".

The trend control displays the trends for the selected data.

See also
Operating "Plant overview" in runtime (Page 1548)

Displaying alarms for plant objects in runtime (Page 1555)

Configuring trend control for plant objects (Page 1536)

Displaying plant objects in runtime (Page 1547)

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
1554 System Manual, 11/2019, Online help printout

20.4.4 Displaying alarms for plant objects in runtime

Introduction
The "Alarm control" object displays alarms that occur during the production process in a plant.

Depending on your configuration, the following possibilities are available to you in runtime:

● Display hierarchy path of the alarm source

● Filter alarm control by plant objects

● Display alarm status of a line

● Navigate to the alarm source

● Display the most frequently occurring alarms, filtered by plant object or plant object type

Requirement
● The plant hierarchy has been created and assigned to a device.

● An alarm control with the filter "Range" is configured in the screen by the assigned device.

● Runtime is active.

● The alarm view has been configured.

● Runtime is active.

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1555

Filter alarms by plant objects
1. If you want to filter alarms by plant objects, click "Selection display" in runtime.

The "Selection" dialog opens.

2. Under "Criterion", select the criterion "Range".
All plant objects of the plant hierarchy are displayed.

3. Select the respective plant object to which you want to display the alarms.

Only alarms for the selected plant object are displayed in the alarm control.

Display alarm context of the plant objects
For analysis purposes, display the value range of the resulting data using the context data.

The evaluation is relevant, for example, in connection with the WinCC Unified Performance
Insight to analyze the effectiveness or the fault rate of the plant.

1. In the alarm control, click "Select context".
The "Alarm context" dialog box opens.

2. In the "Plant objects" selection list, select the respective plant object whose data you want
to display in the alarm control.

3. In the "Context" selection list, select the data assigned to the plant object.
The list of the logging data appears under "Logged context values".

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
1556 System Manual, 11/2019, Online help printout

4. Select the value that you want to display.

5. Confirm with "OK".
The alarm control displays the alarms that match your selection.

Note

Make sure that the filter settings match the setting of the alarm context.

If no alarms appear in the alarm control, check your settings by clicking "Selection display".

See also
Operating "Plant overview" in runtime (Page 1548)

Display process data of the plant objects in a trend control (Page 1550)

Configuring an alarm control for plant objects (Page 1534)

Configuring analog alarms for plant objects (Page 1541)

Working with plant objects and plant views
20.4 Visualizing plant objects in runtime

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1557

Configure discrete alarms for plant objects (Page 1538)

Displaying plant objects in runtime (Page 1547)

20.5 Options

20.5.1 Plant Intelligence Options

Overview
Plant Intelligence Options offer optional enhancements to the WinCC Unified Basic System.
These can be combined freely in line with your requirements.

The options allow you to plan production processes and analyze and optimize the overall
effectiveness of your plant. In addition, you can design flexible production processes and
coordinate complex and interlinked production processes.

Plant Intelligence options

● WinCC Unified Performance Insight
Define, calculate and analyze plant-specific key performance indicators (KPIs) for individual
aggregates, machines or entire production lines in machine-oriented or line-oriented
manufacturing plants.

● WinCC Unified Calendar
Plan, configure and manage events and actions together in a shared calendar in WinCC and
combine these with WinCC tags or scripts.

Plant Intelligence Options include other options, such as coordinating and monitoring complex
operations of linked machines in the production line, controlling and monitoring recipe-driven
procedures, and step- and sequence-based operations.

Note
Plant Intelligence Options are successively released as add-on packages. To use the Plant
Intelligence options, you require the relevant software packages and licenses.

Working with plant objects and plant views
20.5 Options

WinCC Engineering V16 - Runtime Unified
1558 System Manual, 11/2019, Online help printout

Requirements
Please note the following requirements for using the options:

● SIMATIC WinCC Runtime Unified V16 is installed.

● STEP7 Professional V16 is installed.

● Plant Intelligence option, incl. license, is installed.

● The plant hierarchy is configured.

● License for the respective option is available.

● The configuration engineer has WinCC experience.

Working with plant objects and plant views
20.5 Options

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1559

Working with plant objects and plant views
20.5 Options

WinCC Engineering V16 - Runtime Unified
1560 System Manual, 11/2019, Online help printout

Unified Collaboration 21
21.1 Basics

21.1.1 Introduction
Unified Collaboration enables you to access Unified Runtime objects, such as screens of
another HMI device. You can display and operate these screens.

You configure the HMI devices in the same or in different projects. The participating devices
must be located in the same network and be uniquely identifiable.

You use Unified Collaboration together with SIMATIC Unified PC.

See also
Restrictions (Page 1562)

21.1.2 Requirements
To use Unified Collaboration among several PCs, the following requirements must be fulfilled:

● The following software is installed on each participating device:
SIMATIC WinCC Unified Runtime V16 (basic package, license required)

● All required certificates are installed on each participating device, especially the
collaboration certificate.

Note

You create and distribute the collaboration certificate using the Certificate Managers. For
more information, refer to the corresponding manual.

● All devices connected via Unified Collaboration must be on the same network and have
access to each other.

● Firewall settings: During the setup of TIA Portal, the components of the
Unified Collaboration are released for the Windows firewall. The security release for the
local subnet and can be adapted manually if required. Note the firewall rules "WinCC RTIL
dist" and "WinCC RTIL proxy" in this regard.

See also
Languages in runtime (Page 772)

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1561

21.1.3 Restrictions
Note the following restrictions when using Unified Collaboration and associated Runtimes:

Screen objects
Unified Collaboration does not support all screen objects. The following screen objects cannot
be used in screens that are displayed in another Runtime via Unified Collaboration:

● Controls:

– Parameter set view

● My Controls

– Reports

– Plant overview

System functions and scripts

"Screen name" parameter
Screens of the "Collaboration Devices" editor cannot be used as values of the "Screen name"
parameter or other parameters in system functions (e.g. ChangeScreen).

Parameters that refer to objects in the environment
System functions and scripts are executed correctly if the parameters refer to objects of
the WinCC Runtime, for example:

● Screens

● Screen objects

● Tags

● Alarms

● Logs

System functions and scripts are always executed on the local HMI device if the parameters
refer to objects of the environment, e.g.:

● IP addresses

● Screen brightness

● Language switching

● Logging off the user

● File operations

Example:

You have configured a script to an event of a button that processes a file stored on the local
memory. The button is located in a screen that is displayed in the Runtime of another device via
Unified Collaboration. If you trigger the event in runtime, the file is executed on the local HMI
device and not, as intended, on the HMI device in which the button is configured.

Unified Collaboration
21.1 Basics

WinCC Engineering V16 - Runtime Unified
1562 System Manual, 11/2019, Online help printout

Subsequent changes to collaboration settings
The following data must not be changed after a connection has been established:

● Collaboration name

● System ID

● IP address / Host name

Synchronicity of the system times
The system times of the HMI devices interconnected via Unified Collaboration are not allowed
to differ by more than 180 seconds. If the difference is greater, no connection is established
between the devices.

Configured languages
The configured and activated languages for runtime must be the same for all participating
devices.

See also
Defining collaboration settings (Page 1564)

21.2 Using Unified Collaboration

21.2.1 Configuration concept

Introduction
You can use Unified Collaboration to exchange certain Runtime objects between several
SIMATIC Unified Runtimes. You can display and operate a split screen of another device in a
screen window.

The HMI devices can be used as follows:

● All HMI devices in the same project

● HMI devices in different projects

The configuration steps are the same for both variants.

Configuration steps
1. Create one or more projects.

2. Add several SIMATIC Unified PCs.

3. Create screens for the HMI devices.

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1563

4. Define collaboration settings.

5. Export screen references for Unified Collaboration.

6. Import screen references for Unified Collaboration.

7. Assign the external screens to the screen windows.

8. Compile and download all HMI devices.

See also
Defining collaboration settings (Page 1564)

Export screen references for Unified Collaboration (Page 1566)

Import screen references for Unified Collaboration (Page 1567)

Configuring the screen window (Page 1569)

21.2.2 Defining collaboration settings
For a device to be able to participate in Unified Collaboration, it must be uniquely identifiable.
Define the following parameters in the "Collaboration" area of the Runtime settings:

● System ID

● Collaboration name

● IP address / Host name

System ID
The system ID must be unique for each device participating in Unified Collaboration, since this
ID is used for communication between the devices.

The system ID is defined for each device in the Runtime settings in the "Collaboration" area.

The value of the system ID can be between 1 and 2046 and must be unique for the configured
devices imported into the TIA Portal project.

Procedure
To determine the settings for the Unified Collaboration, follow these steps:

1. Open the "Devices" tab in the project navigation.

2. Open the "Runtime settings" editor of the respective HMI device.

3. Switch to the "Collaboration" area.

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
1564 System Manual, 11/2019, Online help printout

4. Assign a system ID for the HMI device.
The system assigns this ID by default. If you change the ID, note that the selected ID must
be unique for all devices involved in the collaboration.
Use a number between 1 and 2046.

Note

Note that the system ID is also incremented separately for separate projects, and if needed,
you should change the ID manually to ensure unique assignment.

5. Specify the collaboration name:

– If "Generate collaboration name automatically" is enabled, the collaboration name
corresponds to the device name.
Changes to the device name are transferred automatically.

– If "Generate collaboration name automatically" is disabled, assign the collaboration
name manually.
The assigned name must be unique across the system.
The name can consist of up to 128 characters.

6. Enter the IP address or the hostname of the device. The address must correspond to the
IPv4 format. All devices connected via Unified Collaboration must be in the same network
and the IP address or hostname must be unique.

Figure 21-1 Runtime settings for collaboration interface

Note

The following information must be different for all devices participating in Unified Collaboration:
● System ID
● Collaboration name
● IP address / Host name

See also
Restrictions (Page 1562)

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1565

21.2.3 Export screen references for Unified Collaboration

Introduction
To use Unified Collaboration, the screen references of the screens that are to be available in
runtime of another HMI device must be exported.

Once this file has been imported into a project, you can use the screens for
Unified Collaboration.

Requirement
● The IP address or hostname of the source device is specified under "Collaboration" in the

runtime settings.

● At least one screen is configured.

● The collaboration certificate is installed on each participating device.

Procedure
1. Expand the folder of the device in the "Devices" tab of the project navigation.

2. Open the "Collaboration data" editor.

3. Open the device by clicking on the arrow.
All available screens of the device are listed.

4. Select the screens you want to export. To do this, put a check mark in the "Export" column
of the corresponding screen.

Note

When a screen is selected for export, the Unified Collaboration is activated for this device.
The configuration for Unified Collaboration, including the certificates on the runtime
systems, must be completed.

5. Click the export icon .
A new window opens.

6. Enter a name under which the file is to be saved.
A message for a successful export appears.

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
1566 System Manual, 11/2019, Online help printout

Figure 21-2 Collaboration data interface with screens

Note

Only screen references from a single device can be exported with each export operation. If you
want to export the screen references of another device, switch to the device and repeat the
operation.

Note

The exported xml file must not be modified manually to ensure error-free import and use of the
screens in runtime.

Result
You have exported the screen references of the device. You can import the screens into any
project.

21.2.4 Import screen references for Unified Collaboration

Introduction
To use Unified Collaboration, import screen references from unified HMI devices. These
devices can be either HMI devices of the same project or of another project.

Requirement
● The screen references of the Unified device are exported.

● The collaboration certificate is installed on each participating device.

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1567

Initial import procedure
1. In the "Devices" tab of the project navigation, expand the "Shared data" folder >

"Collaboration devices".

2. Open the "Collaboration Devices" editor.

3. Click the import icon .
A new window opens.

4. Select the xml file you want to import. The file was previously exported.

Note

If screen references are imported, Unified Collaboration is activated for all devices of this
project. The configuration for Unified Collaboration, including the certificates on the runtime
systems, must be completed.

5. Confirm all dialogs.
A message for successful import appears.
The HMI device whose screen references you have imported now appears in the list.

6. Expand the list of the newly imported HMI device to see the screens.

Figure 21-3 Collaboration device interface with imported screen

Note

Only screen references from a single device can be imported with each import process. If you
want to import the screen references of another device, repeat the procedure.

Note

The exported xml file must not be modified manually to ensure error-free import and use of the
screens in runtime.

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
1568 System Manual, 11/2019, Online help printout

Procedure for repeated import
If you want to once again import screen references that have already been imported, the
procedure is the same as for the initial import. The following data must not differ from the
previously imported device and must be unique across the system:

● Collaboration name

● System ID

● IP address / Host name

You see and edit this data in the "Runtime settings" of the device under "Collaboration".

If a value is used more than once, the data import cannot be performed. The import is aborted
with an error message in this case.

After the successful import, the previous data is overwritten.

Deleting an imported device
To delete imported Unified devices from the list, click or use the "Delete" command on the
shortcut menu. Individual screen references cannot be deleted. Attempting to delete a single
screen reference will delete the entire device from the list.

Result
You have made the screens of another device available for the Runtime of an HMI device of the
project and can now use them.

Note

The imported screen references of an HMI are visible to all HMI devices of the current project.

21.2.5 Configuring the screen window

Requirement
● Screens have already been configured for the Runtimes of the Unified Collaboration HMI

devices.

● Export and import of the screen references are completed.

● All Runtime settings are correctly configured and the devices are connected.

Note

Note the restrictions regarding the screen objects that can be used in a screen of a
Unified Collaboration device.

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1569

Procedure
1. Open the configured screen on the device on which you want to display Runtime screens of

a connected Unified Collaboration device.

2. Add a screen window to the screen.

3. Open the Inspector window under "Properties > Properties > General > Screen".

4. Click the selection button in the "Static value" column.
A new dialog opens.

5. Select the Unified Collaboration device in the left area of the window.

6. Select the screen to be displayed in the right area of the window.

7. Confirm your selection by clicking on the green check mark.

Using scripts
Alternatively, you can also configure screen windows via a script:

1. Perform steps 1 and 2 as described above.

2. Open the Inspector window.

3. Configure a script:

– For an event

– For an object property

4. Enter the following line:
Screen.Windows("Screen window_1").Screen = "HMI_RT_1::Screen_1";
Alternatively, use the snippet "Change Screen in Screen window of current screen".

5. Adapt the name of the screen window, the HMI device and the screen.
In the example, "Screen window_1" is the screen window of the current device and
"HMI_RT_1::Screen_1" is the screen of the device connected via Unified Collaboration.

Result
After compiling and downloading, Runtime displays the screen of the connected device in the
screen window via Unified Collaboration.

See also
Export screen references for Unified Collaboration (Page 1566)

Restrictions (Page 1562)

Unified Collaboration
21.2 Using Unified Collaboration

WinCC Engineering V16 - Runtime Unified
1570 System Manual, 11/2019, Online help printout

Index

'
'Alarm log

Configuring, 267

"
"Faceplates" editor, 105

*
*.bmp, 40
*.emf, 40
*.gif, 40
*.ico, 40
*.jpeg, 40
*.jpg, 40
*.svg, 40
*.tif, 40
*.wmf, 40

A
Absolute addressing

of a tag, 142
Access protection in runtime

Alarm view, 79
Acknowledge, 220
Acknowledgment, 225
Acknowledgment model, 226

Alarm with acknowledgment and
confirmation, 226
Alarm without "outgoing" status with
acknowledgment, 226
Alarm without "outgoing" status without
acknowledgment, 226
Alarm without acknowledgment, 226
Alarm without status, 226

Acquisition cycle
Tag, 145, 159, 927

Acquisition mode
Tag, 145

Activate
Project language, 759

Adapting a project
For a different HMI device, 869, 924

Add
Graphic to project graphics, 769

Alarm
Components, 227
Configuring, 242
Configuring multilingual alarm texts, 247
Exporting, 251
Filtering, 275
Importing, 252
In runtime, 270
Output, 77

Alarm class, 228
In runtime, 271

Alarm classes, 222
Common, 222
Custom, 222
Predefined, 222
Use, 222

Alarm control, 272
Configuring, 253
Configuring a filter, 259
Operation using the mouse, 272
Status bar, 34, 199
Toolbar, 34, 199

Alarm event
Acknowledge, 220
Incoming, 220
Outgoing, 220

Alarm log, 267, 291
In runtime, 271
Naming conventions, 298

Alarm number, 228
Alarm status, 228

Acknowledged, 220
Incoming, 220
Outgoing, 220

Alarm text, 228
Alarm view, 76

Column, 80
Configuring data export, 260, 261
Filtering alarms, 275
Operator control, 77

Alarm window, 276
Output of log data, 276

Alarms
Parameter output in a discrete alarm, 246
Parameter output in an analog alarm, 246
Task trigger, 753

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1571

Align
Object flush, 30

Analog alarm
Configuring, 242
Output parameters, 246

Analog alarm limits
Configuring, 245

Analog alarms
Configuring, 230

Angle range
Circle segment, 55
Circular arc, 57
Ellipse segment, 54
Elliptical arc, 56

API error messages, 1045
Asian characters

Input on the HMI device, 777
Interpretation, 777
Memory requirements, 777

Asian languages
Configuration, 778
Font size, 777
Text field length, 778

Asian operating system, 757
Audit Trail

Checksum, 299
Automatic updating of controller alarms

Configuring, 289
Automation system, 974, 976

Setting up, 976
Axis

common, 189
Multiple, 188

B
Backup, 859, 898, 917

Deleting, 872
Rename, 872

Bar, 66
Color transition, 67
Defining scale gradation, 67
Display limit lines, 67

Bar segment
Define, 67

Barcode, 891
Barcode scanner, 890
Bit (0, 1)

Graphic list, 747
Text list, 739

Bit number (0 - 31)
Graphic list,
Text list,

Button, 62
Content mode, 62
Graphic, 63
Text, 63

C
Change the logical device name of a channel
unit, 1007
Changing

Object size, 24
Changing the CP type of a channel unit, 1008
Channel DLL SIMATIC S7-300/400, 1000
Checking the AS with STEP 7, 1004
Checking the bus system, 1003
Checksum

Log, 299
Circle, 57

Radius, 58
Clock, 74

Display dial, 74
Code examples

Alarm filter, 377
Alarm Subscription, 378
Binary files, 380
Dynamic object position, 370
Dynamizing object position, 370
Dynamizing position, 370
File operations, 380, 381
Format of objects, 375
General information, 370
Language, 373
Notes, 370
Object format, 375
Output format of objects, 375
Sawtooth wave generator, 390
Sine wave generator, 390
Tag simulation, 390
Tag values, 373
Text files, 381
User interface language, 373
Value changes in tags, 390

Color of individual ranges
Gauge, 69

Color transition
Bar, 67

Column
Alarm view, 80

Index

WinCC Engineering V16 - Runtime Unified
1572 System Manual, 11/2019, Online help printout

Common alarm class
Create, 234
Use, 234

Common alarm classes, 222
Communication, 973

Basics, 974
Definition, 973
S7-1500, 991
S7-300, 993
S7-400, 993

Communication drivers, 985
Communication network, 976

PROFINET, 978
Communication partners

HMI device, 974
PLC, 974

Compatibility, 1057
Components

Alarm, 227
Configuration

Alarm log, 267
Data log, 176

Configuration file
File location, 1061
Layout, 1061, 1062

Configure the correct AS network address, 1003
configuring

HMI device as OPC UA server, 1060
Port number, 1063
Security settings, 1063
User identification, 1063
WinCC OPC UA server, 1063

Configuring
Alarm, 242
Alarm control, 253
Alarm control filters, 259
Analog alarm, 242
Analog alarm limits, 245
Analog alarms, 230
Common alarm class, 234
Controller alarms, 230
Data export from the alarm view, 260, 261
Data source of the process control, 200
Data source of the trend control, 200
Discrete alarms, 230
Flashing, 134
local script, 368
Logging tag, 178
Process control, 197
Rectangle, 46
System events, 230

The display of system diagnostic alarms, 263
Value table, 198

Configuring the display of system diagnostic
alarms, 263
Connection

Creating, 983
Integrated connection, 142

Connection resources, 983
Control

Touch gestures, 880
Controller alarm, 217

System-defined, 218
Controller alarms

Configuring, 230
Transferring to the HMI device, 289

Corner points, 51, 52
Creating

Common alarm class, 234
Cycle, 928
External tag, 152
HMI connection, 983
Internal tag, 154

Creating a new project, 1001
CSV file, 162
Custom alarm classes, 222
Cycle

Creating, 928
Cyclic

Continuous, 145
In operation, 145

Cyclic operation, 995

D
Data backup

HMI device, 893
Data exchange, 973

Tags, 974
Data log, 176, 291

Configuring, 176
Naming conventions, 298

Data logging, 147, 172
Application, 172
Basics, 147, 172
Configuration, 147, 172
How it works, 172
On value change, 175
Operating principle, 147
Use, 147

Data type, 141, 157
Format adjustment, 158
Internal tag, 144

Index

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1573

Data types
S7-1500, 991
S7-300/400, 994
Valid, 991, 994

Debugging, 400
Default font, 775
Define

Bar segment, 67
Reference object, 29
Scale gradation on the bar, 67

Dependency on HMI device
Logging, 296

Device
Inserting, 976

Device version, 897
Devices

Connecting, 976
Networking, 976

Devices & Networks, 976, 982
Devices and networks, 976

HMI connections, 983
Direct key, 882
Disabling

Project language, 759
Discrete alarm, 216

Output parameters, 246
Discrete alarms

Configuring, 230
Display

HMI backup, 871
Infotext, 884
Limit lines on the bar, 67

Display dial, 74
Display peak value

Gauge, 69
Download

Error messages, 865
Project, 856

Dynamic time range, 189
Dynamization

Faceplate instance, 117, 118
Faceplate type, 117
Object property, 131

Dynamization using a resource list
Properties, 135

Dynamization with script
Properties, 132, 133

E
Eastern characters

Input on the HMI device, 777

Editing
Folder link, 40

Editing language, 756
Selecting, 759

Editor
Graphics, 768

Ellipse, 53
X radius, 53
Y radius, 53

Ellipse segment, 54
Elliptical arc, 56
Error codes for connection fault, 1000, 1012
Error message

Load, 921
Error messages

Download, 865
Error xx occurred in 'function name' function!, 1000,
1046
Event

Update, 751
Example

Application for alarm classes, 222
Discrete alarm, 216
System event, 218, 248

Export, 279
Alarm, 251
Project texts, 766
Tag, 162

Exporting alarms, 280
External graphic

Edit folder, 40
Link folder, 40
Removing the folder link, 40
Rename folder, 40

External image file
Add to project graphics, 770

External tags
Data exchange, 974

F
f(t) trend view

Toolbar, 83
f(x) trend view, 97

Toolbar, 98
Faceplate

Faceplate type, 104
Instance of the faceplate type, 104
Introduction, 103
Use, 103

Faceplate container, 104
Faceplate editor, 105

Index

WinCC Engineering V16 - Runtime Unified
1574 System Manual, 11/2019, Online help printout

Faceplate instance, 104
Controlling properties dynamically, 118
Create, 109
Dynamize, 116

Faceplate object, 104
Faceplate type, 104

Create, 120
Create local script, 127
Create tags, 122
Dynamize, 116
Editor, 105
Use, 109

factory settings
Resetting to, 896

Filtering alarms, 275
Flashing, 35

Configuring, 134
Folder link

Editing, 40
Removing, 40
Renaming, 40

Font size
Asian languages, 777

Format adjustment
Data type, 158

Functional scope
ProSave, 893

G
Gauge, 68

Color of individual ranges, 69
Display peak value, 69
GMP-relevant tag, 68
maximum scale value, 69

GMP-relevant tag
Gauge, 68

Graphic
Add to project graphics, 769
Button, 63
Graphic view, 61
managing, 38
Using from the project graphics, 38
With transparent background, 38

Graphic I/O field
Output graphic list, 750

Graphic list
Application, 743
Bit (0, 1), 747
Bit number (0 - 31),
Create, 744
Graphic I/O field, 750

Outputting configuration data, 750
Range (... - ...), 745

Graphic view, 60
Graphics

Editor, 768

H
Hidden input, 62
HMI backup

Deleting, 872
Display, 871
Rename, 872

HMI connection, 976
Configuring, 983
Integrated, 983
non-integrated, 985
PROFINET, 989

HMI connections
Devices & Networks, 983

HMI device
Changing the device type, 869, 924
Data backup, 892, 893, 895
Deleting HMI device images, 874
Image, 892
Load, 892
OPC server, 1055
Reloading the operating system, 896
Reset to factory settings, 897
Restoring data, 893, 895
Software, 892
Transferring license key, 900
Updating the operating system (Windows
CE), 897

HMI device image
Deleting, 874

HMI device type
Changing, 869, 924

HMI device version, (Device version)
HTML Browser, 86

I
I/O field, 61

Hidden input, 62
Mode, 62

Image
HMI device, 892

Image file
Storing in the image browser project
graphics, 770

Index

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1575

Import
Alarm, 252
Project texts, 767
Tag, 163
Tag data structure, 150

In runtime, 279
iNA960 messages, 1026
Incoming, 220
Industrial Ethernet, 977
Infotext, 229

Display, 884
Installing

Option, 901
Integrated

HMI connection, 983
Integrated connection, 142
Internal error codes and constants, 1026

L
Language

Activate project language, 759
Asian languages, 757
Asian operating system, 757
Disabling the project language, 759
Editing language, 759
Language support, 758
Language-dependent format, 757
Language-specific graphic, 768
Multilingual project, 761
Reference language, 759
Regional format of the date, time, currency, and
numbers, 757

Language switching, 773
Runtime language, 774

Layer
Assigning objects to a layer, 26

Layout
Alarm view, 76
Bar, 66
Button, 62
Circle, 58
Clock, 74
Ellipse, 53
Ellipse segment, 54
Elliptical arc, 56
f(x) trend view, 97
Gauge, 68
Graphic view, 60
HTML Browser, 86
I/O field, 61
Line, 50

List box, 73
Media Player, 95
Polygon, 52
Polyline, 51
Process control, 100
Rectangle, 58
Slider, 70
Switch, 64
Symbolic I/O field, 75
Text box, 59
Trend view, 82
Value table, 93

License
Managing, 900

License Keys, 899
Transfer to an HMI device, 900

Limit, 229
Limit value

Tag, 160
Limits

Tag, 146
Line, 50

Line end, 50
Line start, 50

Line end
Line, 50
Polyline, 51

Line start
Line, 50
Polyline, 51

Link folder
External graphic, 40

List box, 73
Lists in the alarm view, 273
Load

Error message, 921
HMI device, 892

Loading projects
with connected HMI device, 852
With connected HMI device, 912
Without connected HMI device, 852

Local script
Configuring, 368

Log
Alarm log, 291
Automatic entries, 293
Checksum, 299
Data log, 291

Log data, 276
Log entries, 293
Logged alarms

Display, 261

Index

WinCC Engineering V16 - Runtime Unified
1576 System Manual, 11/2019, Online help printout

Logging
On value change, 175

Logging cycle
Tag, 927

Logging tag
Configuring, 178

M
managing

Graphic, 38
Managing

License, 900
Media Player, 95
Mobile devices, 879

Touch gestures, 879
Mode, 62

I/O field, 62
Symbolic I/O field, 75

Multiple selection, 28
Multi-touch devices

Scrolling, 881
Zoom in and out, 881
Zooming, 881

Multiuser engineering
Compiling and loading, 862
Compiling in the local session, 864
Compiling in the server project view, 863
Rules for compiling and loading, 863

Multiuser Engineering
Compiling and loading, 919
Compiling in the local session, 920
Compiling in the server project view, 920
Rules for compiling and loading, 919

N
Naming conventions

Alarm log, 298
Data log, 298

Network, 973
Ethernet, 978

Networking
Devices, 982

Non-integrated
HMI connection, 985

NOT DEFINED

add external graphic, 770

O
object

Rotate, 32
Object

Assigning to a layer, 26
Designing the background color, 33
Designing the fill pattern, 33
Flashing, 35
Flush alignment, 30
Resize, 24
Rotate, 31, 32
Select multiple objects, 28
Transparency, 33

Object list
Tag, 154

Object property
Dynamization, 131

OLE object
Storing in the image browser project
graphics, 770

On demand, 145
OPC

Certificates of the WinCC OPC UA server, 1056
Compatibility, 1057
HMI device as OPC server, 1055
Permitted data type, 1064

OPC UA, 1055
OPC UA Service Sets, 1063

OPC UA server
Certificates, 1056
Communication profile, 1056
Configuration file, 1061
Configuring HMI device, 1060
Instance certificate, 1058
Security concept, 1058
Security settings, 1059
URL, 1056
User identification, 1060

Operating system
Asian language setting, 757
Setting to Western, 757

Operation using the mouse
Alarm control, 272
Alarm window, 272

Operator control
Alarm view, 77
f(t) trend view, 83
f(x) trend view, 98
Media Player, 95

Index

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1577

Process control, 101
Value table, 94

Optical handheld reader, 890
Option

Installing, 901
Uninstalling, 901

Outgoing, 220
Output alarm, 77

P
Parameters

Output in analog alarm, 246
Output in discrete alarm, 246

Permitted data type
OPC, 1064

Picture cycle, 927
PLC

Tag, 165
PLC data type, 210
PLC data type in WinCC, 141
PLC data types, 209, 211
PLC tag

Reconnecting, 161
PLC UDTs

WinCC, 211
Polygon, 52

Configuring corners, 52
Layout, 52
Radii, 52

Polyline, 51
Configuring corners, 51
Line end, 51
Line start, 51
Radii, 51

Port number, 1056
Predefined alarm classes, 222
Process control, 100

Configuring, 197
Configuring a data source, 101
Configuring the data source, 200
Status bar, 34, 199
Toolbar, 34, 101, 199

Process screen
Touch gestures, 879

PROFINET, 977
HMI connection, 989

Project, 849, 910
Compile (overview), 845, 906
Download, 856
Download (overview), 845, 906

Enable, 922
multilingual, 761

Project data
Exporting tag, 162

Project graphics, 38, 770
Project language, 755

Activate, 759
Disabling, 759

Project languages
System texts, 762
User texts, 762

Project size
Reducing, 867

Project text
Exporting, 766

Project texts
Displaying reference text, 765
Importing, 767
Translating individual texts, 763
Translation into project languages, 762

Properties
Dynamization using a resource list, 135
Dynamization with script, 132
dynamization with tag, 133

ProSave, 893

Q
Quality codes of tags, 202

R
Radius, 51, 52, 58

Circle segment, 55
Circular arc, 57

Range (... - ...)
Text list, 738

Read continuously
Tag, 145

Recipe view
Status bar, 34, 199
Toolbar, 34, 199

Reconnecting
Tag, 161

Reconnecting a PLC tag, 161
Rectangle

Configuring, 46
Radius bottom left, 58
Radius bottom right, 58
Radius top left, 58
Radius top right, 58

Index

WinCC Engineering V16 - Runtime Unified
1578 System Manual, 11/2019, Online help printout

Reducing
Project size, 867

Reference language, 756
Selecting, 759

Reference object
Defining, 29

Release
User data type, 169

Removing
Folder link, 40

Reset
to factory settings, 896

Resetting
HMI device to factory settings, 897
to factory settings, 896

Restore
Data of the HMI device, 893, 895

Restoring
from external storage medium, 859, 898, 917

Restoring data
HMI device, 893, 895

Rotate
Object, 31

Rotation, 31
RulerControl, 93
Runtime

Displaying logged alarms, 276
Filtering alarms, 275
Multiple-station system, 922
Redundant system, 922
Requirements, 922
Sorting alarms, 274
Starting, 922
starting on a panel, 868

Runtime language, 756, 772
Font, 775
Order for language switching, 774
Selecting, 773

Runtime operation
Mobile devices, 879

Runtime Scripting
Area of application, 355
Asynchronous operations, 358
Constructors, 358
Dynamization, 355
Global modules, 355
Input support, 363
Object instances, 358
Promise, 358
Snippets, 364
Syntax highlighting, 364

Tracing, 359
Troubleshooting, 359

S
S7 channel troubleshooting of connection
errors, 1000
S7 connection status, 1025
S7 log function, 1004
s7_last_detailed_err_no, 1018
S7-1200 V2

Data types, 211
S7-1500

Communication, 991
Data types, 210, 991

S7-300
Communication, 993

S7-300/400
Data types, 209, 994

S7-400
Communication, 993

s7chn.ini, 1010
S7DOS Error codes, 1030
S7DOS Function types, 1029
S7DOS Trace function, 1044
Safety instruction

Direct key, 882
Save

Data of the HMI device, 893, 895
SCI messages, 1027
Scrolling

Multi-touch devices, 881
Select

Multiple objects, 28
Selection of the correct channel unit, 1002
Selection of the correct communication
subsystem, 1001
Set up

Sort, 79
Setting

Language, 885
Languages in the operating system, 756

Setting language, 885
Setup of an S7 logbook, 1009
SIMATIC S7-300/400, 1000
Simulating, 849, 910

Define temporary start screen, 850, 911
Simulation

Project:simulate, 849, 910
Single alarm

Filtering, 275

Index

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1579

Slider, 70
Display bar, 71
maximum scale value, 70
Show value, 71

Software
HMI device, 892

Sort
Set up, 79

Sorting alarms, 274
Special settings of the S7 channel, 1007
Start angle

Circle segment, 55
Circular arc, 57
Ellipse segment, 54
Elliptical arc, 56

Start value
Tag, 146

Starting
Runtime on a panel, 868

Static time range, 189
Status bar, 34, 79, 199
Storage location

Database, 299
File - CSV (ASCII), 298
File - RDB, 299
File - TXT (Unicode), 298
Logs with checksum, 299

Storage medium
Restoring from external, 859, 898, 917

Substitute value, 163
Defining, 163

Switch, 63
Type, 64

Symbolic addressing
of a tag, 143, 993

Symbolic I/O field, 74
Mode, 75
Text list, 75

Synchronize, 141
Synchronizing a PLC tag, 161
System diagnostic alarms, 218, 263
System error, 218
System event, 218, 248

Parameters, 248
System events

Configuring, 230
System-defined controller alarm, 218

T
Tag

Absolute addressing, 142

Acquisition cycle, 145, 159
Acquisition mode, 145
Addressing, 152
Changing the PLC, 165
Comment, 154
Connection to PLC, 152
Creating external tags, 152
Creating internal tags, 154
Creating the user data type, 166
Data type, 154, 157
Defining a substitute value, 163
Exporting, 162
External tag, 140
Importing, 163
In runtime, 145
Internal tag, 144
Length, 154
Limit value, 160
Limits, 146
Logging cycle, 927
Name, 154
Object list, 154
Quality codes, 202
Read continuously, 145
Reconnecting, 161
Start value, 146
symbolic addressing, 143
Symbolic addressing, 993
Tag type, 157
Update, 145, 159
User data type, 149
User data type element, 149

Tag data
Structure for the import, 150

Tag table
Default, 139
for HMI devices, 139
user-defined, 139

Tag type, 157
Tag value

Updating, 141
Tags

Basics, 138
Data exchange, 974
Task trigger, 753

Task
Triggers, 751

Task card, 23
Task trigger

Alarms, 753
Tags, 753
Time, 752

Index

WinCC Engineering V16 - Runtime Unified
1580 System Manual, 11/2019, Online help printout

Text
Button, 63
Text box, 59

Text box, 59
Size, 59

Text field length
Asian languages, 778

Text list
Application, 735
Bit (0, 1), 739
Bit number (0 - 31),
Creating, 736
Range (... - ...), 738
Symbolic I/O field, 75

Time
Task trigger, 752

Time range, 189
Dynamic, 189
static, 189

Time stamp, 228
Toggle

Between runtime languages, 773
Toolbar, 34, 83, 98, 101, 199
Touch gestures, 879
Transfer

License key to HMI device, 900
Translate

Editor, 761
Transparency

In graphic, 38
Trend

Common axes, 189
Format patterns, 190
Multiple axes, 188

Trend control
Configuring the data source, 200
Format patterns, 190
Status bar, 34, 199
Toolbar, 34, 199

Trend view, 82
Trigger tag, 229
Triggers

Task, 751

U
Uninstalling

Option, 901
Update

Event, 751

Operating system of the HMI device (Windows
CE), 897
Tag, 145, 159

Updating
Tag, 141

Updating the device version, 896
Updating the firmware, 896
Updating the operating system, 896
URL, 86

OPC UA server, 1056
Use

Common alarm class, 234
User data type, 149

Create, 166
Creating, 149
Creating a user data type element, 166
Deleting, 170
Editing, 169
Release, 169
Tags, 149

User data type element
Create, 166

User interface language, 755
Selecting, 758

V
Valid

Data types, 991, 994
Value display

Status bar, 34, 199
Toolbar, 34, 199

Value table
Configuring, 198
Operator controls, 94

W
Web address, 86
Web browser, 885
WebKit engine, 885
WinCC

Starting runtime, 922
WinCC OPC UA server, 1056

configuring, 1063
Discovery server, 1057

Index

WinCC Engineering V16 - Runtime Unified
System Manual, 11/2019, Online help printout 1581

X
X radius, 53

Ellipse segment, 54
Elliptical arc, 56

xlsx file, 252

Y
Y radius, 53

Ellipse segment, 54
Elliptical arc, 56

Z
Zooming

Multi-touch devices, 881

Index

WinCC Engineering V16 - Runtime Unified
1582 System Manual, 11/2019, Online help printout

	WinCC Engineering V16 - Runtime Unified
	Legal information - Warning notice system
	Table of contents
	1 Configuring screens (RT Uni)
	1.1 Basics (RT Uni)
	1.1.1 Basics of screens (RT Uni)
	1.1.2 Task cards (RT Uni)
	1.1.3 Change size and position of an object (RT Uni)
	1.1.4 Using layers (RT Uni)
	1.1.4.1 Basic information on using layers (RT Uni)
	1.1.4.2 Moving objects between layers (RT Uni)
	1.1.4.3 Specifying the active layer (RT Uni)
	1.1.4.4 Hiding and showing layers (RT Uni)

	1.1.5 Select multiple objects (RT Uni)
	1.1.6 Aligning objects (RT Uni)
	1.1.7 Rotating an object around a pivot point (RT Uni)
	1.1.8 Rotating object (RT Uni)
	1.1.9 Designing the fill pattern (RT Uni)
	1.1.10 Defining color gradients (RT Uni)

	1.2 Advanced design (RT Uni)
	1.2.1 Configuring toolbar and status bar (RT Uni)
	1.2.2 Configuring flashing (RT Uni)
	1.2.3 Connecting tags and text lists in the text (RT Uni)
	1.2.4 External graphics (RT Uni)
	1.2.5 Managing external graphics (RT Uni)
	1.2.6 Defining the output format (RT Uni)
	1.2.7 Example: Configuring a rectangle (RT Uni)
	1.2.8 Example: Configuring an I/O field (RT Uni)
	1.2.9 Example: Set values (RT Uni)

	1.3 Configuring objects (RT Uni)
	1.3.1 Basic objects (RT Uni)
	1.3.1.1 Line (RT Uni)
	1.3.1.2 Polyline (RT Uni)
	1.3.1.3 Polygon (RT Uni)
	1.3.1.4 Ellipse (RT Uni)
	1.3.1.5 Ellipse segment (RT Uni)
	1.3.1.6 Circle segment (RT Uni)
	1.3.1.7 Elliptical arc (RT Uni)
	1.3.1.8 Circular arc (RT Uni)
	1.3.1.9 Circle (RT Uni)
	1.3.1.10 Rectangle (RT Uni)
	1.3.1.11 Text box (RT Uni)
	1.3.1.12 Graphic view (RT Uni)

	1.3.2 Elements (RT Uni)
	1.3.2.1 I/O field (RT Uni)
	1.3.2.2 Button (RT Uni)
	1.3.2.3 Switch (RT Uni)
	1.3.2.4 Check box (RT Uni)
	1.3.2.5 Bar (RT Uni)
	1.3.2.6 Gauge (RT Uni)
	1.3.2.7 Slider (RT Uni)
	1.3.2.8 Radio button (RT Uni)
	1.3.2.9 List box (RT Uni)
	1.3.2.10 Clock (RT Uni)
	1.3.2.11 Symbolic I/O field
	1.3.2.12 Touch area (RT Uni)

	1.3.3 Controls (RT Uni)
	1.3.3.1 Alarm control (RT Uni)
	1.3.3.2 Screen window (RT Uni)
	1.3.3.3 Trend control (RT Uni)
	1.3.3.4 Browser (RT Uni)
	1.3.3.5 Parameter set control (RT Uni)
	1.3.3.6 Faceplate container (RT Uni)
	1.3.3.7 Plant overview (RT Uni)
	1.3.3.8 Reports (RT Uni)
	1.3.3.9 Trend companion (RT Uni)
	1.3.3.10 Media Player (RT Uni)
	1.3.3.11 Function trend control (RT Uni)
	1.3.3.12 Process control (RT Uni)

	1.3.4 My Controls (RT Uni)

	1.4 Configuring faceplates (RT Uni)
	1.4.1 Basics (RT Uni)
	1.4.1.1 Basics of faceplates (RT Uni)
	1.4.1.2 Device dependency of faceplates (RT Uni)
	1.4.1.3 "Unified Faceplate Types" editor (RT Uni)

	1.4.2 Creating and managing faceplates (RT Uni)
	1.4.2.1 Creating a faceplate type (RT Uni)
	1.4.2.2 Link faceplate type to a plant object type (RT Uni)
	1.4.2.3 Creating a faceplate instance (RT Uni)
	1.4.2.4 Copying faceplate types and faceplates to other projects (RT Uni)

	1.4.3 Editing faceplate types (RT Uni)
	1.4.3.1 Configuring a faceplate type (RT Uni)
	1.4.3.2 Editing properties of a faceplate type (RT Uni)
	1.4.3.3 Configuring tags in the faceplate type (RT Uni)
	1.4.3.4 Configuring an event in the faceplate type (RT Uni)

	1.4.4 Dynamizing faceplates (RT Uni)
	1.4.4.1 Basics for the dynamization of faceplates (RT Uni)
	1.4.4.2 Dynamizing a faceplate instance (RT Uni)
	1.4.4.3 Configuring faceplate scripts (RT Uni)

	1.4.5 Example: Creating and using faceplates (RT Uni)
	1.4.5.1 Example: Configuring a faceplate (RT Uni)
	1.4.5.2 Example: Creating a faceplate type (RT Uni)
	1.4.5.3 Example: Configuring tags in the faceplate type (RT Uni)
	1.4.5.4 Instead of tags: Using the user data type (UDT) in the faceplate type (RT Uni)
	1.4.5.5 Example: Configuring interface properties in the faceplate type (RT Uni)
	1.4.5.6 Example: Link faceplate type to plant object type (RT Uni)
	1.4.5.7 Example: Creating a local script in the faceplate type (RT Uni)
	1.4.5.8 Example: Creating a faceplate instance and integrating it in the project (RT Uni)

	2 Configuring dynamization (RT Uni)
	2.1 Basics of dynamizing screens (RT Uni)
	2.2 Dynamizing an object property with a "Script" (RT Uni)
	2.3 Dynamizing an object property with a "Tag" (RT Uni)
	2.4 Dynamizing an object property with "Flashing" (RT Uni)
	2.5 Dynamizing an object property with a "Resource list" (RT Uni)

	3 Configuring tags (RT Uni)
	3.1 Basics (RT Uni)
	3.1.1 Basics of tags (RT Uni)
	3.1.2 Overview of HMI tag tables (RT Uni)
	3.1.3 External tags (RT Uni)
	3.1.4 Addressing external tags (RT Uni)
	3.1.5 Internal tags (RT Uni)
	3.1.6 Updating the tag value in runtime (RT Uni)
	3.1.7 Limits and start values of a tag (RT Uni)
	3.1.8 Data logging (RT Uni)
	3.1.9 Basics of tag management (RT Uni)
	3.1.10 Basics of user data types (RT Uni)
	3.1.11 Export and import of tags (RT Uni)

	3.2 Configuring tags (RT Uni)
	3.2.1 Creating external tags (RT Uni)
	3.2.2 Creating internal tags (RT Uni)
	3.2.3 Configuring multiple tags (RT Uni)
	3.2.4 Adapting the data type of a tag (RT Uni)
	3.2.5 Defining the acquisition cycle for a tag (RT Uni)
	3.2.6 Defining limits for a tag (RT Uni)
	3.2.7 Synchronizing tags (RT Uni)
	3.2.8 Importing and exporting tags (RT Uni)
	3.2.9 Defining a substitute value (RT Uni)
	3.2.10 Connecting a tag to another PLC (RT Uni)

	3.3 Configuring user data types (RT Uni)
	3.3.1 Creating a user data type (RT Uni)
	3.3.2 Creating user data type elements (RT Uni)
	3.3.3 Managing versions of user data types (RT Uni)
	3.3.4 Creating tags with a user data type data type (RT Uni)

	3.4 Logging tags (RT Uni)
	3.4.1 Basics of data logging (RT Uni)
	3.4.2 Defining log size, segmentation and backup (RT Uni)
	3.4.3 Data logging on change (RT Uni)
	3.4.4 Creating a data log (RT Uni)
	3.4.5 Configuring logging tags (RT Uni)
	3.4.6 Configuring smoothing (RT Uni)
	3.4.7 Configuring compression (RT Uni)
	3.4.8 Configuring limits (RT Uni)

	3.5 Displaying tags (RT Uni)
	3.5.1 Basics (RT Uni)
	3.5.1.1 Outputting the tag values (RT Uni)
	3.5.1.2 Outputting tag values as trends (RT Uni)
	3.5.1.3 Representing multiple trends (RT Uni)
	3.5.1.4 Basics of time range (RT Uni)
	3.5.1.5 Representing trend directions (RT Uni)
	3.5.1.6 Outputting tag values in tabular format (RT Uni)
	3.5.1.7 Configuring tag evaluation (RT Uni)

	3.5.2 Configuring a trend control (RT Uni)
	3.5.3 Configuring the function trend control (RT Uni)
	3.5.4 Configuring the process control (RT Uni)
	3.5.5 Configuring the trend companion (RT Uni)
	3.5.6 Configuring toolbar and status bar (RT Uni)
	3.5.7 Defining the data source (RT Uni)

	3.6 Reference (RT Uni)
	3.6.1 Quality codes of HMI tags (RT Uni)
	3.6.2 Data types (RT Uni)
	3.6.2.1 Data types for SIMATIC S7-300/400 (RT Uni)
	3.6.2.2 Data types for SIMATIC S7-1500 (RT Uni)
	3.6.2.3 User-defined PLC data types (UDT) (RT Uni)

	4 Configuring alarms (RT Uni)
	4.1 Basics (RT Uni)
	4.1.1 Alarm system (RT Uni)
	4.1.2 Alarms (RT Uni)
	4.1.2.1 User-defined alarms (RT Uni)
	4.1.2.2 System-defined alarms (RT Uni)

	4.1.3 Alarm states (RT Uni)
	4.1.4 Alarm classes (RT Uni)
	4.1.5 Acknowledging alarms (RT Uni)
	4.1.6 Acknowledgment model (RT Uni)
	4.1.7 Alarm components and properties (RT Uni)

	4.2 Configuring alarms (RT Uni)
	4.2.1 Workflow for configuring alarms (RT Uni)
	4.2.2 Creating alarm classes (RT Uni)
	4.2.3 Using common alarm classes (RT Uni)
	4.2.4 Configuring state texts of alarms (RT Uni)
	4.2.5 Configuring discrete alarms (RT Uni)
	4.2.6 Configuring analog alarms (RT Uni)
	4.2.7 Configuring optional parameters for discrete alarms and analog alarms (RT Uni)
	4.2.8 Parameter output in a discrete or analog alarm (RT Uni)
	4.2.9 Configuring alarm texts (RT Uni)
	4.2.10 Configuring multilingual alarm texts (RT Uni)
	4.2.11 Editing system events (RT Uni)
	4.2.12 Filtering controller alarms via display classes (RT Uni)
	4.2.13 Configuring alarm acknowledgment (RT Uni)

	4.3 Exporting and importing alarms (RT Uni)
	4.3.1 Exporting alarms (RT Uni)
	4.3.2 Importing alarms (RT Uni)

	4.4 Configuring an alarm control (RT Uni)
	4.4.1 Configuring an alarm control (RT Uni)
	4.4.2 Configuring toolbar and status bar (RT Uni)
	4.4.3 Configuring columns and sorting (RT Uni)
	4.4.4 Configuring filters in the alarm view (RT Uni)
	4.4.5 Configuring alarm export (RT Uni)
	4.4.6 Configuring the printing of alarms (RT Uni)
	4.4.7 Show logged alarms (RT Uni)
	4.4.8 Configuring the display of system diagnostic alarms (RT Uni)

	4.5 Logging alarms (RT Uni)
	4.5.1 Basics of alarm logging (RT Uni)
	4.5.2 Defining log size, segmentation and backup (RT Uni)
	4.5.3 Creating an alarm log (RT Uni)
	4.5.4 Assign alarm class (RT Uni)

	4.6 Displaying and using alarms (RT Uni)
	4.6.1 Displaying alarms in runtime (RT Uni)
	4.6.2 Operating an alarm view (RT Uni)
	4.6.3 Lists of the alarm view (RT Uni)
	4.6.4 Sorting alarms in runtime (RT Uni)
	4.6.5 Filtering alarms in runtime (RT Uni)
	4.6.6 Displaying logged alarms in runtime (RT Uni)
	4.6.7 Acknowledging alarms (RT Uni)
	4.6.8 Group acknowledgement of alarms (RT Uni)
	4.6.9 Exporting alarms (RT Uni)
	4.6.10 Shelving alarms (RT Uni)
	4.6.11 Lock alarms (RT Uni)
	4.6.12 Printing alarms in runtime (RT Uni)

	4.7 Display security events (RT Uni)
	4.7.1 Display security events on the HMI device (RT Uni)
	4.7.2 Configuring the display of security events (RT Uni)

	4.8 Sending complete alarm from the controller to the HMI device (RT Uni)
	4.8.1 Sending and automatically updating complete alarm from the controller to the HMI device (RT Uni)
	4.8.2 Configuring automatic update of controller alarms on the HMI device (RT Uni)

	5 Archiving data (RT Uni)
	5.1 Log basics (RT Uni)
	5.2 Properties of logs (RT Uni)
	5.3 Working with logs (RT Uni)
	5.4 Storage locations of logs (RT Uni)

	6 Using system functions (RT Uni)
	6.1 Working with function lists (RT Uni)
	6.1.1 Basics of the function list (RT Uni)
	6.1.2 Input support (RT Uni)
	6.1.3 Configuring a function list (RT Uni)
	6.1.4 Editing a function list (RT Uni)
	6.1.5 Using a screen item to specify the value of a parameter (RT Uni)
	6.1.6 Adapt the function list to changed scripts (RT Uni)

	6.2 System functions (RT Uni)
	6.2.1 ChangeConnection (RT Uni)
	6.2.2 ChangeScreen (RT Uni)
	6.2.3 ClearAlarmLog (RT Uni)
	6.2.4 ClearTagLog (RT Uni)
	6.2.5 ClosePopup (RT Uni)
	6.2.6 CreateScreenshot (RT Uni)
	6.2.7 CreateSystemInformation (RT Uni)
	6.2.8 DecreaseTag (RT Uni)
	6.2.9 EjectStorageMedium (RT Uni)
	6.2.10 ExecuteReport (RT Uni)
	6.2.11 ExportParameterSets (RT Uni)
	6.2.12 GetBrightness (RT Uni)
	6.2.13 GetDHCPState (RT Uni)
	6.2.14 GetIPV4Address (RT Uni)
	6.2.15 GetNetworkInterfaceState (RT Uni)
	6.2.16 GetSmartServerState (RT Uni)
	6.2.17 ImportParameterSets (RT Uni)
	6.2.18 IncreaseTag (RT Uni)
	6.2.19 InvertBitInTag (RT Uni)
	6.2.20 LoadAndWriteParameterSet (RT Uni)
	6.2.21 Logoff (RT Uni)
	6.2.22 LookupText (RT Uni)
	6.2.23 OpenFileBrowser (RT Uni)
	6.2.24 OpenScreenInPopup (RT Uni)
	6.2.25 ReadAndSaveParameterSet (RT Uni)
	6.2.26 ResetBitInTag (RT Uni)
	6.2.27 SetBitInTag (RT Uni)
	6.2.28 SetBrightness (RT Uni)
	6.2.29 SetConnectionMode (RT Uni)
	6.2.30 SetDHCPState (RT Uni)
	6.2.31 SetIPV4Address (RT Uni)
	6.2.32 SetLanguage (RT Uni)
	6.2.33 SetNetworkInterfaceState (RT Uni)
	6.2.34 SetPropertyValue (RT Uni)
	6.2.35 SetSmartServerState (RT Uni)
	6.2.36 SetTagValue (RT Uni)
	6.2.37 ShiftAndMask (RT Uni)
	6.2.38 ShowControlPanel (RT Uni)
	6.2.39 ShowSoftwareVersion (RT Uni)
	6.2.40 StartProgram (RT Uni)
	6.2.41 StopRuntime (RT Uni)
	6.2.42 ToggleLanguage (RT Uni)
	6.2.43 WriteManualValue (RT Uni)

	7 Programming scripts (RT Uni)
	7.1 Runtime scripting (RT Uni)
	7.2 Basics (RT Uni)
	7.3 Notes on creating scripts (RT Uni)
	7.3.1 Data types (RT Uni)
	7.3.2 Object instances (RT Uni)
	7.3.3 Asynchronous operations (RT Uni)
	7.3.4 Support for errors (RT Uni)
	7.3.5 Global modules (RT Uni)
	7.3.6 Local scripts (RT Uni)

	7.4 "Scripts" editor (RT Uni)
	7.4.1 Structure of the "Scripts" editor (RT Uni)
	7.4.2 Input support (RT Uni)
	7.4.3 Creating a customized script (RT Uni)
	7.4.4 Configuring a script to an event (RT Uni)
	7.4.5 Dynamizing object properties by script (RT Uni)
	7.4.6 Creating a global definition in a local script (RT Uni)

	7.5 Examples (RT Uni)
	7.5.1 Notes on the code examples (RT Uni)
	7.5.2 Dynamizing the position of an object (RT Uni)
	7.5.3 Reading and writing tag values (RT Uni)
	7.5.4 Change language (RT Uni)
	7.5.5 Dynamically changing the output format of an object (RT Uni)
	7.5.6 Setting the alarm filter (RT Uni)
	7.5.7 Creating an alarm subscription (RT Uni)
	7.5.8 Reading and writing binary files (RT Uni)
	7.5.9 Reading and writing text files (RT Uni)
	7.5.10 Converting values (RT Uni)
	7.5.11 Setting bits (RT Uni)
	7.5.12 Changing the date format (RT Uni)
	7.5.13 Simulating value changes in tags (RT Uni)
	7.5.14 Monitoring alarms (RT Uni)
	7.5.15 Using tag values globally (RT Uni)

	7.6 Troubleshooting (RT Uni)
	7.6.1 RTIL Trace Viewer (RT Uni)
	7.6.2 Integrate RTIL Trace Viewer as an external application (RT Uni)
	7.6.3 Tracing with the RTIL Trace Viewer (RT Uni)

	7.7 Debugging scripts (RT Uni)
	7.7.1 Basics of debugging (RT Uni)
	7.7.2 Design and function of the debugger (RT Uni)
	7.7.3 Enabling the debugger (RT Uni)
	7.7.4 Starting the debugger (RT Uni)
	7.7.5 Working with breakpoints (RT Uni)
	7.7.6 Step-by-step execution of scripts (RT Uni)
	7.7.7 Show values (RT Uni)

	7.8 WinCC Unified object model (RT Uni)
	7.8.1 Objects (RT Uni)
	7.8.1.1 "Alarming" area (RT Uni)
	7.8.1.2 "AlarmLogging" area (RT Uni)
	7.8.1.3 "Connections" area (RT Uni)
	7.8.1.4 "Database" area (RT Uni)
	7.8.1.5 "FileSystem" object (RT Uni)
	7.8.1.6 "HMIRuntime" object (RT Uni)
	7.8.1.7 "Math" area (RT Uni)
	7.8.1.8 "ParameterSetTypes" area (RT Uni)
	7.8.1.9 "PlantModel" area (RT Uni)
	7.8.1.10 "ScreenInterface" object (RT Uni)
	7.8.1.11 "ScreenItems" area (RT Uni)
	7.8.1.12 "SysFct" object (RT Uni)
	7.8.1.13 "Tags" area (RT Uni)
	7.8.1.14 "TagLogging" area (RT Uni)
	7.8.1.15 "Timers" object (RT Uni)
	7.8.1.16 "UI" area (RT Uni)

	8 Configuring text lists and graphic lists (RT Uni)
	8.1 Configuring text lists (RT Uni)
	8.1.1 Basics of text lists (RT Uni)
	8.1.2 Creating a text list (RT Uni)
	8.1.3 Assigning texts and values to an area text list (RT Uni)
	8.1.4 Assigning texts and values to a bit text list (RT Uni)
	8.1.5 Assigning texts and values to a bit number text list (RT Uni)
	8.1.6 Notes for bit number text list (RT Uni)
	8.1.7 Configuring object with a text list (RT Uni)

	8.2 Configuring graphic lists (RT Uni)
	8.2.1 Basics of graphic lists (RT Uni)
	8.2.2 Creating a graphic list (RT Uni)
	8.2.3 Assigning graphics and values to an area graphic list (RT Uni)
	8.2.4 Assigning graphics and values to a bit graphic list (RT Uni)
	8.2.5 Assigning graphics and values to a bit number graphic list (RT Uni)
	8.2.6 Notes for bit number graphic list (RT Uni)
	8.2.7 Configuring objects with a graphic list (RT Uni)

	9 Planning tasks (RT Uni)
	9.1 Basic of the scheduler (RT Uni)
	9.2 Creating tasks with the "Time" trigger (RT Uni)
	9.3 Creating tasks with the "Tags" trigger (RT Uni)
	9.4 Creating tasks with the "Alarms" trigger (RT Uni)

	10 Configuring in multiple languages (RT Uni)
	10.1 Languages in WinCC (RT Uni)
	10.2 Settings for languages in the operating system (RT Uni)
	10.3 Settings for Asian languages in the operating system (RT Uni)
	10.4 Setting project languages (RT Uni)
	10.4.1 Selecting the user interface language (RT Uni)
	10.4.2 Enabling project languages (RT Uni)
	10.4.3 Selecting the reference language and editing language (RT Uni)

	10.5 Creating one project in multiple languages (RT Uni)
	10.5.1 Working with multiple languages (RT Uni)
	10.5.2 Basics of project texts (RT Uni)
	10.5.3 Translating texts directly (RT Uni)
	10.5.4 Translating texts using reference texts (RT Uni)
	10.5.5 Exporting project texts (RT Uni)
	10.5.6 Importing project texts (RT Uni)

	10.6 Using language-specific graphics (RT Uni)
	10.6.1 "Project graphics" editor (RT Uni)
	10.6.2 Storing an image in the project graphics (RT Uni)
	10.6.3 Storing an external image in the project graphics (RT Uni)

	10.7 Languages in runtime (RT Uni)
	10.7.1 Languages and fonts in runtime (RT Uni)
	10.7.2 Methods for language switching (RT Uni)
	10.7.3 Enabling the runtime language (RT Uni)
	10.7.4 Setting the runtime language order for language switching (RT Uni)
	10.7.5 Setting the default font for a runtime language (RT Uni)
	10.7.6 Standardizing font for all languages (RT Uni)
	10.7.7 Specific features of Asian and Eastern languages in runtime (RT Uni)

	11 Configuring parameter sets (RT Uni)
	11.1 Basics (RT Uni)
	11.1.1 Basics of parameter control (RT Uni)
	11.1.2 "Parameter set types" editor (RT Uni)
	11.1.3 Parameter set control (RT Uni)

	11.2 Configuring parameter sets (RT Uni)
	11.2.1 Creating a parameter set type with elements via an HMI user data type (RT Uni)
	11.2.2 Creating a parameter set type with elements via a PLC user data type (RT Uni)
	11.2.3 Changing a parameter set type with elements (RT Uni)
	11.2.4 Assigning a tag of the data type HMI user data type to a parameter set type (RT Uni)
	11.2.5 Assigning a tag of the data type "PLC user data type" to a parameter set type (RT Uni)
	11.2.6 Transferring and deleting parameter sets automatically (RT Uni)
	11.2.7 Transferring parameter sets via scripts (RT Uni)
	11.2.8 Configuring the parameter set view (RT Uni)

	11.3 Using parameter sets in runtime (RT Uni)
	11.3.1 Managing parameter sets (RT Uni)
	11.3.2 Exporting and importing parameter sets (RT Uni)
	11.3.3 Transferring parameter sets (RT Uni)

	12 Configuring user administration (RT Uni)
	12.1 Basics of user administration (RT Uni)
	12.2 Configuring user administration (RT Uni)
	12.2.1 Setting password policies (RT Uni)
	12.2.2 Managing project users (RT Uni)
	12.2.3 Managing global users and user groups (RT Uni)
	12.2.4 Managing roles (RT Uni)
	12.2.5 Assigning roles (RT Uni)
	12.2.6 Activate project protection (RT Uni)
	12.2.7 Log on to a protected project (RT Uni)
	12.2.8 Change password for protected project (RT Uni)
	12.2.9 Log off from a protected project (RT Uni)
	12.2.10 Specify user administration used on Unified Comfort Panel (RT Uni)
	12.2.11 Limit access to Unified Comfort Panel (RT Uni)

	12.3 Use user administration in Runtime (RT Uni)
	12.3.1 Log on to user administration in Runtime (RT Uni)

	13 Compiling and loading (RT Uni)
	13.1 Unified Comfort (RT Uni)
	13.1.1 Runtime settings (RT Uni)
	13.1.1.1 Settings in the runtime software (RT Uni)
	13.1.1.2 Start screen (RT Uni)
	13.1.1.3 Encrypted transfer (RT Uni)
	13.1.1.4 Setting time base
	13.1.1.5 Printing in Runtime

	13.1.2 Overview (RT Uni)
	13.1.3 Compiling a project (RT Uni)
	13.1.4 Simulating projects (RT Uni)
	13.1.4.1 Basics of simulation (RT Uni)
	13.1.4.2 Skip "Load preview" dialog (RT Uni)
	13.1.4.3 Simulating a project (RT Uni)
	13.1.4.4 Simulating a screen (RT Uni)

	13.1.5 Downloading projects (RT Uni)
	13.1.5.1 Overview for loading of projects (RT Uni)
	13.1.5.2 Loading a project (RT Uni)
	13.1.5.3 Using external storage medium (RT Uni)

	13.1.6 Compiling and loading with Multiuser Engineering (RT Uni)
	13.1.6.1 Compiling and loading with multiuser engineering (overview) (RT Uni)
	13.1.6.2 Compiling in the server project view (RT Uni)
	13.1.6.3 Compiling in the local session (RT Uni)

	13.1.7 Error messages during loading of projects (RT Uni)
	13.1.8 Reducing the project size (RT Uni)
	13.1.9 Starting runtime (RT Uni)
	13.1.10 Adapting the project for another HMI device (RT Uni)
	13.1.11 Users in runtime (RT Uni)
	13.1.12 Viewing memory card data (RT Uni)
	13.1.12.1 Basics (RT Uni)
	13.1.12.2 Working with backups (RT Uni)

	13.1.13 Working with HMI device images (RT Uni)
	13.1.13.1 Viewing HMI device images (RT Uni)
	13.1.13.2 Deleting HMI device images (RT Uni)
	13.1.13.3 Creating HMI device images on memory card (RT Uni)

	13.1.14 Basics of operating in Unified Runtime (RT Uni)
	13.1.14.1 Overview (RT Uni)
	13.1.14.2 Operation with the touch screen (RT Uni)
	13.1.14.3 Direct Keys (RT Uni)
	13.1.14.4 Triggering an action (RT Uni)
	13.1.14.5 Entering a value (RT Uni)
	13.1.14.6 Moving operator controls (RT Uni)
	13.1.14.7 Displaying infotext (RT Uni)
	13.1.14.8 Changing Runtime language (RT Uni)
	13.1.14.9 Web browser of WebKit engine (RT Uni)

	13.1.15 Entering barcodes via handheld readers (RT Uni)
	13.1.16 Servicing the HMI device (RT Uni)
	13.1.16.1 Overview of the service for Unified Comfort Panels (RT Uni)
	13.1.16.2 ProSave (RT Uni)
	13.1.16.3 Backup of HMI data (RT Uni)
	13.1.16.4 Backing up and restoring data of the HMI device (RT Uni)
	13.1.16.5 Updating the operating system (RT Uni)
	13.1.16.6 Updating the operating system on the HMI device (RT Uni)
	13.1.16.7 Updating the operating system of the HMI device from a data carrier
	13.1.16.8 Transferring license keys (RT Uni)
	13.1.16.9 Managing licenses (RT Uni)
	13.1.16.10 Installing and uninstalling an option (RT Uni)

	13.2 Unified PC (RT Uni)
	13.2.1 Runtime settings (RT Uni)
	13.2.1.1 Settings in the runtime software (RT Uni)
	13.2.1.2 Start screen (RT Uni)
	13.2.1.3 Encrypted transfer (RT Uni)
	13.2.1.4 Printing in runtime (RT Uni)

	13.2.2 Overview (RT Uni)
	13.2.3 Compiling a project (RT Uni)
	13.2.4 Simulating projects (RT Uni)
	13.2.4.1 Basics of simulation (RT Uni)
	13.2.4.2 Skip "Load preview" dialog (RT Uni)
	13.2.4.3 Simulating a project (RT Uni)
	13.2.4.4 Simulating a screen (RT Uni)

	13.2.5 Downloading projects (RT Uni)
	13.2.5.1 Sequence of the download process (RT Uni)
	13.2.5.2 Loading a project (RT Uni)
	13.2.5.3 Using external storage medium (RT Uni)

	13.2.6 Compiling and loading with multiuser engineering (RT Uni)
	13.2.6.1 Compiling and loading with multiuser engineering (overview) (RT Uni)
	13.2.6.2 Compiling in the server project view (RT Uni)
	13.2.6.3 Compiling in the local session (RT Uni)

	13.2.7 Error messages during loading of projects (RT Uni)
	13.2.8 Starting runtime (RT Uni)
	13.2.9 Adapting the project for another HMI device (RT Uni)
	13.2.10 Users in runtime (RT Uni)
	13.2.10.1 Changing users in runtime (RT Uni)
	13.2.10.2 User administration in runtime (RT Uni)

	14 Configuring cycles (RT Uni)
	14.1 Basics of cycles (RT Uni)
	14.2 Defining cycles (RT Uni)

	15 Creating production reports (RT Uni)
	15.1 Basics (RT Uni)
	15.1.1 Introduction (RT Uni)
	15.1.2 Basics of Reporting (RT Uni)

	15.2 Procedure (RT Uni)
	15.3 Configuring production reports in the engineering system (RT Uni)
	15.3.1 Inserting a "Reporting" control in a screen (RT Uni)

	15.4 Creating templates for production reports (RT Uni)
	15.4.1 Requirements (RT Uni)
	15.4.1.1 Installation of the Reporting add-in (RT Uni)
	15.4.1.2 Configuring Internet Explorer and Edge (RT Uni)

	15.4.2 Setting up a data source (RT Uni)
	15.4.2.1 Using an online connection (RT Uni)
	15.4.2.2 Using an offline connection (RT Uni)

	15.4.3 Configuring report templates (RT Uni)
	15.4.3.1 Sequence of events (RT Uni)
	15.4.3.2 Create segments (RT Uni)
	15.4.3.3 Edit segments (RT Uni)
	15.4.3.4 Delete segments (RT Uni)
	15.4.3.5 Adding data source elements (RT Uni)
	15.4.3.6 Delete data source elements (RT Uni)
	15.4.3.7 Working with configurations (RT Uni)
	15.4.3.8 Reading Runtime data in Excel (RT Uni)
	15.4.3.9 Calculation modes for data source elements (RT Uni)

	15.4.4 Making general settings (RT Uni)
	15.4.4.1 Changing the language (RT Uni)
	15.4.4.2 Adapting the work area (RT Uni)
	15.4.4.3 Zooming in the add-in (RT Uni)

	15.4.5 Undo and redo (RT Uni)

	15.5 Working with production logs in runtime (RT Uni)
	15.5.1 The user interface of the "Reports" control (RT Uni)
	15.5.2 Configuring task parameters (RT Uni)
	15.5.2.1 Import and export templates (RT Uni)
	15.5.2.2 Deleting templates (RT Uni)
	15.5.2.3 Configure trigger (RT Uni)

	15.5.3 Configuring report tasks (RT Uni)
	15.5.3.1 Creating a report job (RT Uni)
	15.5.3.2 Managing report jobs (RT Uni)

	15.5.4 Running a report job manually (RT Uni)
	15.5.5 Downloading reports (RT Uni)
	15.5.6 Inconsistencies and error diagnostics (RT Uni)

	16 Communicating with controllers
	16.1 Basics of communication (RT Uni)
	16.1.1 Communication between devices (RT Uni)
	16.1.2 Supported PLCs (RT Uni)
	16.1.3 Configuring communication (RT Uni)

	16.2 Networks and connections (RT Uni)
	16.2.1 SIMATIC communication networks (RT Uni)
	16.2.1.1 Communication networks (RT Uni)
	16.2.1.2 PROFINET (RT Uni)

	16.2.2 Connections (RT Uni)
	16.2.2.1 HMI connection (RT Uni)
	16.2.2.2 Additional connection types (RT Uni)

	16.3 Device configuration (RT Uni)
	16.3.1 Layout of a PC-based HMI device (RT Uni)
	16.3.2 Configuring HMI device (RT Uni)

	16.4 Configuring an HMI connection (RT Uni)
	16.4.1 Integrated HMI connection (RT Uni)
	16.4.1.1 Networking HMI device and PLCs (RT Uni)
	16.4.1.2 Creating an integrated HMI connection (RT Uni)

	16.4.2 Non-integrated HMI connection (RT Uni)
	16.4.2.1 Configuring non-integrated connections (RT Uni)
	16.4.2.2 Creating a non-integrated HMI connection (RT Uni)

	16.4.3 Setting up switch on/switch off of a connection in runtime (RT Uni)

	16.5 Configuring interfaces (RT Uni)
	16.5.1 PLCs and Interfaces (RT Uni)
	16.5.2 Requirements for interface configuration (RT Uni)
	16.5.3 PROFINET (RT Uni)
	16.5.3.1 PROFINET interfaces (RT Uni)
	16.5.3.2 Configuring PROFINET interfaces of a non-integrated HMI connection (RT Uni)

	16.6 Configuring communication (RT Uni)
	16.6.1 Communicating with SIMATIC S7-1500 (RT Uni)
	16.6.1.1 Communication with SIMATIC S7-1500 (RT Uni)
	16.6.1.2 Valid data types for SIMATIC S7-1500 (RT Uni)
	16.6.1.3 Symbolic addressing (RT Uni)

	16.6.2 Communicating with SIMATIC S7-300 / S7-400 (RT Uni)
	16.6.2.1 Communication with SIMATIC S7-300 / S7-400 (RT Uni)
	16.6.2.2 Valid data types for SIMATIC S7-300 / S7-400 (RT Uni)
	16.6.2.3 Cyclic operation (RT Uni)

	16.7 Interface and communication parameters (RT Uni)
	16.7.1 S7-1500 (RT Uni)
	16.7.1.1 S7-1500 | Integrated HMI connection (RT Uni)
	16.7.1.2 S7-1500 | Non-integrated HMI connection (RT Uni)

	16.7.2 S7-300/400 (RT Uni)
	16.7.2.1 S7-300/400 | Integrated HMI connection (RT Uni)
	16.7.2.2 S7-300/400 | Non-integrated HMI connection (RT Uni)

	16.8 Troubleshooting of connection errors (commissioning) (RT Uni)
	16.8.1 Troubleshooting for SIMATIC S7-300/400 (RT Uni)
	16.8.1.1 Procedure for the localization of errors (RT Uni)
	16.8.1.2 Error codes (RT Uni)
	16.8.1.3 Internal error codes and constants (RT Uni)
	16.8.1.4 API error texts (RT Uni)

	17 Communicating with OPC (RT Uni)
	17.1 OPC UA (RT Uni)
	17.2 Using OPC in WinCC (RT Uni)
	17.3 Basics of the WinCC OPC UA server (RT Uni)
	17.4 Compatibility (RT Uni)
	17.5 Security concept of OPC UA (RT Uni)
	17.6 Configuring an HMI device as an OPC UA server (RT Uni)
	17.7 OPC server configuration (RT Uni)
	17.7.1 Structure of the configuration file (RT Uni)
	17.7.2 Configuring an OPC UA server (RT Uni)

	17.8 OPC UA services support (RT Uni)
	17.9 Permitted data types (OPC) (RT Uni)

	18 Performance features (RT Uni)
	18.1 General technical data (RT Uni)
	18.1.1 Permitted special characters (RT Uni)

	18.2 SIMATIC Unified Comfort Panel (RT Uni)
	18.3 SIMATIC Unified PC

	19 Runtime API (RT Uni)
	19.1 Basics (RT Uni)
	19.2 Changes to the API (RT Uni)
	19.3 Creating a minimal ODK client (RT Uni)
	19.4 Authorizing users (RT Uni)
	19.5 Startup and shutdown behavior of an ODK application (RT Uni)
	19.5.1 Autostart of an ODK application (RT Uni)
	19.5.2 Shutdown behavior (RT Uni)
	19.5.3 Restart behavior (RT Uni)

	19.6 Syntax of the alarm filter (RT Uni)
	19.7 Locale IDs of the supported languages (RT Uni)
	19.8 Code samples (RT Uni)
	19.9 Description of the C# interfaces (RT Uni)
	19.9.1 Releasing objects (RT Uni)
	19.9.2 Interfaces of the Runtime environment (RT Uni)
	19.9.2.1 IRuntime (RT Uni)
	19.9.2.2 IProduct (RT Uni)
	19.9.2.3 IOption (RT Uni)
	19.9.2.4 IVersionInfo (RT Uni)

	19.9.3 Error-handling interfaces (RT Uni)
	19.9.3.1 IErrorResult (RT Uni)
	19.9.3.2 IErrorInfo (RT Uni)
	19.9.3.3 OdkException (RT Uni)

	19.9.4 Interfaces of the tags (RT Uni)
	19.9.4.1 IProcessValue (RT Uni)
	19.9.4.2 ITag (RT Uni)
	19.9.4.3 ITagSet (RT Uni)
	19.9.4.4 ITagSetQCD (RT Uni)
	19.9.4.5 ITagSetQCDItem (RT Uni)
	19.9.4.6 ILoggedTagValue (RT Uni)
	19.9.4.7 ILoggedTag (RT Uni)
	19.9.4.8 ILoggedTagSet (RT Uni)
	19.9.4.9 ITags (RT Uni)
	19.9.4.10 ITagAttributes (RT Uni)
	19.9.4.11 ILoggingTags (RT Uni)
	19.9.4.12 ILoggingTagAttributes (RT Uni)

	19.9.5 Interfaces of the alarms (RT Uni)
	19.9.5.1 IAlarmResult (RT Uni)
	19.9.5.2 IAlarm (RT Uni)
	19.9.5.3 IAlarmSet (RT Uni)
	19.9.5.4 IAlarmSetResult (RT Uni)
	19.9.5.5 IAlarmTrigger (RT Uni)
	19.9.5.6 ITextList (RT Uni)
	19.9.5.7 IAlarmSubscription (RT Uni)
	19.9.5.8 ILoggedAlarmResult (RT Uni)
	19.9.5.9 IAlarmLogging (RT Uni)
	19.9.5.10 IAlarmLoggingSubscription (RT Uni)

	19.9.6 Interfaces for connections (RT Uni)
	19.9.6.1 IConnectionResult (RT Uni)
	19.9.6.2 IConnectionStatusResult (RT Uni)
	19.9.6.3 IConnection (RT Uni)
	19.9.6.4 IConnectionSet (RT Uni)

	19.9.7 Interfaces of the Plant Model (RT Uni)
	19.9.7.1 IPlantModel (RT Uni)
	19.9.7.2 IPlantObject (RT Uni)
	19.9.7.3 IPlantObjectProperty (RT Uni)
	19.9.7.4 IPlantObjectPropertyValue (RT Uni)
	19.9.7.5 IPlantObjectPropertySet (RT Uni)
	19.9.7.6 IPlantObjectAlarmSubscription (RT Uni)

	19.9.8 Interfaces of the Calendar option (RT Uni)
	19.9.8.1 ISHCCalendar (RT Uni)
	19.9.8.2 ISHCCategory (RT Uni)
	19.9.8.3 ISHCCategoryProvider (RT Uni)
	19.9.8.4 ISHCCalendarSettings (RT Uni)
	19.9.8.5 ISHCTimeSlice (RT Uni)
	19.9.8.6 ISHCDay (RT Uni)
	19.9.8.7 ISHCDayProvider (RT Uni)
	19.9.8.8 ISHCDayTemplate (RT Uni)
	19.9.8.9 ISHCDayTemplatesProvider (RT Uni)
	19.9.8.10 ISHCShiftTemplate (RT Uni)
	19.9.8.11 ISHCShiftTemplatesProvider (RT Uni)
	19.9.8.12 ISHCShift (RT Uni)
	19.9.8.13 ISHCAction (RT Uni)
	19.9.8.14 ISHCActionElement (RT Uni)
	19.9.8.15 ISHCActionTemplate (RT Uni)
	19.9.8.16 ISHCActionTemplateElement (RT Uni)
	19.9.8.17 ISHCActionTemplatesProvider (RT Uni)

	19.10 Description of the C++ interfaces (RT Uni)
	19.10.1 Error codes of the C++ interfaces (RT Uni)
	19.10.2 Interfaces of the Runtime environment (RT Uni)
	19.10.2.1 IOdkRt (RT Uni)
	19.10.2.2 IRuntime (RT Uni)
	19.10.2.3 IProduct (RT Uni)
	19.10.2.4 IOption (RT Uni)
	19.10.2.5 IOptionEnumerator (RT Uni)
	19.10.2.6 IVersionInfo (RT Uni)
	19.10.2.7 IErrorResult (RT Uni)
	19.10.2.8 IErrorResultEnumerator (RT Uni)
	19.10.2.9 IErrorInfo (RT Uni)

	19.10.3 Interfaces of the tags (RT Uni)
	19.10.3.1 IProcessValue (RT Uni)
	19.10.3.2 IProcessValueEnumerator (RT Uni)
	19.10.3.3 ITag (RT Uni)
	19.10.3.4 ITagCallback (RT Uni)
	19.10.3.5 ITagSet (RT Uni)
	19.10.3.6 ITagSetQCD (RT Uni)
	19.10.3.7 ITagSetQCDItem (RT Uni)
	19.10.3.8 ILoggedTagValue (RT Uni)
	19.10.3.9 ILoggedTagValueEnumerator (RT Uni)
	19.10.3.10 ILoggedTagCallback / ILoggedTagSetCallback (RT Uni)
	19.10.3.11 ILoggedTag (RT Uni)
	19.10.3.12 ILoggedTagSet (RT Uni)
	19.10.3.13 ITags (RT Uni)
	19.10.3.14 ITagAttributes (RT Uni)
	19.10.3.15 ITagAttributesEnumerator (RT Uni)
	19.10.3.16 ITagAttributesCallback (RT Uni)
	19.10.3.17 ILoggingTags (RT Uni)
	19.10.3.18 ILoggingTagAttributes (RT Uni)
	19.10.3.19 ILoggingTagAttributesEnumerator (RT Uni)
	19.10.3.20 ILoggingTagAttributesCallback (RT Uni)

	19.10.4 Interfaces of the alarms (RT Uni)
	19.10.4.1 IAlarmResult (RT Uni)
	19.10.4.2 IAlarmResultEnumerator (RT Uni)
	19.10.4.3 IAlarm (RT Uni)
	19.10.4.4 IAlarmCallback (RT Uni)
	19.10.4.5 IAlarmSourceCommandCallback (RT Uni)
	19.10.4.6 IAlarmSet (RT Uni)
	19.10.4.7 IAlarmSetResult (RT Uni)
	19.10.4.8 IAlarmSetResultEnumerator (RT Uni)
	19.10.4.9 IAlarmTrigger (RT Uni)
	19.10.4.10 ITextList (RT Uni)
	19.10.4.11 IAlarmSubscription (RT Uni)
	19.10.4.12 ILoggedAlarmResult (RT Uni)
	19.10.4.13 ILoggedAlarmResultEnumerator (RT Uni)
	19.10.4.14 IAlarmLogging (RT Uni)
	19.10.4.15 IAlarmLoggingCallback (RT Uni)
	19.10.4.16 IAlarmLoggingSubscription (RT Uni)

	19.10.5 Interfaces for connections (RT Uni)
	19.10.5.1 IConnectionResult (RT Uni)
	19.10.5.2 IConnectionResultEnumerator (RT Uni)
	19.10.5.3 IConnectionStatusResult (RT Uni)
	19.10.5.4 IConnectionStatusResultEnumerator (RT Uni)
	19.10.5.5 IConnection (RT Uni)
	19.10.5.6 IConnectionReadNotification (RT Uni)
	19.10.5.7 IConnectionStateChangeNotification (RT Uni)
	19.10.5.8 IConnectionSet (RT Uni)

	19.10.6 Interfaces of the Plant Model (RT Uni)
	19.10.6.1 IPlantModel (RT Uni)
	19.10.6.2 IPlantObject (RT Uni)
	19.10.6.3 IPlantObjectProperty (RT Uni)
	19.10.6.4 IPlantObjectPropertyValue (RT Uni)
	19.10.6.5 IPlantModelPropertySubscriptionNotification (RT Uni)
	19.10.6.6 IPlantObjectPropertyValueEnumerator (RT Uni)
	19.10.6.7 IPlantObjectPropertySet (RT Uni)
	19.10.6.8 IPlantObjectPropertySetReadReply (RT Uni)
	19.10.6.9 IPlantObjectPropertySetWriteReply (RT Uni)
	19.10.6.10 IPlantObjectEnumerator (RT Uni)
	19.10.6.11 IPlantObjectAlarmSubscription (RT Uni)
	19.10.6.12 IPlantObjectAlarmCallback (RT Uni)
	19.10.6.13 IPlantObjectAlarmSubscriptionCallback (RT Uni)

	19.10.7 Interfaces of the Calendar option (RT Uni)
	19.10.7.1 ISHCCalendarOption (RT Uni)
	19.10.7.2 ISHCCalendar (RT Uni)
	19.10.7.3 ISHCCalendarSettings (RT Uni)
	19.10.7.4 ISHCCategory (RT Uni)
	19.10.7.5 ISHCCategoryEnumerator (RT Uni)
	19.10.7.6 ISHCCategoryProvider (RT Uni)
	19.10.7.7 ISHCTimeSlice (RT Uni)
	19.10.7.8 ISHCTimeSliceEnumerator (RT Uni)
	19.10.7.9 ISHCDay (RT Uni)
	19.10.7.10 ISHCDayEnumerator (RT Uni)
	19.10.7.11 ISHCDayProvider (RT Uni)
	19.10.7.12 ISHCDayTemplate (RT Uni)
	19.10.7.13 ISHCDayTemplatesProvider (RT Uni)
	19.10.7.14 ISHCShiftTemplate (RT Uni)
	19.10.7.15 ISHCShiftTemplateEnumerator (RT Uni)
	19.10.7.16 ISHCShiftTemplatesProvider (RT Uni)
	19.10.7.17 ISHCShift (RT Uni)
	19.10.7.18 ISHCShiftEnumerator (RT Uni)
	19.10.7.19 ISHCAction (RT Uni)
	19.10.7.20 ISHCActionEnumerator (RT Uni)
	19.10.7.21 ISHCActionElement (RT Uni)
	19.10.7.22 ISHCActionElementEnumerator (RT Uni)
	19.10.7.23 ISHCActionTemplate (RT Uni)
	19.10.7.24 ISHCActionTemplateEnumerator (RT Uni)
	19.10.7.25 ISHCActionTemplatesProvider (RT Uni)
	19.10.7.26 ISHCActionTemplateElement (RT Uni)
	19.10.7.27 ISHCActionTemplateElementEnumerator (RT Uni)

	20 Working with plant objects and plant views
	20.1 Basics
	20.1.1 Introduction
	20.1.2 Applications
	20.1.3 Requirements
	20.1.4 Type/instance concept in object-oriented configuration
	20.1.5 Configuration concept
	20.1.6 Plant model and target systems
	20.1.7 Structure of a plant model

	20.2 Elements and basic settings
	20.2.1 Overview
	20.2.2 Options for creating plant objects

	20.3 Object- and technology-oriented configuration
	20.3.1 Creating a plant hierarchy
	20.3.2 Assigning a plant hierarchy to a HMI device
	20.3.3 Creating plant object types
	20.3.4 Creating plant objects
	20.3.5 Example: Determine plant object type
	20.3.6 Configure plant object types
	20.3.7 Configuring plant object types from the data blocks of an S7-1500
	20.3.8 Assigning process data to plant objects
	20.3.9 Basic information on configuring screens
	20.3.10 Configuring screens for plant objects
	20.3.11 Example: Configuring screens for brewery production lines
	20.3.12 Configuring "Plant overview" control and companion controls
	20.3.13 Configuring an alarm control for plant objects
	20.3.14 Configuring trend control for plant objects
	20.3.15 Basic information on configuring alarms
	20.3.16 Configure discrete alarms for plant objects
	20.3.17 Configuring analog alarms for plant objects
	20.3.18 Temperature monitoring example Configuring analog alarms for a plant object type
	20.3.19 Configuring the logging of plant object types

	20.4 Visualizing plant objects in runtime
	20.4.1 Displaying plant objects in runtime
	20.4.2 Operating "Plant overview" in runtime
	20.4.3 Display process data of the plant objects in a trend control
	20.4.4 Displaying alarms for plant objects in runtime

	20.5 Options
	20.5.1 Plant Intelligence Options

	21 Unified Collaboration
	21.1 Basics
	21.1.1 Introduction
	21.1.2 Requirements
	21.1.3 Restrictions

	21.2 Using Unified Collaboration
	21.2.1 Configuration concept
	21.2.2 Defining collaboration settings
	21.2.3 Export screen references for Unified Collaboration
	21.2.4 Import screen references for Unified Collaboration
	21.2.5 Configuring the screen window

	Index

